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Asymptotic Experimental Analysis
for the Held-Karp Traveling Salesman Bound
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Abstract
The Held-Karp (HK) lower bound is the solution to the linear pro-
gramming relaxation of the standard integer programming formu-
lation of the traveling salesman problem (TSP). For numbers of
cities N up to 30,000 or more it can be computed exactly using the
Simplex method and appropriate separation algorithms, and for N
up to a million good approximations can be obtained via iterative
Lagrangean relaxation techniques first suggested by Held and
Karp. In this paper, we consider three applications of our ability
to compute/approximate this bound.

First, we provide empirical evidence in support of using the
HK bound as a stand-in for the optimal tour length when evaluat-
ing the quality of near-optimal tours. We show that for a wide
variety of randomly generated instance types the optimal tour
length averages less than 0.8% over the HK bound, and even for
the real-world instances in TSPLIB the gap is almost always less
than 2%. Moreover, our data indicates that the HK bound can pro-
vide substantial ‘‘variance reduction’’ in experimental studies
involving randomly generated instances. Second, we estimate the
expected HK bound as a function of N for a variety of random
instance types, based on extensive computations. For example, for
random Euclidean instances it is known that the ratio of the Held-
Karp bound to √ N approaches a constant C HK, and we estimate
both that constant and the rate of convergence to it. Finally, we
combine this information with our earlier results on expected HK
gaps to obtain estimates for expected optimal tour lengths. For ran-
dom Euclidean instances, we conclude that C OPT , the limiting ratio
of the optimal tour length to √ N , is .7124 ± .0002, thus invalidat-
ing the commonly cited estimates of .749 and .765 and undermin-
ing many claims of good heuristic performance based on those
estimates. For random distance matrices, the expected optimal
tour length appears to be about 2.042, adding support to a conjec-
ture of Krauth and M ́  ezard.

1. Introduction
In the Traveling Salesman Problem, or ‘‘TSP,’’ we are
given a set {c 1 ,c 2 , . . . ,cN} of cities and for each pair
{c i ,c j} of distinct cities a distance d(c i ,c j ). Our goal is to
find an ordering σ of the cities that minimizes the tour
length, i.e, the quantity

i = 1
Σ

N − 1
d(cσ(i) ,cσ(i + 1 ) ) + d(cσ(N) ,cσ( 1 ) ) .

_ ____________________
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We are concerned here with the symmetric TSP, in
which the distances satisfy d(c i ,c j ) = d(c j ,c i ) for
1 ≤ i , j ≤ N. This problem has a long history and many
applications, e.g., see [23]. It can be formulated as an inte-
ger program based on the interpretation of the optimal tour
as a minimum-length Hamiltonian circuit in the complete
graph with cities as vertices. We use the variable x i j to rep-
resent the edge between cities c i and c j , 1 ≤ i < j ≤ N, tak-
ing x i j = 1 to mean that edge {c i ,c j} is in the tour. The
integer program is then

Minimize
i = 1
Σ
N

j = i + 1
Σ
N

d(c i ,c j ) .x i j

Subject to
i = k or j = k

Σ x i j = 2, 1 ≤ k ≤ N,

S∩{i , j}= 1
Σ x i j ≥ 2, for all S ⊂ { 1 , 2 ,... ,N},

and x i j ∈ { 0 , 1 } , 1 ≤ i < j ≤ N

If we relax this integer program by replacing the last con-
straint by 0 ≤ x i j ≤ 1, we obtain a linear program (LP)
whose solution will be a lower bound on the optimal tour
length, called the Held-Karp lower bound (HK bound)
based on its early investigation by Held and Karp in [10,11].

Note that this LP can be solved in polynomial time,
despite the fact that it contains an exponential number of
‘‘subtour constraints’’ (those involving the subset S). This
is because there exists a polynomial-time ‘‘separation ora-
cle’’ for the subtour constraints (based on calls to a max-
flow algorithm). Thus results of [8,20] apply, and we can
solve the LP in polynomial time via the ellipsoid method.
In practice such approaches tend to be far too slow, but
analogous techniques based on the Simplex method (which
forfeit the polynomial bound on worst-case running time)
are feasible for instances of substantial size. The current
best programs for solving the TSP optimally use the Sim-
plex method together with separation routines for a variety
of constraint classes, including the subtour constraints, and
so it is in principle possible to compute the HK bound
exactly simply by leaving certain routines out of such a pro-
gram [16,28]. Basing such an approach on the optimization
program of Applegate, Bixby, Chv ́  atal, and Cook [1], we
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have computed exact HK bounds for instances with as many
as 30,000 cities [16].

For instances where computation of the exact bound is
not feasible or simply takes too long, Held and Karp pro-
posed an iterative method for approximately computing the
bound using Lagrangean relaxation. Certain versions of this
method can be proved to converge to the true value if run
for enough iterations, but this appears to require exponential
time. Held and Karp (and subsequent researchers [9,12,
16,28,32,35,36]) thus proposed various schemes that used
only a polynomial number of iterations to obtain what was
hoped to be a good lower bound on the HK bound. These
approximations typically can involve thousands of mini-
mum spanning tree (MST) computations, but fortunately all
but the last of these can be performed in an appropriately
constructed sparse subgraph and consequently need only
take time O(NlogN) [14,16,19,28,36]. For geometric
instances the final MST computation for the full graph can
be computed using k-d trees [3] in which the dual variables
of the iterated approach are embedded in an extra dimen-
sion, and so it too can be performed in subquadratic time
[14,16]. As a result, the iterative approach is feasible for
geometric instances with N as large as 106 . Several ver-
sions of this approach typically get quite close to the true
bound, at least for randomly generated instances [16].

