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Introduction� classical asymptotic theory of statistical inference:

– number of observations n → +∞

– model dimension p stays fixed� not suitable for many modern applications:

– { images, signals, systems, networks } frequently large (p ≈ 103 − 108)...

– function/surface estimation: enforces limit p → +∞

– interesting consequences: might have p = Θ(n) or even p ≫ n� curse of dimensionality: frequently impossible to obtain consistent

procedures unless p/n → 0� can be saved by a lower effective dimensionality, due to some form
of complexity constraint:

– sparse vectors

– {sparse, structured, low-rank}-matrices

– structured regression functions

– graphical models (Markov random fields)
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What are graphical models?� Markov random field: random vector (X1, . . . , Xp) with

distribution factoring according to a graph G = (V, E):

A B C

D

� Hammersley-Clifford Theorem: (X1, . . . , Xp) being Markov w.r.t G

implies factorization:

P(x1, . . . , xp) ∝ exp
{
θA(xA) + θB(xB) + θC(xC) + θD(xD)

}
.� studied/used in various fields: spatial statistics, language modeling,

computational biology, computer vision, statistical physics ....

3



Graphical model selection
� let G = (V, E) be an undirected graph on p = |V | vertices

� pairwise Markov random field: family of prob. distributions

P(x1, . . . , xp; θ) =
1

Z(θ)
exp

{ ∑

(s,t)∈E

〈θst, φst(xs, xt)〉
}
.

� given n independent and identically distributed (i.i.d.) samples of

X = (X1, . . . , Xp), identify the underlying graph structure� complexity constraint: restrict to subset Gd,p of graphs with

maximum degree d
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Illustration: Voting behavior of US senators

Graphical model fit to voting records of US senators (Bannerjee, El Ghaoui,

& d’Aspremont, 2008)
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Some issues in high-dimensional inference

Consider some fixed loss function, and a fixed level δ of error.

Limitations of tractable algorithms:

Given particular (polynomial-time) algorithms� for what sample sizes n do they succeed/fail to achieve error δ?� given a collection of methods, when does more computation reduce

minimum # samples needed?

Information-theoretic limitations:

Data collection as communication from nature −→ statistician:� what are fundamental limitations of problem (Shannon capacity)?� when are known (polynomial-time) methods optimal?� when are there gaps between poly.-time methods and optimal methods?
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Previous/on-going work on graph selection� exact solution for trees (Chow & Liu, 1967)� local testing-based approaches (e.g., Spirtes et al, 2000; Kalisch &

Buhlmann, 2008)

� methods for Gaussian MRFs

– ℓ1-regularized neighborhood regression for Gaussian MRFs

(e.g., Meinshausen & Buhlmann, 2005; Wainwright, 2006, Zhao, 2006)

– ℓ1-regularized log-determinant (e.g., Yuan & Lin, 2006; d’Asprémont et al.,

2007; Friedman, 2008; Ravikumar et al., 2008)� methods for discrete MRFs

– neighborhood-based search method (Bresler, Mossel & Sly, 2008)

– ℓ1-regularized logistic regression (Ravikumar et al., 2006, 2008)� information-theoretic approaches:

– pseudolikelihood and BIC criterion (Csiszar & Talata, 2006)

– information-theoretic limitations (Santhanam & Wainwright, 2008)
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Markov property and neighborhood structure
� Markov properties encode neighborhood structure:

(Xr | XV \r)︸ ︷︷ ︸
d
= (Xr | XN(r))︸ ︷︷ ︸

Condition on full graph Condition on Markov blanket

N(r) = {s, t, u, v, w}

Xr

Xs
Xt

Xu

Xv

Xw

� basis of pseudolikelihood method (Besag, 1974)
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Practical method via neighborhood regression

Observation: Recovering graph G equivalent to recovering neighborhood

set N(r) for all r ∈ V .

Method: Given n i.i.d. samples {X(1), . . . , X(n)}, perform logistic

regression of each node Xr on X\r := {Xr, t 6= r} to estimate neighborhood

structure bN(r).

1. For each node r ∈ V , perform ℓ1 regularized logistic regression of Xr on

the remaining variables X\r:

bθ[r] := arg min
θ∈Rp−1

(

1

n

n
X

i=1

f(θ; X
(i)
\r

)
| {z }

+ ρn ‖θ‖1
|{z}

)

logistic likelihood regularization

2. Estimate the local neighborhood bN(r) as the support (non-negative

entries) of the regression vector bθ[r].

3. Combine the neighborhood estimates in a consistent manner (AND, or

OR rule).
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High-dimensional analysis� classical analysis: dimension p fixed, sample size n → +∞� high-dimensional analysis: allow both dimension p, sample size n, and

maximum degree d to increase at arbitrary rates

� take n i.i.d. samples from MRF defined by Gp,d� study probability of success as a function of three parameters:

Success(n, p, d) = P[Method recovers graph Gp,d from n samples]� theory is non-asymptotic: explicit probabilities for finite (n, p, d)
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Empirical behavior: Unrescaled plots
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Plots of success probability versus raw sample size n.
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Empirical behavior: Appropriately rescaled
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Plots of success probability versus control parameter TLR(n, p, d).
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Sufficient conditions for consistent model selection� graph sequences Gp,d = (V, E) with p vertices, and maximum degree d.� drawn n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem: For a rescaled sample size (RavWaiLaf06, RavWaiLaf08)

TLR(n, p, d) :=
n

d3 log p
> T ∗

crit

and regularization parameter ρn ≥ c1 τ
√

log p
n

, then with probability

greater than 1 − 2 exp
(
− c2(τ − 2) log p

)
→ 1:

(a) For each node r ∈ V , the ℓ1-regularized logistic convex program

has a unique solution. (Non-trivial since p ≫ n =⇒ not strictly convex).

