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The Sparsity Heuristic

A sparse signal has fewer degrees of freedom than its nominal dimension

Sparse signal Nearly sparse signal
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Example: Wavelet Sparsity

Courtesy of J. Romberg
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Example: Time–Frequency Sparsity
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Data provided by L3 Communications
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Quantifying Sparsity

§ Let {ψk : k = 1, 2, . . . , N} be an orthobasis for RN

§ The coefficients of x with respect to the basis are

fk = 〈x, ψk〉 for k = 1, 2, . . . , N

§ The signal is s-sparse when #{k : fk 6= 0} ≤ s

§ Generalization: the signal is p-compressible with magnitude R if

|f |(k) ≤ R · k
−1/p for k = 1, 2, . . . , N

§ p-compressible is slightly weaker than “in `p” for each p > 0
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Approximating Compressible Signals

§ Consider a signal p-compressible w.r.t. the standard basis

|x|(k) ≤ R · k
−1/p for k = 1, 2, 3, . . .

§ Approximating x by its s largest terms gives error

‖x− xs‖2 ≤ R ·
[∑

k>s
k−2/p

]1/2
≈ R ·

[∫ ∞
s

u−2/p du
]1/2

≈ R · s1/2−1/p

§ Compressible signals are well approximated by sparse signals

§ Fundamental idea behind transform coding
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Counting Bits

§ Consider the class of 0–1 signals in RN with exactly s ones

§ Clearly need at least log2

(
N
s

)
bits to distinguish signals

§ By Stirling’s approximation, about s log(N/s) bits

§ When s� N , signals contain much less information than the ambient

dimension suggests

§ A simple adaptive coding scheme can achieve this rate
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What is a Sample?

§ A sample is the value of a linear functional applied to the signal

§ Examples:

§ CCD: Point intensity of an image

§ ADC: Voltage of an electrical signal at a point in time

§ MRI: Frequency in the 2D Fourier transform of an image

§ CAT: Line integral of density in one direction

§ Some of these technologies acquire samples in batches

§ We wish to acquire signals with as few samples as possible
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Compressive Sampling and Signal Recovery

§ Design linear sampling operator Φ : CN → Cm

§ Suppose x is an unknown (compressible) signal in CN

§ Collect noisy samples u = Φx+ e

§ Problem: Given samples u, approximate x
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Restricted Isometries

§ Abstract property of sampling operator supports efficient sampling

§ Φ has the restricted isometry property of order 2s when

(1− c) ‖x‖22 ≤ ‖Φx‖
2
2 ≤ (1 + c) ‖x‖22 whenever ‖x‖0 ≤ 2s

§ Φ preserves geometry of s-sparse signals (take x = y − z)

§ W.h.p., a Gaussian sampling operator has RIP(2s) when

m ≥ Cs log(N/s)

§ Gaussian matrices are practically useless

References: [Candès–Tao 2006, Rudelson–Vershynin 2006]
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Practical Sampling Operators

§ Partial Fourier matrices [CRT 2006]

§ Each row of Φ is chosen at random from rows of unitary DFT FN

§ Random demodulator [Rice DSP 2006]

Φ =

1 . . . 1
1 . . . 1

. . .


m×N

±1
±1

. . .


N×N

FN

§ W.h.p., both have RIP(2s) when m ≥ Cs logαN

§ Certain technologies can acquire these samples efficiently

§ Fast matrix–vector multiplies!
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Desiderata for Recovery Algorithm

§ Works for general sampling schemes

§ Succeeds with minimal number of samples

§ Tolerates noise in samples

§ Produces approximations with optimal error bound

§ Yields rigorous guarantees on resource requirements

§ Exploits structured sampling matrices
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CoSaMP(Φ, u, s)

Input: Sampling operator Φ, noisy sample vector u, sparsity level s

Output: An s-sparse approximation a of the target signal

k = 0 { Initialization }
ak = 0
while halting criterion false

v ← u− Φak { Update samples }
y ← Φ∗v { Form signal proxy }

Ω← supp(y2s) { Identification }
T ← Ω ∪ supp(ak) { Merge supports }

b|T ← Φ†Tu { Signal estimation by least squares }
b|Tc ← 0

ak+1 ← bs { Prune to obtain next approximation }
k ← k + 1

end while
a← ak { Return final approximation }
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Cost per Iteration

§ Update samples and form signal proxy:

v ← u−Φak and y ← Φ∗v

§ One matrix–vector multiplication each

§ Signal approximation by least squares:

bT ← Φ†Tu

§ Use conjugate gradient to apply pseudoinverse

§ Each iteration requires two matrix–vector mulitplies

§ Assuming RIP(2s), constant number of iterations for fixed accuracy

§ Constant number of matrix–vector multiplies per CoSaMP iteration!
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Performance Guarantee

Theorem 1. [CoSaMP] Suppose that

§ the sampling matrix Φ has RIP(2s),
§ the sample vector u = Φx+ e,
§ η is a precision parameter,

§ L bounds cost of a matrix–vector multiply with Φ or Φ∗.

Then CoSaMP produces a 2s-sparse approximation a such that

‖x− a‖2 ≤ C max
{
η,

1√
s
‖x− xs‖1 + ‖e‖2

}
with execution time O(L · log(‖x‖2 /η)).

§ Need m ≥ Cs logαN samples for restricted isometry hypothesis
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Error Bound for Compressible Signals

Corollary 2. [Compressible signals] Suppose

§ the sampling matrix Φ has RIP(2s),
§ the signal x is p-compressible with magnitude R,

§ the sample vector u = Φx+ e,
§ L bounds cost of a matrix–vector multiply with Φ or Φ∗.

Then CoSaMP produces a 2s-sparse approximation a such that

‖x− a‖2 ≤ C
[
Rp−1 · s1/2−1/p + ‖e‖2

]
with execution time O(L · p−1 log s).
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To learn more...
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§ jtropp@acm.caltech.edu

§ dneedell@math.ucdavis.edu

Web: http://www.acm.caltech.edu/~jtropp
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