In this paper, we consider three applications of our abil-
ity to compute/approximate the HK bound. In Section 2 we
study the merits of using the HK bound as a stand-in for the
optimal tour length when evaluating the quality of near-
optimal tours. Our evaluation is based on extensive experi-
mental comparisons between the two values for a wide vari-
ety of instance types. The test beds include (1) points uni-
form in the 2-dimensional unit square under Euclidean, rec-
tilinear, and supremum norms and under both standard (pla-
nar) and toroidal topologies, (2) points uniform in the 3- and
4-dimensional unit cubes under the Euclidean metric and
both standard and toroidal topologies, (3) random distance
matrices, and (4) Release 1.2 of TSPLIB, Gerd Reinelt’s
database of ‘‘real-world’’ TSP instances, available via
anonymous FTP from softlib.cs.rice.edu.

In Section 3, we empirically estimate the expected val-
ues of the HK bound as a function of N for the various ran-
dom instance classes mentioned above, based on extensive
computations using a near-exact approximation algorithm.
For each geometric instance class, the ratio of the expected
HK bound to N (d − 1 )/ d , where d is the dimension,
approaches a constant [7], and we obtain good estimates
both for this constant and for the rate of convergence to it.
For random distance matrices, the expected HK bound itself
approaches a constant, which we again estimate.

Finally, in Section 4 we put the results of Sections 2 and
3 together to estimate the expected optima for the various
instance classes, in particular deriving tight bounds on the
corresponding asymptotic constants. This requires extrapo-
lations about the values of the expected HK gaps, since we

typically were unable to compute them exactly for
N > 1 , 000. Our data is fortunately such that plausible
extrapolations can be made. Moreover, for the geometric
classes the same constants hold whether one uses the planar
or the toroidal topology, and we can exploit the fact that the
latter provides a much faster rate of convergence.

Space limitations prevent us from including a detailed
discussion of the statistical techniques we used in making
our asymptotic estimates and deriving confidence intervals
for them. The summary data on which the main estimates
are based is included, however, and so readers are free to
evaluate our claims on their own. Readers interested in more
details about the algorithms used in our HK-bound compu-
tations are referred to the forthcoming paper [16], which
will cover implementations and running times for the algo-
rithms used here and a variety of alternative approaches.
Finally, we should note that this paper has had a long gesta-
tion period, with less-precise versions of our main conclu-
sions (based on less-complete data and covering fewer
instance classes) having been presented orally as early as the
1990 ORSA/TIMS conference [14].

2. The Held-Karp Gap
A key application of the HK bound is to serve as a stand-in
for the optimal tour length when evaluating the quality of
near-optimal tours, an approach taken for example in
[15,17,18]. For large instances, some such substitute is nec-
essary. Although many TSP applications exist with as
many as 30,000 or 100,000 cities, to date the largest non-
trivial TSP instance solved to optimality involves only
7,397 cities, and the computation took several CPU-years
using state-of-the-art computers [1]. Moreover, although
many optimization codes are now capable of handling
1000-city instances with a high probability of success, run-
ning times for such instances are unpredictable and can vary
from hours to weeks.

To cope with this difficulty, researchers have typically
taken one of three approaches to the empirical evaluation of
heuristics. First, one might simply restrict one’s experi-
ments to instances for which the optimal solution is already
known, the most famous of which are all included in
TSPLIB. This limits the studies to a small collection of
instances, none of more than moderate size, but it has served
as the basis for several interesting studies, such as [28].
Second, one might concentrate on randomly generated
instances from some class for which estimates are known on
the expected optimal solution value. The effectiveness of
this approach depends on the quality of the estimates used,
and unfortunately the commonly used estimates for the most
popular instance class are highly inaccurate, as we shall see
in the next section. Furthermore, even with accurate esti-
mates, this approach may require very large sample sizes in
order to provide high-confidence results when N is small.
The third approach is to compare the solution found for a
given instance to a bound on the optimal tour length for that
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instance. The effectiveness of this approach depends both
on the quality of the bound and on the repeatability of its
computation. The HK bound has a particular advantage
with respect to the latter consideration, since it is a well-
defined number for every instance, and as mentioned above
can typically be computed exactly or with high accuracy in
reasonable amounts of time [16]. Some papers have used
‘‘the best known lower bound’’ as their reference point.
This can be a more accurate estimate, but it is not a well-
defined number and is typically a moving target. Moreover,
the HK bound by itself provides a reasonably close and con-
sistent estimate of the optimal tour length. Worst-case
results tell us that, assuming the triangle inequality, the HK
bound is at least 2/3 of the optimal tour length [31,37]. In
practice, it appears to be much better, even in cases where
the triangle inequality is violated. Let us consider the
instance classes mentioned in the introduction, one by one.

Random Euclidean Instances. This class, in which
cities correspond to points uniformly distributed in the unit
square under the Euclidean metric, is by far the most-
studied instance class for the TSP. Table 1 summarizes our
measurements of the average gaps for such instances, which
we express as the percent by which the optimal length
exceeds the HK bound. Instance sizes range from 100 to
100,000 cities, going up by factors of √ 10 , although the
entries for N > 1 , 000 should be viewed as at best anecdotal.
(These simply cover the instances of these sizes in the ran-
dom Euclidean testbed of [17,18], and the entries in the Min
and Max columns are simply the minimum and maximum
gaps for the relevant instances.)

