Formal Concept Analysis
with
Galicia

Petko Valtchev

&

The Galicia team

http://www.iro.umontreal.ca/~galicia/

Petko.Valtchev@UMontreal.CA
Overview

- **Formal concept analysis (FCA):** “application of lattice theory to data analysis”
 - Theory:
 - Back to work by O. Öre and by G. Birkhoff in 40s,
 - M. Barbut & B. Monjardet, R. Wille, B. Ganter, V. Duquenne…
 - Practice:
 - *social sciences*: Duquenne, Wille,…
 - *information retrieval*: Godin, Carpineto and Romano,…
 - *software engineering*: Godin, Snelting,…
 - *data mining*: Missaoui & Godin, Lakhal,…
 - Now:
 - rapidly growing community: “FCA” + “lattices” - couple of 10^3 hits with Google,
 - annual forums: 2 intl. conferences, 2+ workshops,
 - Missing: a widely-shared software platform for FCA (ToscanaJ, ConExp, Galicia)
Outline of the Talk

- FCA: Galois connections, closures, lattices, min. generators …
- Computational challenges
- Realization within Galicia + demo
Formal Contexts and Galois Connections

K = (O, A, I)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>b</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>d</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Galois connection

Y ⊆ f(X) iff X ⊆ g(Y)

closure operators

X'' = g ° f(X)
Y'' = f ° g(Y)

closed sets

{a, d}'' = {a, d}
{5, 6}'' = {5, 6}

f(X) = X' = \{y ∈ A | ∀ x ∈ X, (x, y) ∈ I\}
g(Y) = Y' = \{x ∈ O | ∀ y ∈ Y, (x, y) ∈ I\}

f = g^{-1}

g
Lattices of Formal Concepts (« de Galois »)

Families of closed

\[\mathcal{C}_K^o = \{ X \mid X \subseteq O, X'' = X \} \]
\[\mathcal{C}_K^a = \{ Y \mid Y \subseteq A, Y'' = Y \} \]

lattice (anti-)isomorphism

\[\mathcal{L}_K^o = (\mathcal{C}_K^o, \subseteq) \cong \mathcal{L}_K^a = (\mathcal{C}_K^a, \supseteq) \]

with \(f \) and \(g \) as co-bijections

formal concept \((X, Y)\)

\(X \in \mathcal{C}_K^o \) (extent), \(X = Y' \);
\(Y \in \mathcal{C}_K^a \) (intent), \(Y = X' \).

partial order

(sub-concept of)

\[(X_1, Y_1) \leq (X_2, Y_2) \iff X_1 \subseteq X_2 \]
\[
(\leftrightarrow Y_2 \subseteq Y_1)
\]

lattice operators

[Wille 82], [Barbut & Montjardet 70]

\[\text{inf} - \bigcup_{j \in J}(X_j, Y_j) = (\bigcap_{j \in J}X_j, (\bigcup_{j \in J}Y_j)'' \]
\[\text{sup} - \bigcup_{j \in J}(X_j, Y_j) = ((\bigcup_{j \in J}X_j)'', \bigcap_{j \in J}Y_j) \]
Equivalence Relation on 2^A Induced by C^a_K

Boolean lattice 2^A

\emptyset

A

Closed sets:

bcd

Link crossing class border:

bcdg

bcdh

bcgh

bdgh

cdgh

bcd

bcg

bdg

bch

bdh

bgh

cdg

cdh

cgh

dgh

c

g

h

b

Def. A minimal generator Z for a closed set $Y \subseteq A$ is a *minimal* subset of Y such that $Z'' = Y$.

Def. Gen_K = the family of minimal generators of all concept intents from K.

Minimal Generators

- bcd
- bg
- bcd (closed)
- bg (min. generator)
- $\text{link crossing class border}$

Diagram:

- bcd
- bcg
- bdg
- bch
- bdh
- bgh
- cdg
- cdh
- cgh
- dgh

- **bcd**
- **bg**
- **closed**
- **min. generator**
- **link crossing class border**

- **bcdgh**
- **bcdh**
- **bcgh**
- **bdgh**
- **cdgh**
- **bcd**
- **bg**
- **bh**
- **cg**
- **ch**
- **g**
- **h**
- **c**
Why Are Min. Generators Interesting?

