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Objectives and Approach 

 
Finding ways to intercept illicit nuclear materials and weapons destined for the U.S. via the 
maritime transportation system is an exceedingly difficult task. Until recently, only about 2% of 
ships entering U.S. ports have had their cargoes inspected. The percentage at some ports has now 
risen to 6%, but this is still a very small percentage. The purpose of this project is to develop 
decision support algorithms that will help us to optimally intercept illicit materials and weapons. 
The algorithms we seek will find inspection schemes that minimize total cost, including the 
“cost” of false positives and false negatives. 
 
We envision a stream of entities arriving at a port and a decision maker having to decide how to 
inspect them, which to subject to further inspection and which to allow to pass through with only 
minimal levels of inspection. This is a complex sequential decision making problem. Sequential 
decision making is an old subject, but one that has become increasingly important with the need 
for new models and algorithms as the traditional methods for making decisions sequentially do 
not scale. 
 
Existing algorithms for optimally intercepting illicit cargo assume that sensor performance, 
operating characteristics of ports, and overall threat level are all fixed. The approach in this 
project involves decision logics and is built around problem formulations that lead to the need 
for combinatorial optimization algorithms as well as methods from the theory of Boolean 
functions, queuing theory, and machine learning. Practical complications of any such approach 
involve economic impacts of surveillance activities, errors and inconsistencies in available data 
on shipping and import terminal facilities, and the tradeoffs between combinations of sensors. A 
full-blown approach to the port-of-entry inspection problem includes the decision problem of 
when to initiate different levels of inspection if there are seasonal variations in cargo flows and 
cargo types, sensor reliability effects, and changing threat levels. In general terms, it is necessary 
to explore new sensor deployment methods and sensor configurations, the problem of false 
alarms from naturally occurring radiation sources (which vary spatially) and from innocent 
cargos (such as medical waste), and models of “information sensors.” Moreover, existing 
algorithms for designing port-of-entry inspection are rapidly coming up against the 
combinatorial explosion caused by so many possible alternative inspection strategies.  In this 
project, we are attempting to develop an approach that brings into the analysis many of these 
complications.  Details of the approach are summarized in the paper “Decision support 
algorithms for port-of-entry inspection.” They were presented by the PI at the DHS Meeting on 
Research and Development Partnerships in Homeland Security in Boston in April 2005 and are 
to appear in the conference proceedings. 
 
The project is being carried out in collaboration between a university team of faculty and 
students and a team from the Los Alamos National Laboratory. The university team is based at 
DIMACS, the Center for Discrete Mathematics and Theoretical Computer Science. DIMACS is 
a partnership of Rutgers and Princeton Universities with industrial partners at AT&T Labs, Bell 
Labs, NEC Laboratories America, and Telcordia Technologies, and affiliated partners at Avaya 
Labs, HP Labs, IBM Research, Microsoft Research, Stevens Institute of Technology, and 
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Georgia Institute of Technology. We have in place a team of DIMACS members from Rutgers 
University that reflects the multi-disciplinary nature of the port-of-entry inspection problem.  
 