(b) The estimated sign neighborhood N̂±(r) correctly excludes all

edges not in the true neighborhood.

(c) For θmin ≥ c3τ
√

d2 log p
n

, the method selects the correct signed

neighborhood.
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Some challenges in distinguishing graphs

A

B

C

D

Guilt by association Hidden interactions

Conditions on Fisher information matrix Q∗ = E[∇2f(θ∗; X)]

A1. Bounded eigenspectra: λ(Q∗
SS) ∈ [Cmin, Cmax].

A2. Mutual incoherence There exists an ν ∈ (0, 1] such that

|||Q∗
ScS(Q∗

SS)−1|||∞,∞ ≤ 1 − ν.

where |||A|||∞,∞ := maxi

P

j
|Aij |.
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Proof sketch: Primal-dual certificate� construct candidate primal-dual pair (bθ, bz) ∈ R
p−1 × R

p−1.� proof technique—-not a practical algorithm!

(A) For a fixed node r with S = N(r), we solve the restricted program

θ̂ = arg min
θ∈Rp−1,θSc=0

{ 1

n

n∑

i=1

f(θ; X
(i)
\r

) + ρn‖θ‖1

}}
,

thereby obtaining candidate solution θ̂ = (θ̂S ,~0Sc).

(B) We choose ẑS ∈ R
|S| as an element of the subdifferential ∂‖θ̂S‖1.

(C) Using optimality conditions from original convex program, solve

for ẑSc and check whether or not strict dual feasibility

|ẑj | < 1 for all j ∈ Sc holds.

Lemma: Full convex program recovers neighborhood ⇐⇒

primal-dual witness succeeds.
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Information-theoretic limits on graph selection� thus far: have exhibited a a particular polynomial-time method can

recover structure if

n > Ω(d3 log(p − d))

� but....is this a “good” result?� are there polynomial-time methods that can do better?� information theory can answer the question: is there an

exponential-time method that can do better?

(Santhanam & Wainwright, 2008)
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Graph selection as channel coding� graphical model selection is an unorthodox channel coding problem:� nature sends G ∈ Gd,p := { graphs on p vertices, max. degree d }

X(1), . . . , X(n)P(X | G)G

� decoding problem: use observations {X(1), . . . , X(n)} to correctly

distinguish the “codeword”� channel capacity for graph decoding: balance between

– log number of models: log |M(p, d)| = Θ
`

pd log p

d

´

.

– relative distinguishability of different models
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Necessary conditions for graph recovery
� take Ising models Pθ(G) from Gd,p(λ, ω):

– graphs with p nodes and max. degree d

– parameters |θst| ≥ λ for all edges (s, t)

– maximum neighborhood weight ω = max
s∈V

∑
t∈N(s)

|θst|.� take n i.i.d. observations, and study probability of success in terms

of (n, p, d)

Theorem: Necessary conditions: For sample size n

n ≤ max

{
log p

2λ tanh(λ)
,

exp(ω/2) λ

16 sinh(λ)
d log(pd),

d

8
log

p

8d
,

}
,

then the probability of error of any algorithm over Gd,p(λ, ω) is at

least 1/2.

(Santhanam & W., 2008)
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Some consequences� note neighborhood weight ω = max
s∈V

∑
t∈N(s)

|θst| is at least dλ� hence, need at least

n >
exp(dλ

2 ) λ

16 sinh(λ)
d log(pd)

� if λ = O(1/d), then need at least n > log p
λ2 = Ω(d2 log p) samples� ℓ1-regularized log. regression (LR) order-optimal for constant

degrees� for d tending to infinity, gap between optimal methods and ℓ1

– any method requires n = Ω(d2 log p) samples

– LR method: guaranteed to work with n = Ω(d3 log p) samples
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Geometric intuition underlying proofs

D1
Truth

D2

Error probability controlled by two competing quantities:

Model type Log # models Distance scaling

Near-by log p c2/θ2

Intermediate d log p sinh(θ)
θ exp(θd)

Far-away pd log p

d
c2p
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Summary and open questions
� ℓ1-regularized regression to select neighborhoods: succeeds with

sample size

n >
( c1

θ2
min

+ c2d
3
)
log p.� any method (including those with exponential complexity) fails for

n <
( c3

θ2
min

+ c4d
2
)
log p

� some extensions....

– non-binary MRFs via block-structured regularization schemes

– non-i.i.d. sampling models

– other performance metrics (e.g, (1 − δ) edges correct)� broader issue: optimal trade-offs between statistical/computational

efficiency?
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