QUAPO : Quantitative Analysis of Pooling in High-Throughput Drug Screening

Raghu Kainkaryam

Systems Biology Group University of Michigan

(joint work with Anna Gilbert, Paul Shearer and Peter Woolf)

March 27, 2009

DIMACS/DyDAn Workshop on Streaming, Coding & Compressive Sensing

	QUAPO 000000	Challenges 0000000	
Talk Outline			

1 Motivation

- Drug Discovery
- HTS

2 Pooling in HTS

Group Testing

3 QUAPO

- Compressive Sensing
- Results

4 Challenges

Practical Challenges

5 Summary

Take Home Points

Motivation	Pooling in HTS	QUAPO	Challenges	
• 0 00				

Drug Discovery Funnel

Nature Reviews | Drug Discovery

Motivation	Pooling in HTS	Challenges	
Drug Discovery Co	ost		

- Approx. Cost \sim \$800 million to bring a *new drug* to market¹
- New drug = New Chemical Entity
- Each year, worldwide, only about 26 such drugs enter the market
- Millions of chemical compounds are tested to find them

¹includes the cost of all drug development which did not result in a new drug

First step in drug discovery is High-Throughput Screening (HTS).

Motivation	Pooling in HTS	QUAPO	Challenges	
0000				
ADC SELITC				

- Automation & high-throughput achieved through robotic liquid handling
- Biological Assay Typically a biochemical binding event detected by an optical signal
- Chemical Library thousands to millions of chemical compounds, available in pre-configured plates.
- Hit Rate number of active compounds found in a screen (0.01 – 10%)

	Pooling in HTS	QUAPO 000000	Challenges 0000000	
Pooling in HTS				

Comparison of one compound, one well and pooled HTS.

	Pooling in HTS	QUAPO 000000	Challenges 0000000	
Multiple Iten	ns & Noisy Tests			

Unique boolean tagging does not work when multiple active compounds or testing errors occur.

	Pooling in HTS	QUAPO	Challenges	
	000			
Group Testing				

Problem : Create pooling strategy that reduces tests, guarantees identification and corrects errors in testing.

Solution : Group Testing ²

- For n compound library
- With at most k active
- With at most E testing errors
- \blacksquare Design pooling strategy to guarantee the identification of k actives
- \blacksquare Design a decoding algorithm which works in the presence of E errors

²which means Compressive Sensing is around the corner

	Pooling in HTS ○●○	QUAPO 000000	Challenges 0000000	
Pooling Design				

Example: Shifted Transversal Design (STD) of N.Thierry Mieg ³ for n = 25, k = 2, E = 1.

³shown to be equivalent to R. DeVore's *Deterministic Construction* (2007)

	Pooling in HTS 00●	QUAPO 000000	Challenges 0000000	
Decoding Algo	rithm			

Choose a cut-off to reduce measurements to binary (hit or miss).4

⁴figures from K. & Woolf, Curr. Op. in Drug Disc. & Dev, in press 2009

		QUAPO ●00000	Challenges 0000000	
Quantitative Analy	sis of Pooling			

- Quantitative information is present in measurements.
- Binary binning of data introduces false positive and false negative testing errors.
- Hard to choose cut-off for pooled measurements.

		QUAPO 0●0000	Challenges 0000000	
Compressive	Sensing in HTS			

Quantitative Analysis of Pooling is possible via Compressive Sensing.

It is sparse but is it linear?

Motivation	Pooling in HTS	QUAPO	Challenges	
0000	000			

Biochemical Model for Pooling

Competitive binding assay.

Assume : All drugs present in equal & excess conc.

Linear Model for Activity

 $y = \frac{(1+K_a[L])}{[D]} \frac{\%I}{100-\%I} = \sum_i K_i$

y – modified measured quantity. $K_a, [L]$ and [D] are known.

Linear Algebra Problem : y = MK

	QUAPO 000●00	Challenges 0000000	

QUAPO : Quantitative Analysis of Pooling in HTS

QUAPO

- Sparsity : Most compound activities (*K_a*'s are close to zero (inactive).
- Linearity : Measured quantity maps linearly to compounds activity (with reasonable approximations).