Technical Progress 
 
After exchanges of ideas by telephone and email, the project team met at DIMACS on May 25-
26, 2005 to review in depth the initial approach to the port-of-entry inspection problem taken by 
the Los Alamos team.  Our Los Alamos partners studied four tests for deciding if a cargo was 
positive, that is, contained illicit material.  These tests (we will call them all sensors) were 
evaluation of ships manifests, passive radiation signature, radiographic image, and induced 
fission.  All of these have costs associated with them, including the cost of a reading indicating 
illicit material when there is none, a false positive (FP), the cost of a reading indicating there is 
no illicit material when there is, a false negative (FN), time costs of using the sensor, delay costs 
of waiting for the sensor, and fixed cost of equipment, labor, etc. For each sensor the readings for 
cargo containing illicit material (positives) and readings for cargo not containing illicit material 
(negatives) are random variables.  It is assumed that each is distributed normally and that the 
mean and standard deviation for each of these distributions is known.  Setting a threshold level 
for when a reading is considered positive controls the performance characteristics of each sensor, 
that is the probability of FP and the probability of FN.  For example, a false positive occurs when 
a reading from a sensor for a cargo that does not contain illicit material falls in the range where 
that sensor gives a positive reading.  The model our Los Alamos partners created assigned an 
output of 0 (absence of illicit material) or 1 (presence of illicit material) for each sensor.  In 
general, n sensors will yield a string (vector) of 0’s and 1’s of length n.  A decision function is a 
Boolean function F on an n-dimensional vector with output 0 (negative) indicating the cargo is 
not suspected of containing illicit material and an output of 1 (positive) indicating the cargo is 
suspected and must be “unstuffed.”  The cost of a false positive is the cost of unstuffing, $600.  
The cost of a false negative was based on the estimated cost of the destruction of the World 
Trade Center, $50 billion, times the estimated fraction of imports with weapons of mass 
destruction (WMD), 1 per 5 years. To which sensor a cargo is sent depends on the output of the 
previous sensor.  This can be modeled with a binary decision tree (BDT).  The best LANL could 
accomplish was to find the binary decision tree in the case of 4 sensors that would minimize total 
cost.  Restricting to complete (every variable is required) and monotone (if F(0,1,1,0) is 1 then 
F(1,1,1,0) must also be 1) Boolean functions, there are 114 possible functions and 11,808 
possible binary decision trees. Using two months data from the LA Long Beach port, by 
exhaustive search it was determined that there was 1 best, the best 100 fell into 10 patterns, and 
there were about 300 that were close enough to optimal. 
 
In reality, we will want to use many more sensors and the large number of possible trees makes 
an exhaustive search infeasible.  One goal of this project is to understand the characteristics and 
behaviors of the solution space with the objective of developing heuristics that will allow rapid 
computation in finding optimal and near optimal trees. This heuristic will need to be able to scale 
up to 12, 20 or even higher numbers of sensors. 
 
Several problems were recognized with this model.  There are many different types of costs 
involved.  There are fixed costs and salary costs for the inspection stations.  There are delay costs 
that are primarily borne by the shippers.  Also, a sufficiently long delay could cause the entire 
system to collapse causing proliferating economic costs throughout the country and the world. 
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The delays can be a random variable; for example there is variability in the time to read the 
radiograph.  
 
The Rutgers team has subdivided their approach into three interdependent parts.  One group is 
studying the sensitivity of the determination of optimal and near optimal trees to the input 
parameters.  As input parameters such as the costs of false positives and false negatives, the costs 
of delays, etc., are estimated with more or less accuracy, one wants solutions whose sensitivity to 
changes in these parameters is known and tolerable.  This group is also applying datamining 
techniques to study the dataset of 11,808 possible binary decision trees provided by LANL for 
the case of 4 sensors.  A second group is considering the optimization problem in the context of a 
shipping port and building a simulation model of inspection stations as one part of an operating 
port.  Such a model will allow the estimation of some of the cost parameters by, for example, 
providing estimates of delays.  A third group is developing new modeling approaches that are 
computationally cheap, highly scalable, and able to incorporate various cost factors with enough 
flexibility to include future technologies.  
 
Sensitivity Analysis and Datamining 
 
In general, analyzing the effect of varying one or more parameters on an optimal solution of a 
generalized decision tree cost-minimizing problem may be classified as sensitivity analysis if it 
concerns a single parameter or as parametric programming if more than one parameter needs to 
be varied.  

The cost function can be formulated as follows. Each decision (at each node) has a certain cost 
associated with it. This cost would include the costs of false positives and false negatives, which 
can take place at the sensor/node, the cost associated with the utilization of the sensor itself as 
well as the costs that would accumulate as a result of the decision of the sensor. We assume that 
for each sensor the readings for cargo containing illicit material (positives) and readings for 
cargo not containing illicit material (negatives) are each distributed normally and that the mean 
and standard deviation for each of these distributions is known. If a reading is positive 
(negative), we assume the decision tree is traversed to the left (right). We formulate a 
probabilistic cost model for a sensor/node in the decision tree and also incorporate costs of each 
branch in a recursive fashion.  