Minimal generators in...

• ...theory:
 • related to *minimal transversals* in hypergraph theory [Berge 89]
 • candidate keys of the tables in a *relational database*

• ... practice:
 • minimal sets of tests/exams/questions for a *medical diagnosis*

• ...algorithmic design:
 • *canonical representatives* for concept *intents*:
 • minimal generating *prefixes* in NextClosure [Ganter 84]
 • “*seeds*” for the computation of *intents*:
 • in general-purpose FCA algorithms: *Titanic* [Stumme et al 02]
 • in FCA-flavored *data mining* algorithms: *Close, Aclose* [Pasquier 00]
Implications

Given $K = (O,A,I)$, $Y, Z \subseteq A$, $Y \rightarrow Z$ is an implication:
- Y premise,
- Z conclusion.
(aka functional dependency in DB)

Σ_K is large and redundant!

Def. $Y \rightarrow Z$ *valid* in K if
\[\forall o \in O, Y \subseteq o' \text{ forces } Z \subseteq o' \text{ (iff } Z \subseteq Y'). \]
Σ_K = all *valid* implications of K.

Ex. bd \rightarrow af, ae \rightarrow cd: *valid*,
bc \rightarrow agh: *invalid* (6 - ctr-ex.).

Def. A maximally informative rule:
- minimal premise,
- maximal conclusion.

Ex. bd \rightarrow af: informative
ae \rightarrow cd: not (e \rightarrow acd *valid*).
Inference Axioms and Covers

Def. Armstrong's axioms for entailment

\[\models \subseteq 2^{\Sigma_K} \times 2^{\Sigma_K} \]

Inference model (calculi) over \(\Sigma_K \)

- \(\emptyset \models Y \rightarrow Y \)
- \(Y \rightarrow Z, U \rightarrow V \models Y \cup U \rightarrow Z \cup V \)
- \(Y \rightarrow Z, U \rightarrow V, U \subseteq Z \models Y \rightarrow V \)

Ex.

\[\text{bd} \rightarrow \text{af}, \ e \rightarrow \text{acd} \models \text{bde} \rightarrow \text{acdf} \]

Def. Cover for a set of implications

For \(\mathcal{I}, \mathcal{J} \subseteq \Sigma_K \), \(\mathcal{I} \) is a **cover** of \(\mathcal{J} \) iff \(\mathcal{I} \models \mathcal{J} \)

OEWG'05, DIMACS, March 2005
Pseudo-closed Sets and Canonical Basis

Def. \(\hat{\Phi}_K \subseteq 2^A\): the pseudo-closed sets of \(K\):
- \(Y \neq Y''\),
- for all \(Z\) pseudo-closed, \(Z \subset Y\) forces \(Z'' \subset Y\).

Def. (Duquenne & Guigues 86)

Canonical basis of \(K\), \(\hat{\Phi}_K = \{Z \rightarrow Z'' \mid Z \in \hat{\Phi}_K\}\).

Prop. For all \(K\), \(\hat{\Phi}_K\) is a cover of \(\Sigma_K\) of a minimal size (nb. of rules).

Ex. The basis of the example

\[
\begin{align*}
\text{adg} & \rightarrow \text{bcefhi} & \text{acq} & \rightarrow \text{h} & \text{ah} & \rightarrow \text{g} & \rightarrow \text{a} \\
\text{acdef} & \rightarrow \text{bghi} & \text{abd} & \rightarrow \text{f} & \text{ae} & \rightarrow \text{cd} & \text{af} & \rightarrow \text{d} \\
\text{abcghi} & \rightarrow \text{def} & \text{ai} & \rightarrow \text{cgh}
\end{align*}
\]

Ex. acdef in \(\hat{\Phi}_K\):

- \(ae, af\) in \(\hat{\Phi}_K\);
 - \(ae'' = \text{acde} \subset \text{acdef}\),
 - \(af'' = \text{afd} \subset \text{acdef}\).
Partial Implications and Further Bases

Def. Partial implication \(X \rightarrow Y \) (Luxenburger 92)
Not valid to 100% (exists object \(o : X \subseteq o' \), but \(Y \not\subseteq o' \)).