For N ≤ 1 , 000, the results are based on large enough
samples that variances and confidence intervals for the mean
gap could be estimated. Note that, as might be expected
from the probabilistic results of [30,33] about optimal tour
length, the standard deviations decline substantially as N
increases. Thus we need fewer samples for larger values of
N, partially offsetting the increase in the time needed to gen-
erate a single data point. The entries in the table are given
with sufficient precision that rounding effects won’t obscure
the size of the confidence intervals. Based on the latter,
however, one should only view the first two of the four
included digits as having any statistical significance. For all
the instances in these samples, precise values of the HK
bound were used, and for all of the instances with N ≤ 316
the precise optimal value was used, as computed by the
Applegate et al. [1] optimization code. For the 100
instances with N = 1 , 000, we approximated the optimal
tour length by the best tour found in twenty 10,000-iteration
runs of the Iterated Lin-Kernighan algorithm (ILK), imple-
mented as described in [17,18]. To estimate the quality of
these approximations, we ran the Applegate et al. optimiza-
tion code on the first 36 of the 100 instances. The code
identified optimal solutions for 33 of these within the time
bounds we imposed and obtained reasonably tight lower
bounds in the 3 remaining cases. The best ILK-produced

_ __________________________________________________________
100 . (Opt - HK)/HK_ __________________________________________________________

No. of No. of Std. 95% Conf. Interval

Cities Samples Mean Dev. Lower Upper Length_ __________________________________________________________
100 2098 .7512 .4756 .7308 .7715 .0407
316 600 .7822 .2395 .7630 .8013 .0383

1,000 100 .7611 .1354 .7345 .7876 .0531_ __________________________________________________________
Min Max_ __________________________________________________________

3,162 5 .745 — .672 .800 —
10,000 4 .740 — .692 .794 —
31,623 2 .731 — .705 .757 —
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TABLE 1. Excess of optimal over the HK bound for
2-dimensional random Euclidean instances.

tours were optimal for 32 of the 33 solved instances. Over-
all, they averaged .0025% above the best lower bounds pro-
duced by the optimization code. Thus any overestimate of
the average HK gap resulting from our use of ILK should
only affect the (not statistically significant) 3rd and 4th dig-
its of the table entries for N = 1 , 000.

For the instances with N > 1 , 000, we again used multi-
ple runs of ILK to obtain upper bounds on the optimal
length, but we can no longer calibrate how good those
bounds are, and we suspect that the figures we present may
well over-estimate the true gaps, especially for the largest
values of N in the table. Entries in Table 1 only go up to
N = 100 , 000, as these are the largest instances for which
long runs of ILK were feasible. A final technical note:
because the codes we use assume that distances have inte-
gral values, our ‘‘unit square’’ was actually a 106 by 106

grid and distances were taken to be the ceiling of the stan-
dard Euclidean distance. (Rounding to the nearest integer
can lead to violations of the triangle inequality.) Limited
experiments with higher precision and other rounding
schemes suggest that our choices in these matters had little
effect on the results.

Note that the average gaps in Table 1 do not appear to
vary greatly, lying between .73 and .79% for all values of N
in the table. The values for N ≤ 1 , 000 are consistent with a
fixed expected gap size of between .76 and .77%, although
they suggest that the expected gap increases slightly from
N = 100 to N = 316 and thereafter declines, a decline that
may continue as N increases beyond 1,000, given the anec-
dotal evidence for N > 1 , 000. Another important point
about the gaps is that they are much less variable than the
corresponding tour lengths, both as a function of N and for
fixed N, as illustrated in Figure 1. This figure combines two
plots covering the instances in the random Euclidean testbed
of [17,18]. The first plot gives the ratio to √ N of the opti-
mal (or at least shortest known) tour lengths (the +’s in the
figure). We normalize by √ N since Beardwood, Halton,
and Hammersley [2] have shown that for random Euclidean
instances, the expected ratio of the optimal tour length to
√ N approaches a limiting constant C OPT as N → ∞. The
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FIGURE 1. Two methods for normalizing tour length, with HK results shifted downward to fit the same frame.

second plot gives the same tour lengths when divided by the
corresponding HK bounds (the −’s), shifted by a constant
amount so that they fit in the same frame. As is apparent,
the rate of convergence to C OPT is slow, and so the average
ratio of optimal tour length to √ N changes substantially as
N increases, whereas the ratio to the HK bound is much
more stable. The latter ratios also have a much smaller
range for each N, even though their denominators are 25-
30% smaller (as we shall see in the next section). The obvi-
ous implication is that good performance estimates can be
obtained with far fewer data points (and values of N) if one
compares to the HK bounds for the instances in question
rather than to the expected optimal.

