Dynamic Pricing for Non-Perishable Products with Demand Learning

Victor F. Araman René A. Caldentey
Stern School of Business
New York University

DIMACS Workshop on Yield Management and Dynamic Pricing
Rutgers University

August, 2005
Motivation

Dynamic Pricing with Demand Learning
Motivation

N_0

Product 1

Clearance

Regular Season

τ_1

$\tau_1 + \tau_2$
Motivation

Dynamic Pricing with Demand Learning
Motivation

- For many retail operations, “capacity” is measured by store/shelf space.

- A key performance measure in the industry is

 \textbf{Average Sales per Square Foot per Unit Time.}

- Trade-off between short-term benefits and the opportunity cost of assets.

 \textbf{Margin vs. Rotation.}

- As opposed to the airline or hospitality industries, selling horizons are flexible.

- In general, most profitable/unprofitable products are new items for which there is little demand information.
Outline

✓ Model Formulation.

✓ Perfect Demand Information.

✓ Incomplete Demand Information.
 - Inventory Clearance
 - Optimal Stopping ("outlet option")

✓ Conclusion.
Model Formulation

I) STOCHASTIC SETTING:
- A probability space \((\Omega, F, \mathbb{P})\).
- A standard Poisson process \(D(t)\) under \(\mathbb{P}\) and its filtration \(F_t = \sigma(D(s) : 0 \leq s \leq t)\).
- A collection \(\{\mathbb{P}_\alpha : \alpha > 0\}\) such that \(D(t)\) is a Poisson process with intensity \(\alpha\) under \(\mathbb{P}_\alpha\).
- For a process \(f_t\), we define \(I_{f(t)} := \int_0^t f_s \, ds\).

II) DEMAND PROCESS:
- Pricing strategy, a nonnegative (adapted) process \(p_t\).
- A price-sensitive unscaled demand intensity
 \[\lambda_t := \lambda(p_t) \iff p_t = p(\lambda_t). \]
- A (possibly unknown) demand scale factor \(\theta > 0\).
- Cumulative demand process \(D(I_{\lambda(t)})\) under \(\mathbb{P}_\theta\).
- Select \(\lambda \in \mathcal{A}\) the set of admissible (adapted) policies
 \[\lambda_t : \mathbb{R}_+ \to [0, \Lambda]. \]

\[\text{Demand Intensity} \]

Exponential Demand Model
\[\lambda(p) = \Lambda \exp(-\alpha p) \]
Increasing \(\theta\)

Dynamic Pricing with Demand Learning
Model Formulation

III) Revenues:

- Unscaled revenue rate $c(\lambda) := \lambda p(\lambda)$, \(\lambda^* := \arg\max_{\lambda \in [0, \Lambda]} \{c(\lambda)\} \), \(c^* := c(\lambda^*) \).

- Terminal value (opportunity cost): R
 Discount factor: r

- Normalization: \(c^* = r R \).

IV) Selling Horizon:

- Inventory position: \(N_t = N_0 - D(I_\lambda(t)) \).

- \(\tau_0 = \inf\{t \geq 0 : N_t = 0\} \),
 \(T := \{\mathcal{F}_t - \text{stopping times} \, \tau \, \text{such that} \, \tau \leq \tau_0\} \)

V) Retailer’s Problem:

\[
\max_{\lambda \in \mathcal{A}, \, \tau \in T} \mathbb{E}_\theta \left[\int_0^\tau e^{-r t} p(\lambda_t) \, dD(I_\lambda(t)) + e^{-r \tau} R \right]
\]

subject to \(N_t = N_0 - D(I_\lambda(t)) \).
Suppose $\theta > 0$ is known at $t = 0$ and an inventory clearance strategy is used, i.e., $\tau = \tau_0$.

Define the value function

$$W(n; \theta) = \max_{\lambda \in A} \mathbb{E}_\theta \left[\int_0^{\tau_0} e^{-rt} p(\lambda_t) dD(I_{\lambda}(t)) + e^{-r\tau} R \right]$$

subject to $N_t = n - D(I_{\lambda}(t))$ and $\tau_0 = \inf\{t \geq 0 : N_t = 0\}$.

The solution satisfies the recursion

$$\frac{r W(n; \theta)}{\theta} = \Psi(W(n-1; \theta) - W(n; \theta)) \quad \text{and} \quad W(0; \theta) = R,$$

where $\Psi(z) \triangleq \max_{0 \leq \lambda \leq \Lambda} \{\lambda z + c(\lambda)\}$.