CNode = (PFalsePositive*CFalsePositive) + (PFalseNegative*CFalseNegative) + CObservation  

+ (PPositive*CLeftTree + PNegative*CRightTree) 

where CNode = cost of tree this node downwards 

PFalsePositive = probability of a false positive decision in this sensor/node 

CFalsePositive = cost incurred as a result of a false positive at this node on the system 

PFalseNegative = probability of a false negative decision in this sensor/node 

CFalseNegative = cost incurred as a result of a false negative at this node on the system 

CObservation = the cost incurred as a result of operating the sensor at this node. This cost includes 
the unit, fixed and delay costs.  

PPositive = probability of a positive decision in this sensor/node.  
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CLeftTree = cost of the entire left tree with the current node as the root, computed recursively until 
terminal nodes are reached.  

PNegative = probability of a negative decision in this sensor/node.  

 CRightTree = cost of the entire right tree with the current node as the root, computed recursively 
until terminal nodes are reached.  

(PPositive*CLeftTree + PNegative*CRightTree) is the recursive term, which can be run over the entire tree. 

Here we have labeled the Boolean decision of a sensor as positive or negative. The CLeftTree is the 
recursively accumulated cost of the left subtree of the current sensor/node and the CRightTree is a 
similar cost for the right subtree. Thus each node in the tree has a cost connected to the 
measurement by the sensor, a cost of false classifications as well as the costs of additional 
sensors that are brought into use depending on our current sensor’s decision. These additional 
sensors are the nodes on either side of the subtree of which the current sensor can be considered 
as root node.  

There are variables associated with each node/sensor of the tree that are provided as a priori 
knowledge. The purpose of the sensitivity analysis would be to vary these parameters, 
individually as well as in n-tuples, to see how the change in parameters affects the cost structure 
of each tree and hence, which tree minimizes cost. This analysis is an optimization problem but 
with constraints which are not clearly defined, apart from overall cost-minimization. At present, 
algorithms to enumerate the feasible binary decision trees and the recursive cost formulation 
model are being implemented. The optimal solutions can be found for the values provided for the 
parameters. In the second stage, basic sensitivity tests will be carried out on the optimal and 
nearly optimal solutions and the effects of varying parameter values on the costs and optimality 
of trees will be analyzed. Based on these results, further tests can then be carried out extensively 
on the effectiveness and sensitivity of each parameter in determining the optimality of a tree 
structure. In particular, we will attempt to see whether BDTs which stay above a chosen level of 
optimality can be characterized by their structure and whether certain parameters affect the 
sensitivity of all optimal BDTs in a uniform way or whether some parameters affect certain tree 
structures more while causing less variations in other tree structures. The other test to be carried 
out is to find out by how much parameters with high underlying costs overshadow other 
relatively cheaper parameters. In addition, methods for pruning the decision trees will be 
developed. The parameters on which the cost structure is formulated include the mean and 
standard deviation of the probability distribution of a positive decision and the parameters which 
relate it to the distribution of the negative decision, the costs of false positive and false negative 
decisions, as well as the intrinsic cost associated with each sensor. 

Phillip Stroud of LANL did extensive calculations to evaluate 11,808 possible binary decision 
trees for the case of 4 sensors, using specific assumptions about costs.  Datamining techniques 
can be applied to this data set to study the behavior of optimal and nearly optimal trees. If in a 
binary decision tree, a sensor appears at the same level, no matter on which branch of the tree it 
appears, then the sensors have a well-defined order. For example, the tree in Figure 1 with 3 
sensors indicates that the sensors should be used in the order a2, a0, and a1. It can be argued that 
there is a straightforward cost heuristic, perhaps based on a measure of power/cost for each 
sensor, that can be used to specify the order in which the sensors should be used.  We are 
formulating a method to use the LANL dataset to test the following conjectures: 
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1. For nearly all top scoring trees, the sensors are used in a well-defined order.   