Random Euclidean Instances, Toroidal Topology.
Table 2 again presents results for instances consisting of
points uniformly distributed in the unit square under the
Euclidean metric, but now we compute distances under the
toroidal rather than the planar topology, i.e., under the
assumption that the opposite sides of the unit square are
identified. Once again the entries for N ≤ 316 are based on
exact computations of the optimal tour length, whereas

_ ________________________________________________________
100 . (Opt - HK)/HK_ ________________________________________________________

No. of No. of Std. 95% Conf. Interval

Cities Samples Mean Dev. Lower Upper Length_ ________________________________________________________
100 13957 .5542 .3301 .5488 .5597 .0109
316 1154 .6048 .1839 .5942 .6154 .0212

1,000 824 .6124 .1014 .6010 .6238 .0228_ ________________________________________________________ 






















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



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
































TABLE 2. Percentage gap for toroidal 2-dimensional
random Euclidean instances.

those for N = 1 , 000 are based on the best of twenty
10,000-iteration runs of ILK. For these instances, ILK is
not as effective as it was under the planar topology, where
the possibilities for tours were constrained by the presence
of a boundary. We ran the Applegate et al. optimization
code on 49 of the 824 instances in the sample. The code
identified optimal solutions for all 49, but ILK only found
the optimal on 39% of these, compared to 89% for the pla-
nar case. More importantly, ILK’s average overestimate
was .0128%, some 5 times larger than it was in the planar
case. This error is too large to be ignored, so we have
adjusted the mean in Table 2 downward to reflect it. The
entry for the standard deviation is simply that for the ILK
results, but the confidence interval is based on the assump-
tion that the errors in the ILK/HK and ILK/OPT ratios com-
pound rather than cancel. (For these two ratios, the 95%
confidence intervals on the percentage errors are
[.6184,.6323] and [.0084,.0173], respectively.)

Note that the average HK gaps are significantly smaller
than those for the planar topology, although the difference
appears to be shrinking as N increases. Asymptotically, the
difference should go to 0. If we let C HK be the limiting
value of the ratio of the expected HK bound to √ N , proved
to exist by Goemans and Bertsimas in [7], then the limiting
percentage gap is 100*(C OPT / C HK − 1 ) under both the
planar and toroidal topologies, since the values of C OPT and
C HK are the themselves the same under both topologies
[6,13]. In Section 3 we shall have more to say about where
(between .61% and .78%) this limiting gap might lie.

Two-Dimensional Instances under other Metrics.
Table 3 presents results for points uniform in the unit square
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_ ________________________________________________________
100 . (Opt - HK)/HK_ ________________________________________________________

No. of No. of Std. 95% Conf. Interval

Cities 



Samples 



Mean 



Dev. 



Lower Upper Length_ ________________________________________________________
Supnorm Metric 2d Unit Square_ ________________________________________________________

100 600 .7355 .4667 .6981 .7728 .0847
316 




200 



.7408 



.2341 



.7084 .7733 



.0649_ ________________________________________________________
Supnorm Metric 2d Unit Torus_ ________________________________________________________

100 600 .5158 .3300 .4894 .5422 .0528
316 




200 



.5649 



.1757 



.5406 .5893 



.0487_ ________________________________________________________
Rectilinear Metric 2d Unit Square_ ________________________________________________________

100 600 .7442 .4537 .7079 .7805 .0726
316 




200 



.7460 



.2260 



.7146 .7773 



.0627_ ________________________________________________________
Rectilinear Metric 2d Unit Torus_ ________________________________________________________

100 600 .4962 .3037 .4719 .5205 .0486
316 200 .5524 .1635 .5297 .5750 .0453_ ________________________________________________________ 











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
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

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



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
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


TABLE 3. Average gaps for other 2-d metrics.

and torus under the supnorm (L ∞) and the rectilinear norm
(L 1), restricted to N ≤ 316 because of the expense of com-
puting results for N ≥ 1 , 000. Although the tour lengths and
HK bounds under these metrics are substantially different
from those in the Euclidean case, note that the percentage
gaps are reasonably close to those in the corresponding
Euclidean cases (both planar and toroidal).

Higher-Dimensional Euclidean Instances. A different
story arises when we go to higher dimensions. Table 4 pre-
sents results for the Euclidean metric for points uniform in
the 3- and 4-dimensional unit cubes and tori. (In k dimen-
sions, the toroidal topology identifies all k pairs of opposing
faces of the cube.) Here the average gaps are much smaller
than in the 2-dimensional case, with the size of the gap
declining further as the number of dimensions increases.
Once again, the toroidal topologies yield smaller gaps,
although now these are not so obviously increasing with N.
The gaps for the standard topologies seem to be decreasing
with N, however, suggesting that the asymptotic expected
gaps are closer to the toroidal values. (Note that because we
were less interested in the precise values of the expected
gaps reported in Tables 3 and 4, we used fewer sample
points than in the Euclidean case, and we hence have wider
confidence intervals.)

Random Distance Matrices. Table 5 gives results for
our final main class of randomly generated instances, ones
in which each inter-city distance is chosen uniformly from
the interval (0,1], independently of all other distances. Note
that instances generated this way typically do not satisfy the
triangle inequality. This class is the second most popular
for testing TSP heuristics. The expected optimal is
bounded, independent of N, so no normalization based on N
is needed. Moreover, this sort of instance tends to be easier
for optimization codes to handle, and so we can include

_ ________________________________________________________
100 . (Opt - HK)/HK_ ________________________________________________________

No. of No. of Std. 95% Conf. Interval

Cities 



Samples 



Mean 



Dev. 