Proposition. For every $\theta > 0$ and $R \geq 0$ there is a unique solution $\{W(n) : n \in \mathbb{N}\}$.

- If $\theta \geq 1$ then the value function W is increasing and concave as a function of n.
- If $\theta \leq 1$ then the value function W is decreasing and convex as a function of n.
- $\lim_{n \to \infty} W(n) = \theta R$.
Value function for two values of θ and an exponential demand rate $\lambda(p) = \Lambda \exp(-\alpha p)$.

The data used is $\Lambda = 10$, $\alpha = 1$, $r = 1$, $\theta_1 = 1.2$, $\theta_2 = 0.8$, $R = \Lambda \exp(-1)/(\alpha r) \approx 3.68$.

Dynamic Pricing with Demand Learning 9
Corollary. Suppose $c(\lambda)$ is strictly concave.

The optimal sales intensity satisfies:

$$\lambda^*(n; \theta) = \arg\max_{0 \leq \lambda \leq \Lambda} \{ \lambda (W(n-1; \theta) - W(n; \theta)) + c(\lambda) \}.$$

- If $\theta \geq 1$ then $\lambda^*(n; \theta) \uparrow n$.

- If $\theta \leq 1$ then $\lambda^*(n; \theta) \downarrow n$.

- $\lambda^*(n; \theta) \downarrow \theta$.

- $\lim_{n \to \infty} \lambda^*(n, \theta) = \lambda^*$.

What about inventory turns (rotation)?

Proposition. Let $s(n, \theta) \triangleq \theta \lambda^*(n, \theta)$ be the optimal sales rate for a given θ and n.

If $\frac{d}{d\lambda}(\lambda^p(\lambda)) \leq 0$, then $s(n, \theta) \uparrow \theta$.

Exponential Demand $\lambda(p) = \Lambda \exp(-\alpha p)$.

$\Lambda = 10$, $\alpha = r = 1$, $\theta_1 = 1.2$, $\theta_2 = 0.8$, $R = 3.68$.

Dynamic Pricing with Demand Learning
Full Information

Summary:

- A tractable dynamic pricing formulation for the inventory clearance model.

- $W(n; \theta)$ satisfies a simple recursion based on the Fenchel-Legendre transform of $c(\lambda)$.

- With full information products are divided in two groups:
 - High Demand Products with $\theta \geq 1$: $W(n, \theta)$ and $\lambda^*(n)$ increase with n.
 - Low Demand Products with $\theta \leq 1$: $W(n, \theta)$ and $\lambda^*(n)$ decrease with n.

- High Demand products are sold at a higher price and have a higher selling rate.

- If the retailer can stop selling the product at any time at no cost then:
 - If $\theta < 1$ stop immediately ($\tau = 0$).
 - If $\theta > 1$ never stop ($\tau = \tau_0$).

- In practice, a retailer rarely knows the value of θ at $t = 0$!
Incomplete Information: Inventory Clearance

Setting:

- The retailer does not know θ at $t = 0$ but knows $\theta \in \{\theta_L, \theta_H\}$ with $\theta_L \leq 1 \leq \theta_H$.

- The retailer has a prior belief $q \in (0, 1)$ that $\theta = \theta_L$.

- We introduce the probability measure $\mathbb{P}_q = q \mathbb{P}_{\theta_L} + (1 - q) \mathbb{P}_{\theta_H}$.

- We assume an inventory clearance model, i.e., $\tau = \tau_0$.

Retailer’s Beliefs:

Define the belief process $q_t := \mathbb{P}_q[\theta | \mathcal{F}_t]$.

Proposition. q_t is a \mathbb{P}_q-martingale that satisfies the SDE

$$
\mathrm{d}q_t = -\eta(q_{t-}) [\mathrm{d}D_t - \lambda_t \bar{\theta}(q_{t-}) \mathrm{d}t],
$$

where

$$
\bar{\theta}(q) := \theta_L q + \theta_H (1 - q)
$$

and

$$
\eta(q) := \frac{q (1 - q) (\theta_H - \theta_L)}{\theta_L q + \theta_H (1 - q)}.
$$
Incomplete Information: Inventory Clearance

