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Compressed Sensing

Classic setup

Kashin, 1977; Bresler et al., 1999; Donoho et al., 2004; Candés et al., 2005; · · ·

Only one constraint
I x ∈ RN is K-sparse
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Constrained Compressed Sensing

Constraints on x
I xi’s are correlated (Dai & Milenkovic; Baraniuk, et al.; · · · ).
I xi are bounded integers.
I May improve performance.

Constraints on Φ
I Sparse/structured (Dai & Milenkovic; Indyk, et al.; Do, et al.; Strauss, et

al.).
I lp-norm + nonnegativity.
I May introduce performance loss.

Performance requirement on noise tolerance.
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Application 1: CS DNA Microarrays

DNA Microarray: measures the concentration of certain molecules
(such as mRNA) for tens of thousands of genes simultaneously.
Major issue: each sequence has a unique identifier⇒ high cost.
CS DNA Microarray (Dai, Sheikh, Milenkovic and Baraniuk; Hassibi)

Constraints:
x : xi =the # of certain molecules.
|xi| ≤ t: Bounded integer.
Φ: Φi,j =the affinity (the probability) between the probe and target.
‖Φi‖l1 = 1, Φi,j ≥ 0.

The same model works for low light imaging, drug screening· · ·
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Application 2: Multiuser Communications
A multi-access channel with K users

y =
∑K

i=1 hi

√
Piti + e.

ti ∈ Ci
Ci: ith user’s codebook |Ci| = ni

Dai and Milenkovic (UIUC) WSC & Constrained CS DIMACS 2009 5 / 15



Application 2: Multiuser Communications
A multi-access channel with K users

y =
∑K

i=1 hi

√
Piti + e.

ti ∈ Ci
Ci: ith user’s codebook |Ci| = ni

Dai and Milenkovic (UIUC) WSC & Constrained CS DIMACS 2009 5 / 15



Questions regarding to Constrained CS (CCS)

How to analyze the gain/loss for a given set of constraints?
How do the constraints affect the reconstruction algorithms?
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Questions regarding to Constrained CS (CCS)

How to analyze the gain/loss for a given set of constraints?
How do the constraints affect the reconstruction algorithms?

Our Observation: coding theoretic techniques help.
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Superimposed Codes
Euclidean Superimposed Codes (Ericson and Györfi, 1988)

I xi = 0/1.
I ‖vi‖2 = 1.
I Distance requirement
⇒ deterministic noise tolerance.
‖Φ (x1 − x2)‖2 ≥ d ∀x1 6= x2

Applications⇒Weighted superimposed codes (WSC) (D. and
Milenkovic, 2008)

I |xi| ≤ t is an integer.
I ‖vi‖p = 1.
I Distance requirement
‖Φ (x1 − x2)‖p ≥ d ∀x1 6= x2.

A hybrid of CS and Euclidean superimposed codes
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Rate Bounds for WSCs

Definition: Let
N (m, K, d, t) = max {N : ∃C}.

The asymptotic code rate is defined as
R (K, d, t) = lim sup

m→∞

log N(m,K,d,t)
m .

Theorem:
For Euclidean norm,

log K
4K (1 + o (1)) ≤ R (K, d, t) ≤ log K

2K (1 + ot,d (1)).
For l1-WSC and nonnegative l1-WSC

log K
4K (1 + o (1)) ≤ R (K, d, t) ≤ log K

K (1 + ot,d (1)).
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Interpretation

For WSCs,
K log N

log K
≤ m ≤ 4K log N

log K
.

The bounds are not independent of d
⇒ can make the distance arbitrarily close to one.

For classic CS,

m ≥ O

(
K log

(
N

K

))
.

No performance garantee under noise.
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The Proof of the Upper Bound
Low-hanging fruit: sphere-packing bound:
Minimum distance d⇒ Balls B

(
Φx, d

2

)
are disjoint

K∑
k=1

(
N

k

)
(2t)k ≤

(
tK + d

2
d
2

)m

⇒ log N

m
≤ log K

K
.

High-hanging fruit: a large fraction of balls lie in the sphere of a smaller
radius.

log N
m ≤ log

√
K

K = log K
2K .
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Proof of the Lower Bounds: Random Coding

Random codes:
H ∈ Rm×N =a Gaussian random matrix (Hi,j ∼ N

(
0, 1

m

)
).

Φ : vi = hi/ ‖hi‖p.

d ≤ ‖∆y‖p = ‖Φ · (x1 − x2)‖p.
(∆y)i ≈Linear combination of Gaussian rvs.
lp-norm of a Gaussian vector: large deviations.

R (K, d, t) = lim sup
(m,N)→∞

log N
m ≥ log K

4K (1 + o (1)) .

Difficulty with nonnegativity.
Gaussian approximation.
The Berry-Esseen theorem for bounding the approx. error.
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Code Construction and Decoding Algorithms

Coding theory:
I Offers myriad of construction techniques.
I No efficient decoding methods for WSC codes were known before.

CS:
I Offers decoding algorithmic solutions

l1-minimization, OMP, SP, CoSaMP ...

Combination?
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Decoding

The WESC decoder:
x̂i = round (v∗i y) .
no iteration.

OMP: K iterations.

Discrete input⇒ complexity reduction
The WESC decoder: O (mN)
OMP: O (KmN)

Code Rate for both WESC decoder and OMP:

R ≤ 1
8K2t2

⇒ m = O
(
K2 log N

)
.
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Multiuser Interference Cancellation and Decoding

High mobility⇒ No channel information at transmitters.
Coding and decoding motivated by CS.
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Conclusion

WSCs for constrained CS:
Quantified the code rate
Noise tolerance
Efficient decoding
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