Lower Upper Length_ ________________________________________________________
Random Euclidean Instances 3d Unit Cube_ ________________________________________________________

100 632 .2942 .1943 .2790 .3093 .0303
316 




200 



.2760 



.0976 



.2625 .2895 



.0270_ ________________________________________________________
Random Euclidean Instances 3d Unit Torus_ ________________________________________________________

100 600 .1833 .1249 .1733 .1933 .0200
316 




200 



.1844 



.0656 



.1754 .1935 



.0181_ ________________________________________________________
Random Euclidean Instances 4d Unit Cube_ ________________________________________________________

100 600 .1773 .1235 .1674 .1872 .0198
316 




200 



.1421 



.0537 



.1347 .1496 



.0149_ ________________________________________________________
Random Euclidean Instances 4d Unit Torus_ ________________________________________________________

100 600 .0977 .0766 .0915 .1038 .0123
316 200 .0873 .0358 .0823 .0922 .0099_ ________________________________________________________ 














































































TABLE 4. Average gaps for other 3- and 4-d instances.

exact sample points for instances with N as large as 3,162.
As with our geometric instances, we were forced by our
codes to use integer edge lengths, and so the actual edge
lengths were integers chosen uniformly from the range
{1 , ... , 106}, rather than samples from (0,1]. This limited
precision does not appear to have had a substantial impact
on our major conclusion, however, which is that the average
gap declines rapidly with increasing N. It may even be
approaching 0 as a limit, although to provide evidence for
that we would need higher precision data, as well as results
for larger N. This is contrast to the behavior for geometric
instances, where the average gaps change slowly with N and
appear to have asymptotic limits significantly larger than 0.

Instances from TSPLIB. The behavior of the HK gap
is a bit less consistent for real-world instances, but not
overly so. Figure 2 displays the HK gaps for all TSPLIB
instances for which the optimum tour length is currently
known. With the exception of two instances, all the gaps
are less than 1.76%, with the average being roughly .8%.
The major outlier is the 225-city instance ts225, in which
cities are points on a regular 15 by 15 grid. This instance
was specifically designed to be hard for optimization codes

_ ________________________________________________________
100 . (Opt - HK)/HK_ ________________________________________________________

No. of No. of Std. 95% Conf. Interval

Cities 



Samples 



Mean 



Dev. 



Lower Upper Length_ ________________________________________________________
Random Distance Matrices_ ________________________________________________________

100 1261 .1237 .1408 .1160 .1315 .0165
316 200 .0468 .0490 .0400 .0536 .0136

1,000 30 .0083 .0096 .0049 .0118 .0069
3,162 15 .0036 .0036 .0017 .0054 .0037_ ________________________________________________________ 

































































TABLE 5. Average gaps for random distance matrices.
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FIGURE 2. Percent excess of optimal tour length over Held-Karp bound for TSPLIB instances.

and we now see that it is anomalous in other ways as well.
The lesser outlier lies among the instances with fewer than
100 cities, where we might expect special behavior; note
that the gaps for the seven smallest instances are all 0. For
the ten TSPLIB instances whose optima are not yet known,
ranging in size from 1,577 to 85,900 cities, the maximum
gap is at most 1.66% based on the best current upper bounds
available to us for these instances. The journal version of
this paper will list the HK bounds for all the instances in
TSPLIB, with only the value for pla85900 being an
approximation. (In studying instances from TSPLIB, we
are partially duplicating work by Reinelt, who in [28]
reported the exact HK bound for a selection of 24 TSPLIB
instances from 198 to 5,934 cities. His bounds disagree
with ours on two instances, fl1577 and d1655, where our
bounds are 21886 and 61550, respectively. The first differ-
ence is due to a typographical error in his Table 10.16 [28].
In the second case his bound is .009% lower than ours, and
the problem is likely due to rounding differences, given that
we used double precision for all of our computations and
some of his involved single precision.)

We have also measured the gaps for many of the 3-
dimensional X-ray crystallography instances of Bland and
Shallcross [4], which typically seem to be less than 0.5%.
Another class of structured instances that we have studied in
a limited way consists of randomly generated ‘‘clustered’’
instances, where normally distributed clusters of 50 cities

are scattered uniformly over the unit square. The instance
called dsj1000 in TSPLIB is an example. For a collec-
tion of 5 samples each with N = 100, 1,000, and 10,000, the
gaps ranged from .16 to .90%, with the biggest gaps tending
to occur for the largest instances. (Our reported gaps for
these may be overestimates, however, given that they are
based on the best tours we were able to find, not necessarily
the optimal tours.) We should point out that for these clus-
tered instances and for the instances in TSPLIB, the itera-
tive techniques for approximating the Held-Karp bound are
not nearly as good or consistent as they are for randomly
generated instances. For example, although they often pro-
vide estimates that are within .01% of the true bounds, in
the case of instance fl3795 they missed the true bound by
over 3% (thus overestimating the gap by a factor of four)
[16]. For such instances our ability to compute the exact
bounds may be more critical, and when these are not avail-
able, we recommend for the sake of future comparisons that
authors report the precise values of whatever reference
bounds they use.

3. Estimating the Expected HK Bound
As mentioned earlier, not all past studies of TSP heuristics
have followed our advice and presented their results in
terms of average excess over the HK bound. More typi-
cally, papers simply report the average tour lengths for ran-
dom Euclidean instances of specified sizes and compare
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_ ____________________________________________________________
Random Euclidean Instances (Planar)_ ____________________________________________________________

No. of No. of Std. 95% Conf. Interval

Cities 



Samples 



Mean 



Dev. 