2. Nearly all top scoring trees have the same well-defined order. 

3. Nearly all top scoring trees have the well-defined order that is predicted using the cost 
heuristic. 

4. All the trees which have the well-defined order predicted using the cost heuristic will be 
fairly close to having highest score. 

5.  

 
Figure 1. Binary Decision Tree 

 
Simulation Modeling and Analysis of Cargo Flow 

The binary decision tree is a model of the security operations of using various sensors to obtain 
readings of various types on cargo containers.  These security operations take place in the 
context of a port in which there are many, many other activities that affect and are affected by 
the security operations. This part of the project is focusing on modeling and analysis of security 
operations for cargo flow through marine ports, with special emphasis on containerized cargo 
subject to the Container Security Initiative (CSI) program in the context of the entire port 
operation. We are building a simulation model of cargo security operations in a container port 
including handling, storage and inspection. An initial simulation model has been developed using 
the ANYLOGIC simulation tool that is web-based.   The objective is to be able to understand the 
efficiency of the security operations and their impact on various delays in a typical marine port. 
Vessel arrival processes, vessel unloading operations and the various inspection processes are 
critical components of the modeling.  The impact of the arrival process and the inspection ratio 
on the overall marine port operation is being studied.  The simulation model will provide input 
into parameter ranges on costs and delays that will be used in the sensitivity analysis and will 
provide insight into other parameters that may be required in the optimization model.  It can be 
used to test the effectiveness of a decision algorithm for cargo inspection in the context of the 
overall port operation. 
 
New Optimization Models 
 
One of the key elements in this project is the development of an optimization model for finding 
optimal and near optimal binary decision trees.  Several approaches are being explored at this 
stage of the project. 
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Optimization Models Based on Network Flows 
 
The Los Alamos method of finding the optimal decision tree consisted of an exhaustive search.  
This method does not scale, in fact, it is computationally infeasible for even five sensors.  One 
approach is to model the problem as a minimum cost network flow problem with some 
additional linear constraints. For this type of linear programming problem many computational 
tools are available, and these are typically solvable within fractions of a second of CPU time for 
up to hundreds of nodes. This efficiency will allow us to try several parameter settings, and make 
a detailed computational analysis of the effects of various cost factors, capacities, etc. 
 

Description of model without sensor reading history 
 
In our first version of the optimization model, we assume that containers are directed to the next 
sensor based only on the current sensor reading, regardless of what readings a container may 
have had at prior sensors. This is mathematically the simplest case to consider. Since the 
resulting mathematical model is very robust and highly scalable and the execution of this model 
is computationally very cheap, it may provide us with valuable information, including (i) a lower 
bound on expected inspection costs, (ii) an analysis of queuing/throughput, (iii) information on 
the most cost effective sequencing of sensors, (iv) and a measure of the added value coming 
from decisions based on inspection history. The model is still rich enough to be able to 
incorporate various cost factors and capacities, perhaps even beyond the scope of current 
practices. 
 
We consider every sensor i to be a subgraph, consisting of nodes u_i, v_i and w_{ij} for 
j=1,..,k_i, and directed arcs (u_i, v_i) and (v_i, w_{ij}) for j=1,...,k_i. The arc (u_i, v_i) 
corresponds to the container flow arriving at sensor i, while the outgoing arcs (v_i, w_{ij}) for 
j=1,..., k_i correspond to the outgoing container flow of containers with different ranges of 
sensor readings (here k_i is the number of different levels of sensor readings which we want to 
distinguish at sensor i.)  For each sensor we can introduce a high number of different ranges, due 
to the computationally robust nature of this model. We also introduce an additional node s, 
representing all the containers arriving at the port, and two terminal nodes t_{OK} and 
t_{CHK}, the first representing containers which pass the inspection with the decision that they 
are not suspected of containing illicit material and are moved out of the inspection area, and the 
second representing those that will be opened and inspected manually (unstuffed). We add arcs 
(s, u_i), (w_{ij}, u_{i'}) for all i≠i' and j=1,...,k_i, (w_{ij}, t_{OK}) and (w_{ij}, t_{CHK}) for 
all j=1,...,k_i, and (t_{OK},s) and (t_{CHK},s). 
 