Two bases for partial implications, following the **lattice structure** [Luxenburger 92]

Def. Global basis :
\[\{ Z_1'' \rightarrow Z_2'' - Z_1'' | Z_1'' \subset Z_2'' \} \].

- \(bcd \rightarrow aefgh \)
 \(Z = bcd, Y = abcdefgh \)

- \(bcd \rightarrow a \)
 \(Z = bcd, Y = abcd \)

Def. Cover basis :
\[\{ Z'' \rightarrow Y'' - Z'' | Z'' \text{ minimal closed subset of } Y'' \} \].

a.k.a **association rules**
Why Study the Pseudo-closed?

Pseudo-closed in...

• ...theory:
 • related to the precedence relation in the lattice of all closures on a ground set A [Caspard & Monjardet 03]
 • minimal covers for functional dependencies in relational databases [Maier 80]

• ...algorithmic design:
 • alternative closure computation mechanism for intents:
 • helps restrict usage of extents in large datasets [Valtchev & Duquenne 03],

• ... practice:
 • non-redundant sets of association rules in data mining [Kryszkiewicz 02]
Families not necessarily disjoint:
- Only \(\mathcal{C}_K \cap \not\mathcal{C}_K = \emptyset \)
- \(\mathcal{Gen}_K \) may share elements with both other families

Prop. \(\mathcal{Gen}_K \) is an order ideal of the Boolean lattice \(2^A \):
\[Z \in \mathcal{G}_K \text{ forces } \forall Y \subseteq Z, Z \in \mathcal{Gen}_K. \]

Prop. \(\not\mathcal{C}_K \cup \mathcal{C}_K \) is closed for intersection (closure space):
\[\not\mathcal{C}_K \cup \mathcal{C}_K = (\not\mathcal{C}_K \cup \mathcal{C}_K) \cap. \]

Prop. Individual elements of \(\not\mathcal{C}_K \) preserve the closure property:
\[\forall Y \in \not\mathcal{C}_K, \forall Z \in \mathcal{C}_K, Y \cap Z \in \mathcal{C}_K \cup \{Y\}. \]
Outline of the Talk

- FCA: Galois connections, closures, lattices, min. generators …
- Computational challenges
- Realization within Galicia
Algorithmic Problems in FCA

<table>
<thead>
<tr>
<th>Mode</th>
<th>Concept set C_K</th>
<th>Concept set + precedence $L_K = (C_K, \leq)$</th>
<th>Min. generators Gen_{L_K}</th>
<th>Canonical basis \hat{B}_K</th>
</tr>
</thead>
<tbody>
<tr>
<td>batch</td>
<td>$NextClosure$</td>
<td>[Bordat 86], [Nourine & Raynaud 99]</td>
<td>Titanic [Stumme et al 02], [Pfalz & Taylor 02]</td>
<td>NextClosure for PC [Ganter 84]</td>
</tr>
<tr>
<td>on-line</td>
<td>O</td>
<td>[Godin et al 95], [Carpinetto & Romano 96], [Valtchev et al 02, 03]</td>
<td>[Valtchev et al 04],</td>
<td></td>
</tr>
<tr>
<td>on-line</td>
<td>A</td>
<td>[Nehme et al 05]</td>
<td>[Nehme et al 05]</td>
<td>[Ob’edkov & Duquenne 03]</td>
</tr>
<tr>
<td>on-line</td>
<td>O</td>
<td>[Valtchev & Missaoui 01]</td>
<td>[Frambourg et al, submitted]</td>
<td></td>
</tr>
<tr>
<td>on-line</td>
<td>A</td>
<td>[Valtchev & Duquenne 03]</td>
<td>[Valtchev et al 02]</td>
<td></td>
</tr>
</tbody>
</table>

