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The Sparsity Heuristic

A sparse signal has fewer degrees of freedom than its nominal dimension
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Example: Wavelet Sparsity

Courtesy of J. Romberg
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Example: Time—Frequency Sparsity
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Quantifying Sparsity

¢ Let {4, : k=1,2,..., N} be an orthobasis for RY
: The coefficients of & with respect to the basis are

fk:<213, ¢k> fOI’kZl,Q,...,N

& The signal is s-sparse when #{k : fr #0} <s

8 Generalization: the signal is p-compressible with magnitude R if
flag <R-E7VP fork=1,2,...,N

¢ p-compressible is slightly weaker than “in ¢,” for each p > 0
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Approximating Compressible Signals

« Consider a signal p-compressible w.r.t. the standard basis

\:C|(k)§R-k_1/p for k=1,2,3,...

@ Approximating x by its s largest terms gives error

- B 1/2
o —al, <R[ K7

0 1/2
~ R - / u_Q/pdu] ~ R.gl/2-1/p

:» Compressible signals are well approximated by sparse signals

& Fundamental idea behind transform coding
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Counting Bits

:a. Consider the class of 0-1 signals in RY with exactly s ones
: (learly need at least log, ({Z) bits to distinguish signals
& By Stirling's approximation, about slog(/N/s) bits

 When s < N, signals contain much less information than the ambient
dimension suggests

@ A simple adaptive coding scheme can achieve this rate
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What is a Sample?

@ A sample is the value of a linear functional applied to the signal

:» Examples:

¢« CCD: Point intensity of an image

:¢ ADC: Voltage of an electrical signal at a point in time
- MRI: Frequency in the 2D Fourier transform of an image
: CAT: Line integral of density in one direction

& Some of these technologies acquire samples in batches

« We wish to acquire signals with as few samples as possible
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Compressive Sampling and Signal Recovery

:a. Design linear sampling operator ® : CN — C™
s Suppose x is an unknown (compressible) signal in C¥
- Collect noisy samples u = ®x + e

@ Problem: Given samples u, approximate a
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Restricted Isometries

« Abstract property of sampling operator supports efficient sampling
@ @ has the restricted isometry property of order 2s when
(-0 |22 < ®z|2< (1+0)[z|2  whenever [z, < 25
& @ preserves geometry of s-sparse signals (take x =y — z)
¢« W.h.p., a Gaussian sampling operator has RIP(2s) when
m > Cslog(N/s)
8 (Gaussian matrices are practically useless

References: [Candes—Tao 2006, Rudelson—Vershynin 20006]
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Practical Sampling Operators

¢a Partial Fourier matrices [CRT 2006]
¢ Each row of ® is chosen at random from rows of unitary DFT Zy

¢ Random demodulator [Rice DSP 2006]

r ... 1 +1

) Tl mxn L I NxN
2 W.h.p., both have RIP(2s) when m > Cslog™ N

« (Certain technologies can acquire these samples efficiently
« Fast matrix—vector multiplies!
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Desiderata for Recovery Algorithm

8 Works for general sampling schemes

« Succeeds with minimal number of samples

:a Tolerates noise in samples

- Produces approximations with optimal error bound
8 Yields rigorous guarantees on resource requirements

« Exploits structured sampling matrices
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COSAMP(®, u, s)

Input: Sampling operator ®, noisy sample vector u, sparsity level s

Output: An s-sparse approximation a of the target signal

k=20 { Initialization }

a® =0

while halting criterion false
v — u— ®a’ { Update samples }
y — P { Form signal proxy }
Q «— supp(yas) { ldentification }
T — Q U supp(a®) { Merge supports }
b|r — <I>TTu { Signal estimation by least squares }
b‘Tc — 0
a*tt — b, { Prune to obtain next approximation }
k—k+1

end while

a — a” { Return final approximation }

CoSaMP (DIMACS, 26 March 2009)

13



Cost per lteration

« Update samples and form signal proxy:
v —u— Pa” and y «— P*v

: One matrix—vector multiplication each
@ Signal approximation by least squares:

bT < <I>r}u

@ Use conjugate gradient to apply pseudoinverse

¢

Each iteration requires two matrix—vector mulitplies
& Assuming RIP(2s), constant number of iterations for fixed accuracy

8 Constant number of matrix—vector multiplies per CoSaMP iteration!
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Performance Guarantee

Theorem 1. [CoSaMP] Suppose that

:a the sampling matrix ® has RIP(2s),

@ the sample vector u = Px + e,

:& 1) IS a precision parameter,

@ < bounds cost of a matrix—vector multiply with ® or ®*.

Then CoSaMP produces a 2s-sparse approximation a such that
1
e~ all, < Cmasx g 1. =& — ], + el

with execution time O(Z - log(||z||, /n)).

:¢ Need m > Cslog® N samples for restricted isometry hypothesis

CoSaMP (DIMACS, 26 March 2009) 15



Error Bound for Compressible Signals

Corollary 2. [Compressible signals] Suppose

:a the sampling matrix ® has RIP(2s),
« the signal x is p-compressible with magnitude R,

@ the sample vector u = ®x + e,
@ ¢ bounds cost of a matrix—vector multiply with ® or ®*.

Then CoSaMP produces a 2s-sparse approximation a such that

|z~ all, < C [Rp™t- /2717 4 |le]

with execution time O(% - p~llog s).
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To learn more...

E-mail:

‘¢ jtroppQacm.caltech.edu
‘8 dneedell@math.ucdavis.edu

Web: http://www.acm.caltech.edu/~jtropp
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