Retailer’s Optimization:

\[
V(N_0, q) = \sup_{\lambda \in A} \mathbb{E}_q \left[\int_0^{\tau_0} e^{-r t} p(\lambda_t) \, dD(I_\lambda(s)) + e^{-r \tau_0} R \right]
\]

subject to

\[
N_t = N_0 - \int_0^t dD(I_{\lambda}(s)),
\]

\[
\dot{q}_t = -\eta(q_{t-}) [dD_t - \lambda_t \theta(q_{t-}) dt], \quad q_0 = q,
\]

\[
\tau_0 = \inf\{ t \geq 0 : N_t = 0 \}.
\]

HJB Equation:

\[
rV(n, q) = \max_{0 \leq \lambda \leq \Lambda} \left[\lambda \theta(q) [V(n - 1, q - \eta(q)) - V(n, q) + \eta(q) V_q(n, q)] + \bar{\theta}(q) c(\lambda) \right],
\]

with boundary condition \(V(0, q) = R, V(n, 0) = W(n; \theta_H), \) and \(V(n, 1) = W(n; \theta_L). \)

Recursive Solution:

\[
V(0, q) = R, \quad V(n, q) + \Phi \left(\frac{r V(n, q)}{\theta(q)} \right) - \eta(q) V_q(n, q) = V(n - 1, q - \eta(q)).
\]
Incomplete Information: Inventory Clearance

Proposition.
- The value function $V(n, q)$ is
 a) monotonically decreasing and convex in q,
 b) bounded by
 \[W(n; \theta_L) \leq V(n, q) \leq W(n; \theta_H), \quad \text{and} \]
 \[V(n, q) \xrightarrow{n \to \infty} R \bar{\theta}(q), \quad \text{uniformly in} \ q. \]
 c) uniformly convergent as $n \uparrow \infty$,
 \[
 V(n, q) \xrightarrow{n \to \infty} R \bar{\theta}(q), \quad \text{uniformly in} \ q.
 \]
- The optimal demand intensity satisfies
 \[
 \lim_{n \to \infty} \lambda^*(n, q) = \lambda^*.
 \]
Conjecture:
The optimal sales rate $\bar{\theta}(q) \lambda^*(n, q) \downarrow q$.
Asymptotic Approximation: Since

\[
\lim_{n \to \infty} V(n, q) = R \bar{\theta}(q) = \lim_{n \to \infty} \{q W(n, \theta_L) + (1 - q) W(n, \theta_H)\},
\]

we propose the following approximation for \(V(n, q) \)

\[
\tilde{V}(n, q) := q W(n, \theta_L) + (1 - q) W(n, \theta_H).
\]

Some Properties of \(\tilde{V}(n, q) \):

- Linear approximation easy to compute.
- Asymptotically optimal as \(n \to \infty \).
- Asymptotically optimal as \(q \to 0^+ \) or \(q \to 1^- \).
- \(\tilde{V}(n, q) = \mathbb{E}_q[W(n, \theta)] \neq W(n, \mathbb{E}_q[\theta]) =: V^{CE}(n, q) = \text{Certainty Equivalent.} \)
Relative Error (\%) := \frac{V^{\text{approx}}(n, q) - V(n, q)}{V(n, q)} \times 100\%.

Exponential Demand \(\lambda(p) = \Lambda \exp(-\alpha p) \):

Inventory = 5, \(\Lambda = 10 \), \(\alpha = r = 1 \), \(\theta_H = 5.0 \), \(\theta_L = 0.5 \).
Incomplete Information: Inventory Clearance

For any approximation \(V_{\text{approx}}(n, q) \), define the corresponding demand intensity using the HJB

\[
\lambda_{\text{approx}}(n, q) := \arg \max_{0 \leq \lambda \leq \Lambda} \left[\lambda \bar{\theta}(q) [V_{\text{approx}}(n-1, q-\eta(q)) - V_{\text{approx}}(n, q)] + \lambda \kappa(q) V_{q_{\text{approx}}}(n, q) + \bar{\theta}(q) c(\lambda) \right].
\]

Relative Price Error (%) := \(\frac{p(\lambda_{\text{approx}}) - p(\lambda^*)}{p(\lambda^*)} \times 100\% \).