Solve

$$\min_{x} ||x||_1 \text{ subject to } ||\Phi x - y||_2 \leq \epsilon$$

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_t \end{pmatrix}_{t \times 1} \propto \begin{bmatrix} 1 & 0 & \dots & 0 & \dots & 1 \\ 0 & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & \dots & 1 & \dots & 0 \end{bmatrix}_{t \times n} \times \begin{pmatrix} K_{a1} \\ K_{a2} \\ \vdots \\ K_{ai} \\ \vdots \\ K_{an} \end{pmatrix}_{n \times 1}$$

		QUAPO ○○○○●O	Challenges 0000000	
C	Cr. L. r.			

Small Library Simulation

Synthetic Screen : small molecule ligands for formylpeptide receptor (FPR) with 6 showing activity.⁵

• STD
$$(n = 272, d = 3, e = 0\%, r = 10)$$
 required $m = 116$ tests.

•
$$y = \frac{(1+K_a[L])}{[D]} \frac{\%I}{100-\%I} = \sum_i K_i$$

•
$$[L] = 1.5 \mu M$$
, $1/K_a = 3 \mu M$ and $[D] = 1.5 \mu M$

⁵Edwards et. al., Nature Protocols (2006)

		QUAPO	Challenges	
0000	000	000000	•000000	00

Challenge 1 : Pooling Design (Φ) Constraints

With existing HTS technology, easiest to use Sparse Binary Matrices (STD/DeVore matrix) or Expander Graphs.

Mixing Constraint

- Compound concentration must be detectable in physiological range.
- Ionic strength of mixture must be low to prevent precipitation or changes to biological target.
- The assay must be reasonably simple to physically construct.

Challenge 1

Row weight of Φ is tightly capped.

Simple Heuristic : Not more than ~ 10 compounds can be pooled in a test.

		QUAPO 000000	Challenges ○●○○○○○	
Really Sparse	Matrices			

Row weight cap implies that limited compression can be achieved.

Pooling in HTS	QUAPO	Challenges	
		000000	

Challenge 2 : Liquid Handling Issue

Pooling at the level of individual compounds is hard and/or costly.

Challenge 2

Original Library is subdivided into mutually exclusive blocks.

		QUAPO 000000	Challenges 000●000	
Challenge 2	: A Simple Solution			

 Φ must be designed for smaller \hat{n} and repeated in blocks on whole library n

		QUAPO	Challenges	
0000	000	000000	0000000	00
Challenge 3	Messurement Error			

- CS algorithms promise to handle additive noise.
- Small volumes and automation mean erasures are possible.
- Given Challenges 1 & 2, promising compression *and* error-correction might be difficult.

Challenge 3

Erasures of measurements are possible

		QUAPO 000000	Challenges ○○○○○●○	
Challenge 4 :	Non-additive behavio	or		

- Synergy : pooled compounds react or aggregate to produce a *hit*
- Antagonism : pooled compounds block each other out

Solution: Challenges can be treated as bugs or features.

- Bug : make designs more robust to these errors
- Feature : ability to detect mutli-compound drugs or drug cocktails

Challenge 4

Algorithms to handle non-additive behavior

		QUAPO	Challenges	
0000	000	000000	0000000	00

Advances in Pooling

Theme ⁶

- Use *chemical structure information* about compounds while designing pools
- Simulations to *predict* probabilities of synergy or antagonism
- Simulations to evaluate *average-case* pooling design properties (theorems give worst-case bounds)
- Bayesian Decoders to evaluate various scenarios of compound interaction

⁶Will take more (compute) time

	Pooling in HTS	QUAPO	Challenges	Summary
				•0
Summary				

Take Home Points

- Current HTS strategies have hit a wall.
- Ever increasing compound collections and explosion of biological targets from genomics need a new approach.
- Age of multi-compound, multi-target therapeutics requires a paradigm shift in HTS.
- Pooling designs have the potential to be that change.
- Compressive Sensing can help make HTS quantitative (QUAPO).
- Lots of interesting (theory) problems need to be solved to make this approach practical.
- Currently implementing experimental validation at HTS facility in Univ. of Michigan.

	Pooling in HTS	QUAPO	Challenges	Summary
				00
Aduravilada	na o nato			

Acknowledgments

- At the University of Michigan :
 - Peter Woolf
 - Anna Gilbert
 - Paul Shearer
 - Systems Biology Group
 - Center for Chemical Genomics

Questions ... Comments ... Suggestions

Thank You