To every arc in this network we associate a variable representing the container flow crossing this 
arc, a cost function and a capacity. For each arc of the network we require that the flow not 
exceed the capacity. Furthermore, for each node we require flow conservation, i.e., that the 
incoming flow is the same as the outgoing flow. For each sensor we set (normalized) threshold 
values 0=t_0 < t_1 < t_2 < … < t_{k_i-1} < t_{k_i}=1, and pre-compute (using historical data, 
or a physical model for the sensor) parameters a_{ij} and b_{ij} representing the lower and 
upper bounds on the fractions of containers which will have a reading between the (normalized) 
thresholds t_{j} and t_{j-1}, for j=1,...,k_i. Then, for each sensor i we require that the number of 
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containers with readings between t_{j} and t_{j-1} must be between a_{ij}of the number of 
containers at sensor i and b_{ij}of the number of containers at sensor i. 
 
We also have the constraint that the number of containers marked okay and the number of 
containers marked to be checked equals the total number of containers arriving at the inspection 
station. Subject to the constraints, we minimize the total cost of inspection 
 
This model allows us to incorporate and individually adjust the queuing cost at sensor i; the 
inspection cost at sensor i for which the reading is in the jth range, j=1,...,k_i (these may or may 
not be the same); the cost of false negatives; the cost of manual inspection (including the cost of 
false positives); the increment in the cost of false negatives resulting from a reading at sensor i 
that falls into the jth range. 
 

Properties of optimal solutions for initial model 
 
There are some very useful properties of a (basic) optimal solution for such a problem, which 
makes it possible to interpret the results as an inspection policy, that is, we can derive an optimal 
sequence for the sensors.  For every sensor and every sensor reading range, there is an “optimal,” 
a “next best,” etc., decision, where to send the containers next, together with some upper 
bounds on how many containers we can send the “optimal,” a “next best,” etc., ways. 
 
Note that if there are S sensors then the number of nodes in this model is linear in S and the sum 
of the number of threshold values at each sensor. Thus, this is a highly scalable model, in which 
we can assume a large number of different sensor ranges to fine tune the system. 
 

Description of model with sensor reading history 
 
In this model we assume that containers carry with them the sensor readings from the prior 
sensor stations, and that this “history” may influence the decisions made at the sensors that 
follow.  We develop the very same model as before, with four important changes. 
 
First, we fix an order of the sensors (e.g. the one derived from the historyless model) and assume 
that all containers will pass the sensors in the same order (with possible skips). 
 
Second, all sensors will be included in several “copies” in this network. More precisely, instead 
of each sensor being labeled by a simple index i, we have each copy of the sensor labeled by a 
tuple carrying the history of prior readings.  The tuples are of the form (i, j_1,..., j_{i-1}), 
representing the copy of sensor i which handles containers for which the first sensor reading 
belongs to the j_1st range, the second sensor reading belongs to the j_2nd range, etc. Third, we 
assume that all arcs (except (t_{OK},s) and (t_{CHK},s)) are from left to right, s is the leftmost 
node, and t_{OK} and t_{CHK} are the rightmost nodes, and we include arcs (w_{(i,j_1,...,j_{i-
1}),j}, u_{(i',j_1',...,j_{i'-1}')}) only for i<i' and j_1=j_1', ..., j_{i-1}=j_{i-1}'. 
 