Asymptotic Approximation (%)

<table>
<thead>
<tr>
<th>q</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>25</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.2</td>
<td>2.7</td>
<td>-0.2</td>
<td>-0.3</td>
<td>-0.6</td>
<td>-0.5</td>
</tr>
<tr>
<td>0.4</td>
<td>6.9</td>
<td>0.8</td>
<td>-0.6</td>
<td>-0.9</td>
<td>-0.7</td>
</tr>
<tr>
<td>0.6</td>
<td>12.5</td>
<td>2.4</td>
<td>-0.2</td>
<td>-0.7</td>
<td>-1.0</td>
</tr>
<tr>
<td>0.8</td>
<td>19.4</td>
<td>3.3</td>
<td>0.1</td>
<td>-0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Certainty Equivalent (%)

<table>
<thead>
<tr>
<th>q</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>25</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.2</td>
<td>5.3</td>
<td>2.6</td>
<td>2.7</td>
<td>2.4</td>
<td>-0.4</td>
</tr>
<tr>
<td>0.4</td>
<td>14.4</td>
<td>11.6</td>
<td>12.0</td>
<td>10.1</td>
<td>-0.5</td>
</tr>
<tr>
<td>0.6</td>
<td>29.9</td>
<td>28.2</td>
<td>28.0</td>
<td>17.6</td>
<td>-1.0</td>
</tr>
<tr>
<td>0.8</td>
<td>54.6</td>
<td>46.2</td>
<td>37.4</td>
<td>11.1</td>
<td>-0.7</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Relative price error for the exponential demand model \(\lambda(p) = \Lambda \exp(-\alpha p) \), with \(\Lambda = 20 \) and \(\alpha = 1 \).
Incomplete Information: Inventory Clearance

When should the retailer engage in selling a given product?

When \(V(n, q) \geq R \).

Using the asymptotic approximation \(\tilde{V}(n, q) \), this is equivalent to

\[
q \leq \tilde{q}(n) := \frac{W(n; \theta_H) - R}{[W(n; \theta_H) - R] + [R - W(n; \theta_L)]}.
\]

\(\tilde{q}(n) \to \tilde{q}_\infty := \frac{\theta_H - 1}{\theta_H - \theta_L} \), as \(n \to \infty \).

Exponential demand rate \(\lambda(p) = \Lambda \exp(-\alpha p) \).

Data: \(\Lambda = 10, \alpha = 1, r = 1, \theta_H = 1.2, \theta_L = 0.8 \).
Incomplete Information: Inventory Clearance

Summary:

- Uncertainty in market size (θ) is captured by a new state variable q_t (a jump process).

- $V(n, q)$ can be computed using a recursive sequence of ODEs.

- Asymptotic approximation $\tilde{V}(n, q) := \mathbb{E}_q[W(n, \theta)]$ performs quite well.
 - Linear approximation easy to compute.
 - Value function: $V(n, q) \approx \tilde{V}(n, q)$.
 - Pricing strategy: $p^*(n, q) \approx \tilde{p}(n, q)$.

- Products are divided in two groups as a function of (n, q):
 - Profitable Products with $q < \bar{q}(n)$ and
 - Non-profitable Products with $q > \bar{q}(n)$.

- The threshold $\bar{q}(n)$ increases with n, that is, the retailer is willing to take more risk for larger orders.
Incomplete Information: Optimal Stopping

Setting:
- Retailer does not know \(\theta \) at \(t = 0 \) but knows \(\theta \in \{ \theta_L, \theta_H \} \) with \(\theta_L \leq 1 \leq \theta_H \).
- Retailer has the option of removing the product at any time, “Outlet Option”.

Retailer’s Optimization:

\[
U(N_0, q) = \max_{\lambda \in \mathcal{A}, \tau \in \mathcal{T}} \mathbb{E}_q \left[\int_0^\tau e^{-rt} p(\lambda_t) dD(I_\lambda(t)) + e^{-r\tau} R \right]
\]

subject to
\[
N_t = N_0 - D(I_\lambda(t)),
\]
\[
d_{q_t} = -\eta(q_{t-}) [dD(I_\lambda(t)) - \lambda_t \bar{\theta}(q_{t-}) dt], \quad q_0 = q.
\]

Optimality Conditions:

\[
\begin{cases}
U(n, q) + \Phi \left(\frac{rU(n,q)}{\theta(q)} \right) - \eta(q) U_q(n, q) = U(n - 1, q - \eta(q)) & \text{if } U \geq R \\
U(n, q) + \Phi \left(\frac{rU(n,q)}{\theta(q)} \right) - \eta(q) U_q(n, q) \leq U(n - 1, q - \eta(q)) & \text{if } U = R.
\end{cases}
\]
Incomplete Information: Optimal Stopping