Lower Upper Length_ ____________________________________________________________
(Approx.HK Bound)/√ N_ ____________________________________________________________

100 102058 .77027 .02240 .77013 .77040 .00027
316 51203 .74088 .01172 .74077 .74098 .00021

1,000 23752 .72578 .00631 .72570 .72586 .00016
3,162 15936 .71769 .00349 .71764 .71775 .00011

10,000 4000 .71334 .00195 .71328 .71340 .00012
31,622 1362 .71101 .00109 .71095 .71106 .00011

100,000 236 .70970 .00060 .70962 .70977 .00015
316,228 











39 










.70892 










.00035 










.70881 .70903 










.00022
_ ____________________________________________________________

(HK Bound − Approx.HK Bound)/√ N_ ____________________________________________________________
100 2098 .00010 .00031 .00009 .00011 .00002
316 600 .00015 .00022 .00013 .00017 .00004

1,000 100 .00005 .00002 .00004 .00005 .00001
3,162 54 .00004 .00002 .00003 .00004 .00001

10,000 14 .00004 .00001 .00003 .00004 .00001_ ____________________________________________________________ 

































































































TABLE 6. Normalized HK-bounds and errors, planar case.

them to estimates of the expected optima. In order to evalu-
ate such results in the context of studies that do follow our
advice, it is thus necessary to have good estimates for the
expected HK bound as a function of N.

Let us first consider random Euclidean instances. Let
C HK,p (N) denote the expected value of the HK bound
divided by √ N for N-city random Euclidean instances under
the planar topology. Table 6 summarizes the results of HK
bound computations for a large collections of random
Euclidean instances with N increasing from 100 to 316,228
by factors of roughly √ 10 . These were computed using a
variant of the Held-Karp iterative approach suggested by
Helbig-Hansen and Krarup [9]. The implementation incor-
porated the speed-up tricks mentioned in Section 1, to be
described more fully in [16]. For N ≤ 10 , 000, Table 6 also
presents values for the expected error of this approximation
technique, based on comparisons to the true bound. The
larger average error values for the smaller values of N are
for the most part due to occasional large outliers. Note that
the average normalized error seems to have settled down to
about .00004 once N ≥ 1 , 000, a figure we can assume will
continue to hold even for N > 10 , 000. On the other hand,
the convergence of C HK,p (N) seems still unfinished when
N = 316 , 228. For the one million-city instance in the
testbed of [17,18], the normalized HK bound is .7086, and
even this does not appear to be the ultimate value.

One way to estimate the ultimate value is by a weighted
least squares curve fit to the adjusted means of Table 6 (i.e.,
the sums for each N of the average approximate bound and
the expected approximation shortfall). Using standard tech-
niques, we obtain the function

C HK,p (N) ∼ .70805 +
N .5

.52229_ ______ +
N

1. 31572_ _______ −
N 1. 5

3. 07474_ _______

The form of this function corresponds to the product of an
(a + b / N .5) factor times a power series in 1/ N, with the
lower order terms dropped. The b /√ N term in the function
reflects the impact of the boundary of the unit square, which
causes some Θ(√ N ) cities to have fewer near neighbors
than is typical. The need for a power series factor is sug-
gested by the analysis of Percus and Martin in [26]. Cer-
tainly all these terms are needed if we are to obtain a good
fit. This curve as given never strays more than .00004 away
from the adjusted means of Table 6 and lies well within the
95% confidence intervals for all values of N. If the d / N 1. 5

term is omitted, a consistent pattern of errors is introduced,
and if both it and the c / N term are omitted, the best fits we
could find wandered far outside the confidence interval for
at least one data point.

On the assumption that we have chosen the correct func-
tional form, and given the standard deviations and numbers
of samples reported in Table 6, the above least squares fit
yields a 95% confidence interval for C HK of .70805±.00007.
Although one might be skeptical about estimating C HK by
this approach, the formula does provide a convenient way of
summarizing our data and enables us to derive estimates for
C HK,p (N) for values of N ≥ 100 not in the table. (The for-
mula is not accurate for N much less than 100; at the very
least a c / N 2 term would need to be included in the function
if it were to cover this range.)

An easier way to estimate C HK is by studying random
Euclidean instances under the toroidal topology, as defined
in the previous section. As noted there, the value of C HK is
not affected by this change in topology. Moreover, we
eliminate the ‘‘boundary effect’’ of the planar topology,
which appears to be responsible for the slow convergence to
C HK under that topology. This is confirmed in Table 7,
where we summarize our toroidal topology data for random
Euclidean instances with N ranging from 100 to 31,662.
Note that C HK,t (N) appears to have converged to at least its

_ ___________________________________________________________
Random Euclidean Instances (Toroidal)_ ___________________________________________________________

No. of No. of Std. 95% Conf. Interval

Cities 



Samples 



Mean 



Dev. 



Lower Upper Length_ ___________________________________________________________
(Approx.HK Bound)/√ N_ ___________________________________________________________

100 98246 .70894 .01910 .70882 .70906 .00024
316 43736 .70818 .01083 .70808 .70828 .00020

1,000 25000 .70802 .00603 .70794 .70809 .00015
3,162 14317 .70790 .00340 .70785 .70796 .00011

10,000 6039 .70794 .00191 .70789 .70799 .00010
31,622 









783 








.70791 








.00108 








.70784 .70799 








.00015
_ ___________________________________________________________

(HK Bound − Approx.HK Bound)/√ N_ ___________________________________________________________
100 2208 .00003 .00008 .00003 .00003 .00001
316 200 .00004 .00006 .00003 .00004 .00002

1,000 100 .00004 .00003 .00004 .00005 .00001
3,162 29 .00004 .00002 .00003 .00004 .00001_ ___________________________________________________________ 























































