Fourth, we need to change the capacity constraints, since a sensor's capacity applies to all 
containers, regardless of their history. We shall also need to add individual nonnegativity 
constraints for all arcs, that is, the flow in never negative on any arc. 
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Properties of the model with history 

 
In this model, we can have the cost of inspection as well as the distribution of sensor readings 
dependant on container history.  On the negative side, the number of nodes depends on product 
of the number of threshold values rather than on the sum.  This implies that computationally this 
model does not scale that well. It is therefore important to derive the right order of the sensors, as 
well as the right (small) number of threshold values for sensor readings. The historyless model 
can provide us with information regarding these settings. On the positive side, such models with 
linear costs can numerically be handled up to millions of nodes. Hence, for 5-6 sensors, we can 
still have 5-10 different threshold values, which is perhaps more than enough for practical 
purposes. 
 
Perhaps the most important note is that this computationally much more involved model 
provides additional information, compared to the historyless model only if the distribution of 
sensor readings truly depends on the containers’ history of readings, and/or if the expected 
incremental cost of false negatives truly depends on the inspection sequence. If this is not the 
case, or if we do not have enough information to derive different distributions for the different 
copies of sensors in this model, then there is no added benefit from using this model as opposed 
to the much simpler historyless case. 
 

Optimum Thresholds Model 
 
In this approach we decompose the port-of-entry inspection problem into two sub-problems. The 
first problem deals with the determination of the optimum sequence of inspections or the 
structure of the inspection decision tree in order to achieve the minimum expected inspection 
cost. The second problem deals with the determination of the optimum thresholds of the sensors 
at inspection stations so as to minimize the cost associated with false positives (false alarm, 
which results in additional manual inspection) and false negatives (failure to identify illicit 
materials or weapons). The first problem can be formulated and investigated using approaches 
parallel to those used in the optimal sequential inspection procedure for reliability systems as 
described by Butterworth (1972), Halpern (1974, 1977), Ben-Dov (1981), Cox et al. (1989), Cox 
et al. (1996), and Azaiez et al. (2004). After the sequence of inspections and the structure of the 
decision tree are determined, we determine the optimum thresholds of the sensors at inspection 
stations. We first address the optimum thresholds problem. 
 

Description of the optimum thresholds problem 
 
The inspection of a container at the port-of-entry is performed sequentially at inspection stations 
that form the inspection system, which is described as follows: 

1. There are n  inspection stations in the system; each station is used to identify one attribute of 
the container being inspected. Let ix  be the state of the i th attribute,  be the decision of iiD th 
station after inspection. For simplicity we assume that there are only two states, 1 and 0, for 
presence or absence of the attribute respectively.  
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2. The classification of each container is thought of as a decision function  that assigns to 
each string of attributes a class. We focus on the case where there are only two classes, 0 and 
1, i.e.  (negative) means there is no suspicion that the container has illicit 
material and  (positive) means that additional manual inspection is 
required (unstuffing). The decision as to the classification can be made before all attribute 
values are available as shown in Figure 1, which we repeat here.  

F

1 2( , , , ) 0nF x x x =K

1 2( , , , ) 1nF x x x =K

 
Figure 1. Binary Decision Tree 

3. Let  be the unit cost associated with the inspection at inspection station , and 
let  be the unit cost associated with false positive (the cost of additional inspection), and 

 be the unit cost associated with false negative.  

ic , 1,2, ,i i n= K

FPc

FNc

4. From inspection history, we have information about the probability that the attribute i  is 0 or 
1. Let ip  be the probability that the attribute i  is 0 and  be the probability that the attribute 

 is 1, e.g.  
iq
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5. For each inspection station i , the sensor at the station has possible discrete thresholds 
 and .  The decision of station  is made based on the following 

criterion: 
, 1,2, ,ij iT j k= K 1ik ≥ i

                                 
1, if  
0, if  

i i
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i i

r T
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r T
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= ⎨ ≤⎩
 

Where  is the sensor measurement at station . ir i

For each threshold, we have following probabilities: ( 1)ij ijq P D= =  and . For 
every decision made based on the sensor measurement, there are potential decision errors. Let 

( 0)ij ijp P D= =

1
ijα  be the probability of a false positive from decision 1ijD = , i.e. 1 ( 1 |ij ij iP D xα 0)= = = .    