OEWG’05, DIMACS, March 2005
NextClosure

- **Reference algorithm in FCA:** [Ganter 84]

- Typical combinatorial generation (listing) procedure:
 - Search for **closed attribute sets** throughout the Boolean lattice \(2^A\),
 - Attribute set \(A\) **totally ordered**,
 - **Closures** of candidate sets computed,
 - Closed sets listed in a **lexicographic** order:
 - Implicit **tree structure**
 - Looking for a **canonical representative** for each closed set:
 - a minimal generating prefix = minimal prefix including a **minimal generator**
 - pruning the search tree
 - Uses **no memory**:
 - moves from one candidate to the next one in the **lexicographic** order,
 - hence suitable for **large lattices**,
On-line Maintenance of Lattices & Co.

Why?

- **Natural evolution** in a dataset:
 - organizations feed new data to their databases on a regular basis,
 - reuse of current analysis results instead of computing the new ones from scratch,

- **Explorative** analysis:
 - adding/removing input data elements,
 - tracking the changes in the result,

- **Potential efficiency** gains:
 - *Incremental* mode: much faster than batch reconstruction from scratch,
 - *Batch* mode: provably faster for sparse data,
On-line Lattice Maintenance

$K_1 = (O, A, I)$

$K_2 = (O, A \cup \{a\}, I \cup a \times a')$

Problem: Given \mathcal{L}_1 and (a, a'), transform the data structure representing \mathcal{L}_1 into an equivalent for \mathcal{L}_2.
The Approach Foundations

Idea: Object dimension stable. Work amounts to add a new extent to C_1^o and close the result by \cap:

$$C_2^o = (C_1^o \cup a^*)^\cap$$

New extents: $C_2^o - C_1^o$

\Rightarrow new concepts: $N_2(a)$

Existing extents: $C_2^o \cap C_1^o$

<table>
<thead>
<tr>
<th>Transition</th>
<th>$L_1 \rightarrow L_2$</th>
<th>Old</th>
<th>Genitor</th>
<th>Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>intent</td>
<td>same</td>
<td>same</td>
<td>change</td>
<td></td>
</tr>
<tr>
<td>extent</td>
<td>same</td>
<td>same</td>
<td>same</td>
<td></td>
</tr>
<tr>
<td>lower cov.</td>
<td>same</td>
<td>change</td>
<td>same</td>
<td></td>
</tr>
<tr>
<td>upper cov.</td>
<td>same</td>
<td>change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>notation</td>
<td>$U_2(a)$</td>
<td>$G_2(a)$</td>
<td>$M_2(a)$</td>
<td></td>
</tr>
</tbody>
</table>

OEWG'05, DIMACS, March 2005
The Approach Foundations (cont’d)

Idea: Find the homologous concepts of genitors and modified in \mathcal{L}_2 and carry out the restructuring from them on, up to obtaining \mathcal{L}_3.

Equivalence relation on \mathcal{L}_1, by extent intersection with a':

$$[c]_a = \{c \in C_1 \mid \text{ext}(c) \cap a' = \text{ext}(c) \cap a'\}$$

Characterization of $G_1(a)$ and $M_1(a)$:
Minima in their equivalence classes $[_]_a$

$$c \in G_1(a) \cup M_1(a) \iff c = \text{min}([c]_a)$$
Lattice Update Method: Attribute-wise

Procedure Add-Attribute(
 \textbf{Input:} \mathcal{L} a lattice, \(a \) an attribute;
 \textbf{Output:} \mathcal{L} a lattice, \textit{updated})

for each \(c = (X, Y) \) in \(\mathcal{L} \)

 \(E \leftarrow X \cap a' \)

 if \(c \) \textit{minimal} for \(E \) then
 if \(X = E \) then \quad // \textit{modified}
 \textbf{Update}(c)
 else \quad // \textit{genitor}
 \(cc \leftarrow \text{new-concept}(E, Y \cup \{o\}) \)
 \(\mathcal{L} \leftarrow \mathcal{L} \cup \{cc\} \)
 \textbf{UpdateOrder}(c, cc)

Problem_1: Fit min. generator \(\text{Gen}_{\mathcal{L}} \)
computation to Add-Attribute(\(\mathcal{L}, a \)).