Proposition.

a) There is a unique continuously differentiable solution $U(n, \cdot)$ defined on $[0, 1]$ so that $U(n, q) > R$ on $[0, q_n^*)$ and $U(n, q) = R$ on $[q_n^*, 1]$, where q_n^* is the unique solution of

$$R + \Phi \left(\frac{r R}{\theta(q)} \right) = U(n - 1, q - \eta(q)).$$

b) q_n^* is increasing in n and satisfies

$$\frac{\theta_H - 1}{\theta_H - \theta_L} \leq q_n^* \xrightarrow{n \to \infty} q_\infty \leq \text{Root} \left\{ \Phi \left(\frac{r R}{\theta(q)} \right) = \frac{\eta(q)}{q} (\theta_H - 1) R \right\} < 1.$$

c) The value function $U(n, q)$

- Is decreasing and convex in q on $[0, 1]$
- Increases in n for all $q \in [0, 1]$ and satisfies

$$\max\{R, V(n, q)\} \leq U(n, q) \leq \max\{R, m(q)\} \quad \text{for all } q \in [0, 1],$$

where

$$m(q) := W(n, \theta_H) - \frac{(W(n, \theta_H) - R)}{q_n^*} q.$$

- Converges uniformly (in q) to a continuously differentiable function, $U_\infty(q)$.
Exponential demand rate $\lambda(p) = \Lambda \exp(-\alpha p)$. Data: $\Lambda = 10$, $\alpha = 1$, $r = 1$, $\theta_H = 1.2$, $\theta_L = 0.8$.

Dynamic Pricing with Demand Learning
Incomplete Information: Optimal Stopping

Approximation:

\[
\tilde{U}(n, q) := \max\{R, W(n, \theta_H) - \frac{(W(n, \theta_H) - R)}{\tilde{q}_n} q\}
\]

where \(\tilde{q}_n\) is the unique solution of

\[
R + \Phi \left(\frac{r R}{\tilde{\theta}(q)} \right) = \tilde{U}(n - 1, q - \eta(q)).
\]

Exponential demand rate \(\lambda(p) = \Lambda \exp(-\alpha p)\).

Data: \(\Lambda = 10\), \(\alpha = 1\), \(r = 1\), \(\theta_H = 1.2\), \(\theta_L = 0.8\).
Incomplete Information: Optimal Stopping

Summary:

- $U(n, q)$ can be computed using a recursive sequence of ODEs with free-boundary conditions.
- For every n there is a critical belief q_n^* above which it is optimal to stop.
- Again, the sequence q_n^* is increasing with n, that is, the retailer is willing to take more risk for larger orders.
- The sequence q_n^* is bounded by
 \[
 \frac{\theta_H - 1}{\theta_H - \theta_L} \leq q_n^* \leq \hat{q} := \text{Root} \left\{ \Phi \left(\frac{r R}{\theta(q)} \right) = \frac{\eta(q)}{q} (\theta_H - 1) R \right\}
 \]
- The “outlet option” increases significantly the expected profits and the range of products (n, q) that are profitable.
 \[
 0 \leq U(n, q) - V(n, q) \leq (1 - \theta_L)^+ R.
 \]
- A simple piece-wise linear approximation works well.
 \[
 \tilde{U}(n, q) := \max \{ R, W(n, \theta_H) - \frac{(W(n, \theta_H) - R)}{\tilde{q}_n} q \}.
 \]
Concluding Remarks

- A simple dynamic pricing model for a retailer selling non-perishable products.

- Captures two common sources of uncertainty:
 - Market size measured by $\theta \in \{\theta_H, \theta_L\}$.
 - Stochastic arrival process of price sensitive customers.

- Analysis gets simpler using the Fenchel-Legendre transform of $c(\lambda)$ and its properties.

- We propose a simple approximation (linear and piecewise linear) for the value function and corresponding pricing policy.

- Some properties of the optimal solution are:
 - Value functions $V(n, q)$ and $U(n, q)$ are decreasing and convex in q.
 - The retailer is willing to take more risk ($\uparrow q$) for higher orders ($\uparrow n$).
 - The optimal demand intensity $\lambda^*(n, q) \uparrow q$ and the optimal sales rate $\bar{\theta}(q) \lambda^*(n, q) \downarrow q$.

- Extension: $R(n) = R + \nu n - K \mathbb{1}(n > 0)$.