Similarly, we have the probability of a false negative  0 ( 0 |ij ij iP D xα 1)= = =  at station . i

6. The classification of a container is based on all or partial decisions at inspection stations and 
the Boolean function , i.e. 1 2( , , , )nF x x xK 1 2( , , , )nD F D D D= K , which means that we may 
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not need all the values of ’s to make the final decision as to classification.  Here DiD i is the 
appropriate value of Dij. 

7. The probability of false positive of the final classification of the container status is 
; and the probability of false negative of the final classification is 
.  Where F here indicates the true classification. 

1 ( 1 | 0P D Fα = = = )
)0 ( 0 | 1P D Fα = = =

8. The total cost associated with false positive and false negative is 1 0
F FP FNC c cα α= + . 

9. The objective of the problem is to minimize  and the decision variables are the thresholds 
of the sensors at inspection stations , 

FC

iT 1,2, ,i n= K , where  

                             . { : 1,2, , }, for all 1,2, ,i ij iT T j k i⊂ = =K K n

The calculation of 1α  and 0α  depends on the Boolean function . We assume that 
the inspections and decisions made based on the sensor measurements at different stations are 
independent.  

1 2( , , , )nF x x xK
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Software and Hardware Prototypes 
 
Software prototypes are under development. 
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We are planning a special session at the Institute for Operations Research and the Management 
Sciences (INFORMS) annual meeting, November 13 – 16, 2005.  The titles, authors and 
abstracts of the papers that will be presented at the session are: 
 
Data Mining Complex Sensor Simulations for Optimal Security 
Paul B. Kantor, SCILS, Rutgers University 
Alexander Kogan, Accounting & Information Systems, Rutgers University 
Brenda Latka, DIMACS, Rutgers University 
Rick Mammone, CAIP, Rutgers University 
Phillip Stroud, Los Alamos National Laboratory 
 
Rigorous calculation of screening schemes produces a rich database with over 10,000 instances 
of parameters settings and expected performance levels. These are mined to extract heuristic 
relations that will be useful when the number of sensors makes direct exploration 
computationally intractable. 
 
Decision Support Algorithms for Port-of-Entry Inspection 
Fred S. Roberts, DIMACS, Rutgers University 
Phillip D. Stroud, Los Alamos National Laboratory 
 
We describe approaches to efficiently discover smuggling attempts at U.S. ports of entry. We use 
a sequential decision making model: Containers are routed to different tests depending on 
outcomes of earlier tests. We describe ways to find inspection schemes minimizing cost, 
including "cost" of false positives and negatives. 
 
Modeling Cargo Flow Security Operations in Marine Ports 
Tayfur Altiok, Industrial and Systems Engineering, Rutgers University 
Kevin Saeger, Los Alamos National Laboratory 
Benjamin Melamed, Rutgers Business School, Rutgers University 
 
We model cargo security operations in a container port including handling, storage and 
inspection.  Here, vessel arrival processes, vessel unloading operations and the inspection 
process are critical modeling components.  The impact of the arrival process and the inspection 
ratio on the overall marine port operation will be discussed. 
 
Network Models for Sequential Diagnosis 
Endre Boros, RUTCOR, Rutgers University 
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E. A. Elsayed, Industrial and Systems Engineering,  Rutgers University 
Liliya Fedzhora, RUTCOR, Rutgers University 
Hao Zang, ISE, Rutgers University 
 
We develop a network optimization type linear programming model for sequential container 
inspection.  In this model we minimize the total “cost,” including expenses arising from storage, 
inspection and delays, as well as the estimated cost incurred by false positives and negatives.  
 

Current Students and Recent Graduates Supported by ONR 
 
Oelim Alpinar, Rutgers University,  
Lilya Fedzhora, Rutgers University, RUTCOR 
Abdullah Karaman, Rutgers University 
Francesco Longo, University of Calabria, Italy 
Hao Zhang, Rutgers University, Industrial and Systems Engineering 
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