TABLE 7. Normalized HK-bounds and errors, toroidal case.
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first four digits by the time N = 3 , 162. In fitting the
adjusted means for this data, the c /√ N term can indeed be
safely omitted. One can stay within .00004 of all the
adjusted means from Table 7 by simply using the function

C HK,t (N) = .70794 +
N

.10081_ ______

The resulting 95% confidence interval for C HK is
.70794±.00003, a confidence interval that is disjoint from
our previous one, although the means differ only by .0001.
Given the relative convergence rates, the toroidal estimate
seems the more credible, and so we believe it safe to conjec-
ture that C HK ∼ .70795±.00005, with the shift in the mean
and the expansion of the confidence interval representing a
mild compromise with the planar data. (Independently of
these computations, Valenzuela and Jones [36] estimated a
significantly lower value, but their data was only for the pla-
nar topology and N ≤ 20,000, and they seem to have had
substantially fewer data points per N.)

Because of space limitations, we shall have to omit the
analogous data for the rectilinear and supnorm metrics, and
for 3- and 4-dimensional Euclidean instances, although our
estimates for the associated asymptotic constants are listed
in the next section (Table 8), as are our results for random
distance matrices (Table 9). Before concluding this section,
however, two issues affecting the validity of the data in
Tables 6 and 7 should be addressed. First, we note that the
averages appear not to depend significantly on the random
number generator used. Most of our data was generated
using a variant on the ‘‘shift register’’ random number gen-
erator described in [21]. However, for the N = 100 , 000
case in the planar topology and the N = 1 , 000 case in the
toroidal topology we also generated data using the widely
distributed linear congruential generator drand48. In the
first case, the means of 100+ samples for each generator
were .70964 and .70975, respectively, and each mean lay
within the 95% confidence interval of the other. The data
for N = 100 , 000 in Table 6 is based on the combination of
these two samples. In the the second case, the means for
5000 samples were .70801 and .70814, respectively, and
again each lay within the 95% confidence interval for the
other. As a further check, we also generated 5000 samples
using the sum (mod 1) of the two generators, which one
would expect to be at least as random as the better of the
two generators, and obtained another reasonably compatible
value (.70794), whose confidence interval had a substantial
intersection with the other two.

For the N = 1 , 000 planar case, we also evaluated a sec-
ond factor that might have affected our averages: our use of
bounded precision coordinates and rounding. Recall from
Section 2 that because our codes require integer edge
lengths we typically choose city coordinates as integers in
the range from 1 to 106 and round distances to integral val-
ues. Dividing by 106 then yields an approximation to the
standard unit square model. For the computations in this

section, we rounded to the nearest integer, rather than taking
the ceiling, as in the previous section. The difference
between the two rounding schemes does not seem to affect
the gap between the HK bound and the optimal tour length
or the quality of our approximate HK computations. It
could, however, affect our estimates of the expected HK
bounds. Taking the ceiling would introduce a consistent
upward bias, whereas rounding to the nearest integer should
allow us to simulate higher precision, given the randomness
of the coordinates. For example, when N = 100 , 000 the
average length of an edge in a good tour is slightly over
2,200. Thus the potential error due to rounding the length
of a typical edge is at most .023%, and one would expect the
cumulative error to be much less. We tested this hypothesis
by performing 5000 trials with N = 1 , 000 in which the
coordinates were chosen between 1 and 105 . This led to an
average edge length of 2,200, compared to the normal aver-
age of 22,000. The mean result was .70802, once again con-
sistent with all the other obtained values, and coincidentally
precisely the same value as obtained when we merged all
our samples. Thus it appears that the limited precision of
our coordinates does not introduce a significant bias in our
results. We expect this to remain true even for the case of
N = 316 , 228 in Table 6, which corresponds to an average
edge length of about 1200.

4. Estimating the Expected Optimum
The most straightforward way to estimate the expected opti-
mal tour length for a given instance class and number of
cities N would be to randomly sample instances of this type
and compute the optimal tour length for each. Unfortu-
nately, even for N = 100 current optimization codes do not
seem to be fast enough to generate the 100,000 or so data
points that would be necessary if we wished to get tight
confidence bounds on our estimates, and for larger N, the
situation is much worse. As we saw in Section 2, however,
we can generate enough data points to get a tight estimate
on the expected gap between the HK bound and the optimal
tour length, because the variance for the latter quantity is so
much lower. This suggests the ‘‘variance reduction’’ trick
of combining such an estimate with one for the expected
HK bound (much easier to obtain because HK bounds can
be computed more quickly) to derive an estimate of the
expected optimal. In Sections 2 and 3 we provided the data
for doing just this in the case of random Euclidean instances
under the planar and toroidal metrics for N ∈
{100,316,1000}. In this section we will undertake the
apparently more difficult task of estimating the asymptotic
constants for the optimal tour lengths.