See [Nehme et al. 05]

Problem_2: Fit pseudo-closed \(\text{PC}_{\mathcal{L}} \)
computation to Add-Attribute(\(\mathcal{L}, a \)).

See [Ob’edkov & Duquenne 03]
Merge of Lattices & Co.

Why?

◆ looking for the **interactions among subsets of descriptors** in a dataset:
 - *split* the descriptor set,
 - *process* the resulting subsets:
 » first independently (**factor** lattices),
 » then as a whole (**global** lattice),
 - *map* the **factor** lattices into the **global** one,
 - *merge-based* construction = last two steps carried out **simultaneously**.

◆ **visualization** (related to previous topic):
 - present the global lattice as "projected" into the **direct product** of the factors,

◆ **potential efficiency gains**: take advantage of distributed/parallel architecture
 - split the work into sub-problems,
 - deal with them separately,
 - put together the partial results,
Fragmentation of Contexts

Apposition = recompose a context after a *split*

\[K = K_1 \mid K_2 \]

K = (O, A, I)

\[K_1 = (O, A_1, I \cap O \times A_1) \]

\[K_2 = (O, A_2, I \cap O \times A_2) \]
Lattice Merge
The Problem

Notations:
- **Contexts**: factors K_1, K_2, *global* $K_3 = K_1 | K_2$.
- **Closures**: operators $_i^i$ (i=1,2,3).
- **Lattices, canonical bases, generators**:
 - factors $\mathcal{L}_i / \mathcal{F}_i / \mathcal{Gen}_1$ (i=1,2),
 - *global* $\mathcal{L}_3 / \mathcal{F}_3 / \mathcal{Gen}_3$,
 - *direct product* $\mathcal{L}_{1,2} / \mathcal{F}_{1,2}$.

Given:
- **Factor lattices**: \mathcal{L}_1, \mathcal{L}_2
- *(OPT) canonical bases of factors*: \mathcal{F}_1, \mathcal{F}_2
- *(OPT) min. generator families of factors*: \mathcal{Gen}_1, \mathcal{Gen}_2

Find:
- **Global lattice**: \mathcal{L}_3
- *(OPT) global canonical base*: \mathcal{F}_3
- *(OPT) global min. generator family*: \mathcal{Gen}_3
Prop. \(\mathcal{L}_3 \) is a sub-semi-lattice of \(\mathcal{L}_{1,2} \) hence may be embedded into it.
Approaching the Merge

Complete lattice merge, i.e., concepts and order

Key ideas:

- **Mixture of extent families**: $C^o_3 = \text{all pair-wise intersections on } C^o_1 \times C^o_2$.
- **Each global extent (3-extent) Y**: generated by a set of pairs.
- **Canonical element** of $C^o_1 \times C^o_2$:
 - the minimum of all pairs (\hat{Y}_1, \hat{Y}_2) from $C^o_1 \times C^o_2$ generating a 3-extent Y.
- Completing the concept (Y, Y^3): the **intent** Y^3 is the union of canonical intents:
 - $Y^3 = \hat{Y}^1_1 \cup \hat{Y}^2_2$.
Merge: 3-step Construction Procedure

1. Identify concepts
2. Compute intents & extents
3. Detect precedence links
Outline of the Talk

- **FCA:** Galois connections, closures, lattices, min. generators …

- **Computational challenges**

- **Realization within Galicia**
Goals of the Galicia project

Develop a tool set to support:

- **Research** on FCA theory and algorithms for the analysis of:
 - **structured** data formats (*data and meta-data*):
 » relational DB, UML models, image meta-data, etc.
 - **semi-structured** data formats (*data and meta-data*):
 » OWL, RDF(S), XMI, etc.
 - volatile datasets,
 - large databases,

- **Practical applications** of FCA techniques to:
 - Data analysis and mining in:
 » Software engineering,
 » Bioinformatics,
 » Image retrieval and mining,
 » Ontology construction.
Member Teams

- Université de Montréal (Qc, CA)
 - P. Valtchev (Assist. Prof.),

- Université du Québec à Montréal (CA)
 - R. Godin (Prof.)

- Université du Québec en Outaouais (CA)
 - R. Missaoui (Prof.)

- LIRMM, Montpellier (FR)
 - M. Huchard (Prof.)

- Université de la Réunion (FR)
 - D. Grosser (Assist. Prof.)

- LORIA, Nancy (FR)
 - A. Napoli (Sen. Res.)
Life-cycle of a Lattice/Rule Set

1. Prepare data
2. Construct concept hierarchy/rule set
3. Visualize results
The Galicia Platform

Rich set of tools for lattices, semi-lattices, general posets, rule bases, etc. :

- **Open-source**

 http://www.iro.umontreal.ca/~galicia (Home Page of the platform)

 https://sourceforge.net/projects/galicia/ (Home Page of the SF project)

- **Portable**: developed in Java,

- **Generic**: abstract types, implementations easily exchangeable.

- Supports different input data formats:
 - Binary data
 - Categorical data
 - Relational Context Families: entities + relations
Key Functions of Galicia

Context import/export and edition:
- binary,
- *relational* and *multi-valued*

Construction of lattices and derived structures:
- **Lattice** construction:
 - *Batch* mode
 - *Incremental*: object- and attribute-wise
 - *Merge-based*: object- and attribute-wise
- Galois sub-hierarchies
- **Iceberg** lattices

Association rule extraction from the lattice of intents:
- **Exact rules (valid implications)**: *Duquenne-Guigues* basis [Guidues & Duquenne 86], *generic* basis [Pasquier et al. 99].
- **Approximate rules (partial implications)**: *Luxenburger* bases [Luxenburger 92], *informative* basis [Pasquier et al. 99].
Exploration of FCA Results

Structure visualization and navigation services:

- **Diagram types:**
 - Standard Hasse diagrams,
 - *Nested Line Diagrams (work in progress)*,

- **Layout mechanisms** for layered diagrams:
 - Static/dynamic formatting,
 - Layered,
 - Magnetism (attraction - repulsion model).

- **Views:** 2D, 3D, 3D + rotation.

- **Navigation:**
 - hierarchy overview.

I/O operations for various formats:
- dedicated data formats: SLF (*in-house*), IBM,
- XML-based formats: XML DTDs for input data and posets, RCF (*in-house*).
Demo of Galícia

Galois Lattice Interactive Constructor
On-going research projects:

- **Relational** FCA: bring FCA and conceptual data models (UML, E-R, etc.) closer:
 - *Recursive* and *circular* links in data,
 - *Co-definition* of concepts on different sorts of objects:
 » Ex. Customer, Transaction, Product,
 - Iterative (fixed-point) construction of a set of related lattices
 - ... and a bunch of unresolved problems...

- **Evolution** of association rule bases:
 - Merge of *factor bases* along:
 » the *object* dimension,
 » the attribute dimension,
 - Decomposition of lattices/posets along different operators
On-going application projects involving *Galicia*:

- **Re-engineering** of software *analysis-level models*: extracting high level abstractions from existing conceptual models described in UML;

- **Image retrieval and mining**: lattice products to detect and visualize interactions between lower level and higher level image characteristics,

- **Information (text) retrieval**: query analysis and expansion

- **Bio-informatics**: mining 3D structure of proteins (*initial stage*),