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What is Counting in This Talk?

Assume a very long vector of D items: x1, x2, ..., xD .

This talk is about counting
∑D

i=1 xα
i , where 0 < α ≤ 2.

1 2 4 6 8 10 12 14 D

x

The case α → 1 is particularly interesting and important.
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Related Summary Statistics

• The sum
∑D

i=1 xi. The number of non-zeros,
∑D

i=1 1xi 6=0

• The αth moment F(α) =
∑D

i=1 xα
i

F(1) =the sum, F(2) = the power/energy, F(0) = number of non-zeros.

• The future fortune,
∑D

i=1 x1±∆
i , ∆ = interest/decay rate (usually small)

• The entropy moment
∑D

i=1 xi log xi and entropy
∑D

i=1
xi

F(1)
log xi

F(1)

• The Tsallis Entropy
1−F(α)/F α

(1)

α−1 The Rényi Entropy 1
1−α log

F(α)

F α
(1)
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Isn’t Counting a Simple (Trivial) Task?

Partially True!, if data are static. However

Real-world data are in general Massive and Dynamic —— Data Streams

• Databases in Amazon, Ebay, Walmart, and search engines

• Internet/telephone traffic, high-way traffic

• Finance (stock) data

• ...

• May need answers in real-time, eg anomaly detection (using entropy).
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For example, the Turnstile data stream model for an online bookstore

t=1            arriving stream  =  (3,  10  ) 

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 0 0 0

t=0

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 010

t=2            arriving stream  =  (1,  5  ) 

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 0

t=3            arriving stream  =  (3,  −8  ) 

.... 

IP 1 IP 2 IP 3 IP 4 IP D....

0 0 0 0 0 0

user  3  ordered 10 books

user 1 ordered 5 books

user 3 cancelled 8 books

5 2

5

10
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Turnstile Data Stream Model

At time t, an incoming element : at = (it, It)

it ∈ [1, D] index, It: increment/decrement.

Updating rule : At[it] = At−1[it] + It

Goal : Count F(α) =
∑D

i=1 At[i]
α
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Counting: Trivial if α = 1, but Non-trivial in General

Goal : Count F(α) =
∑D

i=1 At[i]
α, where At[it] = At−1[it] + It .

When α 6= 1, counting F(α) exactly requires D counters. (but D can be 264)

When α = 1, however, counting the sum is trivial, using a simple counter.

F(1) =
D
∑

i=1

At[i] =
t
∑

s=1

Is,
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The Intuition for α ≈ 1

There might exist an intelligent counting system which works like a simple counter

when α is close 1; and its complexity is a function of how close α is to 1.

Our answer: Yes!

Two caveats:

(1) What if data are negative? Shouldn’t we define F(α) =
∑D

i=1 |At[i]|α ?

(2) Why the case α ≈ 1 is important ?
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The Non-Negativity Constraint

”God created the natural numbers; all the rest is the work of man.”

—- by German mathematician Leopold Kronecker (1823 - 1891)

Turnstile model, at = (it, It), At[it] = At−1[it] + It,

It > 0: increment, insertion, eg place orders

It < 0: decrement, deletion, eg cancel orders,

This talk: Strict Turnstile model At[i] ≥ 0, always.

One can only cancel an order if she/he did place the order!!

Suffices for almost all applications.
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Sample Applications of αth Moments (Especially α ≈ 1)

1. F(α) =
∑D

i=1 At[i]
α itself is a useful summary statistic

e.g., Rényi entropy, Tsallis entropy, are functions of F(α).

2. Statistical modeling and inference of parameters using method of moments

Some moments may be much easier to compute than others.

3. F(α) =
∑D

i=1 At[i]
α is a fundamental building element for other algorithms

Eg., estimating Shannon entropy of data streams
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Shannon Entropy of Data Streams

Definition of Shannon Entropy

H = −
D
∑

i=1

At[i]

F(1)
log

At[i]

F(1)
, F(1) =

D
∑

i=1

At[i]

Shannon entropy can be approximated by Rényi Entropy or Tsallis Entropy.

Rényi Entropy

Hα =
1

1 − α
log

F(α)

Fα
(1)

→ H, as α → 1

Tsallis Entropy

Tα =
1

α − 1

(

1 − F(α)

Fα
(1)

)

→ H, as α → 1
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Algorithms on Estimating Shannon Entropy

• Many algorithms in theoretical CS and databases on estimating entropy.

• A recent trend: Using αth moments to approximate Shannon entropy.

– Zhao et. al. (IMC07), used symmetric stable random projections

(Indyk JACM06, Li SODA08) to approximate moments and Shannon

entropy.

– Harvey et. al. (ITW08). A theoretical paper proposed a criterion on

how close α is to 1. Used symmetric stable random projections as the

underlying algorithm.

