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Introduction

classical asymptotic theory of statistical inference:
— number of observations n — +oco

— model dimension p stays fixed

not suitable for many modern applications:
— { images, signals, systems, networks } frequently large (p ~ 10° — 108)...
— function/surface estimation: enforces limit p — 400

— interesting consequences: might have p = ©(n) or even p > n

curse of dimensionality: frequently impossible to obtain consistent
procedures unless p/n — 0

can be saved by a lower effective dimensionality, due to some form
of complexity constraint:

— sparse vectors
— {sparse, structured, low-rank}-matrices
— structured regression functions

— graphical models (Markov random fields)




What are graphical models?

e Markov random field: random vector (Xi,...,X,) with
distribution factoring according to a graph G = (V, E):

e Hammersley-Clifford Theorem: (Xj,...,X,) being Markov w.r.t G
implies factorization:

P(a1,...,2p) o exp{0a(wa) +0p(en) +0c(ze) +0p(zn) |-

e studied/used in various fields: spatial statistics, language modeling,

computational biology, computer vision, statistical physics ....
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Graphical model selection

e let G = (V, F) be an undirected graph on p = |V| vertices

P(zy,...,2p;0) = de) exp{ Z (Ost, gbst(xs,:vt))}.

e given n independent and identically distributed (i.i.d.) samples of
X = (X1,...,X,), identify the underlying graph structure

e complexity constraint: restrict to subset G4, of graphs with

maximum degree d




Illustration: Voting behavior of US senators

Graphical model fit to voting records of US senators (Bannerjee, El Ghaoui,
& d’Aspremont, 2008)




Some issues in high-dimensional inference

Consider some fixed loss function, and a fixed level 0 of error.

Limitations of tractable algorithms:
Given particular (polynomial-time) algorithms
e for what sample sizes n do they succeed/fail to achieve error §7?

e given a collection of methods, when does more computation reduce

minimum # samples needed?

Information-theoretic limitations:

Data collection as communication from nature — statistician:
e what are fundamental limitations of problem (Shannon capacity)?
e when are known (polynomial-time) methods optimal?

e when are there gaps between poly.-time methods and optimal methods?




Previous/on-going work on graph selection

exact solution for trees (Chow & Liu, 1967)

local testing-based approaches (e.g., Spirtes et al, 2000; Kalisch &
Buhlmann, 2008)

methods for Gaussian MRF's

— f{1-regularized neighborhood regression for Gaussian MRF's
(e.g., Meinshausen & Buhlmann, 2005; Wainwright, 2006, Zhao, 2006)

— {1-regularized log-determinant (e.g., Yuan & Lin, 2006; d’Asprémont et al.,
2007; Friedman, 2008; Ravikumar et al., 2008)

methods for discrete MRF's
— neighborhood-based search method (Bresler, Mossel & Sly, 2008)
— {1-regularized logistic regression (Ravikumar et al., 2006, 2008)

information-theoretic approaches:
— pseudolikelihood and BIC criterion (Csiszar & Talata, 2006)

— information-theoretic limitations (Santhanam & Wainwright, 2008)




Markov property and neighborhood structure

e Markov properties encode neighborhood structure:

(XT' | XV\?“) — (Xr ‘ XN(?“))

A\ - 7 - 7
"~ "~

Condition on full graph Condition on Markov blanket
N(r)={s,t,u,v,w}

e basis of pseudolikelihood method (Besag, 1974)




Practical method via neighborhood regression

Observation: Recovering graph G equivalent to recovering neighborhood
set N(r) for all r € V.

Method: Given n i.i.d. samples {XV ..., X™ perform logistic
regression of each node X, on X\, := {X,, t # r} to estimate neighborhood
structure N (r).

1. For each node r € V', perform ¢; regularized logistic regression of X, on

the remaining variables X\,

~ . 1 — :
Olr] := arg min { EZ]"(@;X{T)Z + Pn91}

fgcRpr—1

. (-
=1 Vv

logistic likelihood regularization

2. Estimate the local neighborhood N (r) as the support (non-negative

entries) of the regression vector 0[r].

3. Combine the neighborhood estimates in a consistent manner (AND, or

OR rule).




High-dimensional analysis

e classical analysis: dimension p fixed, sample size n — +oo

e high-dimensional analysis: allow both dimension p, sample size n, and

maximum degree d to increase at arbitrary rates
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e take n i.i.d. samples from MREF defined by G, 4

e study probability of success as a function of three parameters:

Success(n,p,d) = P[Method recovers graph G, 4 from n samples]

e theory is non-asymptotic: explicit probabilities for finite (n,p, d)
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Empirical behavior: Unrescaled plots

Star graph; Linear fraction neighbors
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Plots of success probability versus raw sample size n.
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Empirical behavior: Appropriately rescaled

Star graph; Linear fraction neighbors

Prob. success
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Plots of success probability versus control parameter T1gr(n,p, d).
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Sufficient conditions for consistent model selection

e graph sequences G, 4 = (V, E) with p vertices, and maximum degree d.

e drawn n i.i.d, samples, and analyze prob. success indexed by (n,p, d)

Theorem: For a rescaled sample size (RavWaiLaf06, RavWaiLaf08)

n *
TLR(nvpad) = d3logp > Ty

and regularization parameter p,, > ¢ 7

greater than 1 — 2exp ( — co(7 — 2) logp) — 1:

(a) For each node r € V, the ¢;-regularized logistic convex program

has a unique solution. (Non-trivial since p >> n == not strictly convex).

(b) The estimated sign neighborhood N (r) correctly excludes all
edges not in the true neighborhood.

(¢) For Opin > 374/ ‘m—sgp, the method selects the correct signed
neighborhood.

13




Some challenges in distinguishing graphs

A C

Guilt by association Hidden interactions

Conditions on Fisher information matrix Q* = E[V?f(0*; X)]
A1l. Bounded eigenspectra: \(Q%s) € [Crmin, Crmaz)-

A2. Mutual incoherence There exists an v € (0, 1] such that

[Q%es(Q55) oo < 1—wv.

where || Aflcc,00 1= max; ) [Aij].
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Proof sketch: Primal-dual certificate
e construct candidate primal-dual pair ((/9\, Z) e RF1 x RPL,

e proof technique—not a practical algorithm!

(A) For a fixed node r with S = N(r), we solve the restricted program

gzag min Zf X(Z) ) + pallfll1}},

fcRP— 193c_0 n

thereby obtaining candidate solution 0 = («/9\5, 0 sc).
(B) We choose Zg € RIS! as an element of the subdifferential ||6||:.

(C) Using optimality conditions from original convex program, solve

for zZge and check whether or not strict dual feasibility

z;| < 1 for all j € S° holds.

Lemma: Full convex program recovers neighborhood <=
primal-dual witness succeeds.
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Information-theoretic limits on graph selection

thus far: have exhibited a a particular polynomial-time method can

recover structure if
n > Q(d*log(p — d))
but....is this a “good” result?

are there polynomial-time methods that can do better?

information theory can answer the question: is there an

exponential-time method that can do better?

(Santhanam & Wainwright, 2008)
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Graph selection as channel coding

e graphical model selection is an unorthodor channel coding problem:

e nature sends G € G, , := { graphs on p vertices, max. degree d }

8o

@ig/g G { P(X | G)J—>X(1),...,X(”>
o5

o

e decoding problem: use observations {X W X (”)} to correctly

distinguish the “codeword”

e channel capacity for graph decoding: balance between
— log number of models: log |M(p,d)| = © (pd log g).

— relative distinguishability of different models
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Necessary conditions for graph recovery

e take Ising models Py () from Gy, (A, w):
— graphs with p nodes and max. degree d
— parameters |fs| > A for all edges (s, )

— maximum neighborhood weight w = max > 10st]-
5 teEN(s)

e take n i.i.d. observations, and study probability of success in terms
of (n,p, d)

Theorem: Necessary conditions: For sample size n

log p exp(w/2) A d 2
< dl d), —log—
"= maX{%tamh(A)’ T6sinh(yy 108pd)s glog gy, o,

then the probability of error of any algorithm over G, ,(\ w) is at

least 1/2.
(Santhanam & W., 2008)
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Some consequences

note neighborhood weight w = max > |04/ is at least dA
SEV 1eN(s)

hence, need at least

exp(%£) A
d log(pd
"o 16 sinh(\) og(pd)

if A= 0(1/d), then need at least n > logp = Q(d?log p) samples

(1-regularized log. regression (LR) order-optimal for constant
degrees

for d tending to infinity, gap between optimal methods and #;
— any method requires n = Q(al2 log p) samples

— LR method: guaranteed to work with n = Q(al3 log p) samples
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Geometric intuition underlying proofs

Error probability controlled by two competing quantities:

Model type Log # models Distance scaling
Near-by log p c2/0°
. sinh(6)
Intermediate dlogp 5 oxp(0)
Far-away pdlog & Cap

20




Summary and open questions

¢1-regularized regression to select neighborhoods: succeeds with
sample size
C1
n > (92 + CQdS) log p.

mn

any method (including those with exponential complexity) fails for

n <

C
(923

min

+ C4d2) log p

some extensions....
— non-binary MRF's via block-structured regularization schemes
— non-i.i.d. sampling models

— other performance metrics (e.g, (1 — §) edges correct)

broader issue: optimal trade-offs between statistical /computational
efficiency?
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