– Harvey et. al. (FOCS08). They proposed refined criteria on how to

choose α and cited both symmetric stable random projections and

Compressed Counting as underlying algorithms.
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Anomaly Detection in Large Networks Using Entropy of Traffic

Example: Laura Feinstein, Dan Schnackenberg, Ravindra Balupari, and Darrell

Kindred. Statistical approaches to DDoS attack detection and response. In

DARPA Information Survivability Conference and Exposition, 2003

General idea: Anomaly events (such as failure of service, distributed denial of

service (DoS) attacks) change the the distribution of the traffic data.

The change of distribution can be characterized by the change of entropy.
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Previous Methods for Estimating F(α)

• The pioneering work, [AMS STOC’96]

• A popular algorithm, symmetric stable random projections

[Indyk JACM’06], [Li SODA’08]

– Basic idea: Let X = At × R, where entries of R ∈ R
D×k are sampled

from a symmetric α-stable distribution. Entries of X ∈ R
k are also

samples from a symmetric α-stable distribution with the scale = F(α).

– k = O
(

1/ǫ2
)

, the large-deviation bound.

k may be too large for real applications [GC RANDOM’07].
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Compressed Counting: Skewed Stable Random Projections

Original data stream signal: At[i], i = 1 to D. eg D = 264

Projected signal: Xt = At × R ∈ R
k , k is small (eg k = 20 ∼ 100)

Projection matrix: R ∈ R
D×k,

Sample entries of R i.i.d. from a skewed α-stable distribution.
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The Standard Data Stream Technique: Incremental Projectio n

Linear Projection: Xt = At × R

+

Linear data model: At[it] = At−1[it] + It

=⇒
Conduct Xt = At × R incrementally.

Generate entries of R on-demand

Our method differs from previous algorithms in the choice of the distribution of R.
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Recover F(α) from Projected Data

Xt = (x1, x2, ..., xk) = At × R

R = {rij} ∈ R
D×k, rij ∼ S (α, β, 1)

S (α, β, γ): α-stable, β-skewed distribution with scale γ

Then, by stability, at any t, xj ’s are i.i.d. stable samples

xj ∼ S

(

α, β, F(α) =
D
∑

i=1

At[i]
α

)

=⇒ A statistical estimation problem.
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Review of Skewed Stable Distributions

Z follows a β-skewed α-stable distribution if Fourier transform of its density

FZ(t) = E exp
(√

−1Zt
)

α 6= 1,

= exp
(

−F |t|α
(

1 −
√
−1βsign(t) tan

(πα

2

)))

,

0 < α ≤ 2, −1 ≤ β ≤ 1. The scale F > 0. Z ∼ S(α, β, F )

If Z1, Z2 ∼ S(α, β, 1), independent, then for any C1 ≥ 0, C2 ≥ 0,

Z = C1Z1 + C2Z2 ∼ S (α, β, F = Cα
1 + Cα

2 ) .
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If C1 and C2 do not have the same signs, the “stability” does not hold.

Let Z = C1Z1 − C2Z2, with C1 ≥ 0 and C2 ≥ 0.

Because F−Z2(t) = FZ2(−t),

FZ(t) = exp
(

−|C1t|α
(

1 −
√
−1βsign(t) tan

(πα

2

)))

× exp
(

−|C2t|α
(

1 +
√
−1βsign(t) tan

(πα

2

)))

,

Does NOT represent a stable law, unless β = 0 or α = 2, 0+.

Symmetric (β = 0) projections work for any data,

but if data are non-negative, benefits of skewed projection are enormous.
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The Statistical Estimation Problem

Task : Given k i.i.d. samples xj ∼ S
(

α, β, F(α)

)

, estimate F(α).

• No closed-form density in general, but closed-form moments exit.

• A Geometric Mean estimator based on positive moments.

• A Harmonic Mean estimator based on negative moments.

• Both estimators exhibit exponential error (tail) bounds.
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The Moment Formula

Lemma 1 If Z ∼ S(α, β, F(α)), then for any −1 < λ < α ,

E
(

|Z|λ
)

= F
λ/α
(α) cos

(

λ

α
tan−1

(

β tan
(απ

2

))

)

×
(

1 + β2 tan2
(απ

2

))
λ
2α

(

2

π
sin
(π

2
λ
)

Γ

(

1 − λ

α

)

Γ (λ)

)

,

λ = α
k =⇒ an unbiased geometric mean estimator.
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Nice things happen when β = 1.

Lemma 2 When β = 1, then, for α < 1 and −∞ < λ < α ,

E
(

|Z|λ
)

= E
(

Zλ
)

= F
λ/α
(α)

Γ
(

1 − λ
α

)

cosλ/α
(

απ
2

)

Γ (1 − λ)
.

Nice consequence :

Estimators using negative moments will have infinite moments.

=⇒ Good statistical properties.
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The Geometric Mean Estimator for all β

Xt = (x1, x2, ..., xk) = At × R

F̂(α),gm,β =

∏k
j=1 |xj |α/k

Dgm,β
,

Dgm,β = cosk

(

1

k
tan−1

(

β tan
(απ

2

))

)

×

(

1 + β2 tan2
(απ

2

))
1
2

[

2

π
sin
(πα

2k

)

Γ

(

1 − 1

k

)

Γ
(α

k

)

]k

.

Which β ? : Variance of F̂(α),gm,β is decreasing in β ∈ [0, 1].
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Var
(

F̂(α),gm,β

)

= F 2
(α)Vgm,β

Vgm,β =

[

2 − sec2

(

1

k
tan−1

(

β tan
(απ

2

))

)]k

×
[

2
π sin

(

πα
k

)

Γ
(

1 − 2
k

)

Γ
(

2α
k

)]k

[

2
π sin

(

πα
2k

)

Γ
(

1 − 1
k

)

Γ
(

α
k

)]2k
− 1,

A decreasing function of β ∈ [0, 1]. =⇒ Use β = 1, maximally skewed
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The Geometric Mean Estimator for β = 1

F̂(α),gm =

∏k
j=1 |xj |α/k

Dgm

Lemma 3

Var
(

F̂(α),gm

)

=















F 2
(α)

k
π2

6

(

1 − α2
)

+ O
(

1
k2

)

, if α < 1

F 2
(α)

k
π2

6 (α − 1) (5 − α) + O
(

1
k2

)

, if α > 1

As α → 1, the asymptotic variance → 0.
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A Geometric Mean Estimator for Symmetric Projections β = 0

(Li, SODA’08)

Symmetric projections, ie rij ∼ S(α, β = 0, 1).

Projected data: xj ∼ S
(

α, β = 0, F(α)

)

, j = 1 to k.

Geometric mean estimator:

F̂(α),gm,sym =

∏k
j=1 |xj |α/k

Dgm,sym

Var
(

F̂(α),gm,sym

)

=
F 2

(α)

k

π2

12

(

2 + α2
)

+ O

(

1

k2

)

,

As α → 1, using skewed projections achieves an “infinite improvement”.
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A Better Estimator Using Harmonic Mean, for α < 1

Skewed Projections (β = 1)

F̂(α),hm =
k

cos(απ
2 )

Γ(1+α)
∑k

j=1 |xj |−α

(

1 − 1

k

(

2Γ2(1 + α)

Γ(1 + 2α)
− 1

))

.

Advantages of F̂(α),hm

• Smaller variance

• Smaller tail bound constant

• Moment generating function exits.
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Comparing Asymptotic Variances
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Tail Bounds of the Geometric Mean Estimator

Lemma 4

Pr

(

F̂(α),gm − F(α) ≥ ǫF(α)

)

≤ exp

(

−k
ǫ2

GR,gm

)

, ǫ > 0,

Pr

(

F̂(α),gm − F(α) ≤ −ǫF(α)

)

≤ exp

(

−k
ǫ2

GL,gm

)

, 0 < ǫ < 1,

ǫ2

GR,gm

= CR log(1 + ǫ) − CRγe(α − 1)

− log

(

cos

(

κ(α)πCR

2

)

2

π
Γ
(

αCR
)

Γ
(

1 − CR
)

sin

(

παCR

2

))

CR is the solution to to

− γe(α − 1) + log(1 + ǫ) +
κ(α)π

2
tan

(

κ(α)π

2
CR

)

−

απ/2

tan
(

απ
2

CR

) −

Γ′
(

αCR
)

Γ
(

αCR
)

α +
Γ′

(

1 − CR
)

Γ
(

1 − CR
)

= 0,
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The Sample Complexity Bound

Let G = max{GL,gm, GR,gm}.

Bound the error (tail) probability by δ, the level of significance (eg 0.05)

Pr

(

|F̂(α),gm − F(α)| ≥ ǫF(α)

)

≤ 2 exp

(

−k
ǫ2

G

)

≤ δ

=⇒ k ≥ G

ǫ2
log

2

δ

Sample Complexity Bound (large-deviation bound):

If k ≥ G
ǫ2 log 2

δ , then with probability at least 1 − δ, F(α) can be approximated

within a factor of 1 ± ǫ.

The O
(

1/ǫ2
)

bound in general can not be improved — Central Limit Theorem
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The Sample Complexity for α = 1 ± ∆

Lemma 5 For fixed ǫ, as α → 1 (i.e., ∆ → 0),

GR,gm =
ǫ2

log(1 + ǫ) − 2
√

∆log (1 + ǫ) + o
(√

∆
) = O (ǫ)

If α > 1, then

GL,gm =
ǫ2

− log(1 − ǫ) − 2
√

−2∆ log(1 − ǫ) + o
(√

∆
) = O (ǫ)

If α < 1, then

GL,gm =
ǫ2

∆
(

exp
(

− log(1−ǫ)
∆

− 1 − γe

))

+ o
(

∆ exp
(

1
∆

))

= O
(

ǫ exp
(

− ǫ

∆

))

For α close to 1, sample complexity is O (1/ǫ) not O
(

1/ǫ2
)

.

Not violating fundamental principles.
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Sampling From Maximally-Skewed Stable Distributions

To sample from Z ∼ S(α, β = 1, 1):

W ∼ exp(1) U ∼ Uniform
(

−π

2
,

π

2

)

ρ =







π
2 α < 1

π
2

2−α
α α > 1

Z =
sin (α(U + ρ))

[cosUcos (ρα)]1/α

[

cos (U − α(U + ρ))

W

]
1−α

α

∼ S(α, β = 1, 1)

cos1/α (ρα) can be removed and later reflected in the estimators.

Sampling from Skewed distributions is as easy as from symmetric distributions .
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Empirical Study of CC

Goals:

• Demonstrate the huge improvement of CC over symmetric projections.

• Illustrate that CC is highly efficient in estimating Shannon entropy.

Exploiting the bias-variance trade-off is the key.

Data:

• 10 English words from a chuck of MSN Web crawl with D = 264 documents.

Each word is a vector of length D whose entries are number of occurrences

• Static data suffice for comparing the estimation accuracy.

Xt = At × R is the same, whether it is computed in one time (static) or

incrementally (dynamic).
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Word Nonzero H H0.95 H1.05 T0.95 T1.05

TWIST 274 5.4873 5.4962 5.4781 6.3256 4.7919

RICE 490 5.4474 5.4997 5.3937 6.3302 4.7276

FRIDAY 2237 7.0487 7.1039 6.9901 8.5292 5.8993

FUN 3076 7.6519 7.6821 7.6196 9.3660 6.3361

BUSINESS 8284 8.3995 8.4412 8.3566 10.502 6.8305

NAME 9423 8.5162 9.5677 8.4618 10.696 6.8996

HAVE 17522 8.9782 9.0228 8.9335 11.402 7.2050

THIS 27695 9.3893 9.4370 9.3416 12.059 7.4634

A 39063 9.5463 9.5981 9.4950 12.318 7.5592

THE 42754 9.4231 9.4828 9.3641 12.133 7.4775

Results are similar across words, measured by normalized MSE = Bias2 + Var.
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Estimating Frequency Moments
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Estimating Shannon Entropy from Tsallis Entropy
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Estimating Frequency Moments
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Estimating Tsalis Entropy
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Estimating Shannon Entropy Using Tsallis Entropy
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Applications in Method of Moments

For example, zi, i = 1 to D are collected from data streams. zi’s follow a

generalized gamma distribution zi ∼ GG(θ1, θ2, θ3):

E(zi) = θ1θ2, Var(z) = θ1θ
2
2, E (z − E(z))3 = (θ3 + 1)θ1θ

3
2

Estimate θ1, θ2, θ3 using

• First three moments (α = 1, 2, 3) =⇒ Computationally very expensive

• Fractional moments (eg. α = 0.95, 1.05, 1) =⇒ Computationally cheap

Will this affect estimation accuracy? Not really, because D is large!
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A Simple Example with One Parameter

Suppose zi ∼ Gamma(θ, 1). The data zi’s are collected from data streams.

Estimate θ by αth moment: E(zα
i ) = Γ(α + θ)/Γ(θ) .

Solve for θ̂ from the moment equation:

Γ(α + θ̂)

Γ(θ̂)
=

1

D

D
∑

i=1

zα
i

Var
(

θ̂
)

≈ 1

D

(

Γ(2α + θ)Γ(θ)

Γ2(α + θ)
− 1

)

1
(

Γ′(α+θ)
Γ(α+θ) − Γ′(θ)

Γ(θ)

)2
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Var(θ̂)|α=0 ≈ 0.608
D , Var(θ̂)|α=1 ≈ 1

D ,
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Trade-off:

α = 1, higher variance, fewer counters

α = 0, smaller variance, more counters

Since D is very large, the difference between 0.608
D and 1

D may not matter.
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Summary

• The α-th frequency moments of data streams have very important

applications when α ≈ 1, eg. estimating Shannon entropy.

• Previous methods (eg. symmetric stable random projections) do not capture

the intuition that estimating α-th moments should be easy if α ≈ 1.

• Compressed Counting (CC) improves symmetric stable random projections

for all 0 < α < 2. The improvement is dramatic when α → 1.

• Using CC for estimating Shannon entropy is highly efficient.
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Thank you!