Let us begin with the two-dimensional random
Euclidean case. Beardwood et al. [2] provided the first esti-
mate of the limiting constant C OPT . Using tours that they
constructed by hand for a 202- and a 400-city instance, they
estimated C OPT to be roughly .53 . √ 2 ∼ .75 (rounded with
unwarranted precision to .749 in many subsequent cita-
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tions). In 1977, based on computer experiments with more
sophisticated heuristics, Stein [34] estimated the constant to
be 0.765, a result that has been widely cited. In recent
years, various researchers besides ourselves have realized
that both these figures are overestimates. In 1989, Ong and
Huang [25] observed that a version of 3-Opt yielded nor-
malized tour lengths converging to 0.74, which therefore
would be an upper bound on C OPT . In 1994, Fiechter [5]
reported tours from a ‘‘parallel tabu search’’ algorithm
whose normalized lengths approached .73, and Lee and
Choi [24] estimated that their ‘‘multicanonical annealing’’
algorithm yields normalized tour lengths converging to
0.721. Mathematical analysis is not yet precise enough to
provide much insight, although Krauth and M ́  ezard [22],
using a somewhat suspect statistical mechanical argument,
estimated the constant to be .7257. It turns out that even the
lowest of these estimates is still over 1% too high.

There are several approaches one might take to estimate
C OPT from our data. The first would be to extrapolate a
value for the asymptotic expected HK gap from the esti-
mates our data provides for N ≤ 1 , 000. Unfortunately,
although we know that the gaps under the planar and
toroidal metrics must approach the same limit, it is hard to
see what that limit might be from the data in Tables 1 and 2.
The planar estimates are all above .75%, perhaps trending
downward, while the toroidal estimates are under .62%,
definitely trending upwards. How can we tell where these
trends might meet? To answer this question let us look in
more detail at what is happening with the gap under the
toroidal topology. The observed increase has two possible
sources: either the expected HK bound is decreasing or the
expected optimal is increasing. The data on which Table 2
is based, together with additional experiments covering
N = 32, imply that the latter is not occurring. Thus the
increase in expected gap must be due to a decrease in the
expected HK bound. But the data in Table 7 plus our esti-
mate of C HK implies that C HK,t ( 1 , 000 )/ C HK < 1.00017.
Thus the asymptotic expected gap should be at most .017
percentage points larger than the value for N = 1 , 000, for
an ultimate value of about .63%. Using this value and our
earlier estimate of C HK , we conclude that C OPT ∼ .7124.
Alternatively, we can use our data to directly estimate
C OPT,t (N) for N ∈ {100,316,1000}, and attempt to curve fit
the data. If one does this, one discovers that C OPT,t (N)
appears essentially to have converged by N = 1 , 000, with
the limiting value again being about .7124. Taking a con-
servative approach that simply adds up the lengths of all the
confidence intervals involved, we arrive at a final estimate
that C OPT ∼ .7124±.0002.

This should be compared to the independent estimate of
.7120 ± .0004 by Percus and Martin in the forthcoming
paper [26]. Percus and Martin base their estimate on opti-
mal tour length computations under the toroidal topology
for N ∈ {12 , 13 , 14 , 15 , 16 , 17 , 30 , 100}. One might worry
that such an extrapolation could be corrupted by factors that

_ __________________________________________________________
Instance Class C HK C OPT_ __________________________________________________________

2d Unit Square, Euclidean .70795 ± .00005 .7124 ± .0002
2d Unit Square, Recilinear .8891 ± .0003 .8943 ± .0007
2d Unit Square, Supnorm .6286 ± .0002 .6323 ± .0005
3d Unit Square, Euclidean .6968 ± .0002 .6980 ± .0003
4d Unit Square, Euclidean .7228 ± .0002 .7234 ± .0003_ __________________________________________________________ 








































TABLE 8. Estimated constants for geometric instance classes.

are only significant for very small N, but the relatively close
agreement between the two estimates suggests that such
fears are for the most part unjustified.

We have derived analogous estimates for the constants
C HK and C OPT in two dimensions under the rectilinear and
supnorm metrics, and in 3 and 4 dimensions under the
Euclidean metric. The details must be postponed to the
journal version of this paper, although the values are sum-
marized in Table 8. (Note that the normalizing factor varies
with the dimension d, being equal to N (d − 1 )/ d .) We have
not attempted to obtain estimates with as high precision for
these latter cases, since they come up much less frequently
(if at all) in the TSP literature. Note that the values for the
rectilinear metric should be √ 2 times those for the supnorm
metric, and they roughly are. Percus and Martin [26] esti-
mate that for the 3-dimensional Euclidean case, C OPT =
.6978 ± .0004, an estimate that is consistent with ours. The
results of [2] imply that C OPT should ultimately be increas-
ing with the number of dimensions, so it is interesting to
note that it actually decreases in going from d = 2 to d = 3
before increasing as we go to d = 4.

We conclude with a summary (in Table 9) of our esti-
mates for random distance matrices. (The average approxi-
mation error was .0002 for all values of N.) Although the
data we provide is simply for the HK bound, recall from
Table 5 that the expected gap for this class appears to be
going to 0, so the estimate of C HK derived from this table
should also be a good estimate for C OPT . Krauth and
M ́  ezard [22], using a statistical mechanical argument that is
much less suspect than the one cited above for the Euclidean
case, estimate that C OPT ∼ 2.0415... for random distance
matrices. Our data is clearly consistent with this conjecture
and suggests that convergence is essentially complete by
N = 1 , 000.
_ __________________________________________________________

Approximate HK Bound, Random Distance Matrices_ __________________________________________________________
No. of No. of Std. 95% Conf. Interval

Cities Samples Mean Dev. Lower Upper Length_ __________________________________________________________
100 122290 2.0339 .1882 2.0328 2.0349 .0021
316 41157 2.0393 .1083 2.0382 2.0403 .0021

1,000 13461 2.0416 .0610 2.0406 2.0426 .0020
3,162 3529 2.0407 .0336 2.0396 2.0418 .0022

10,000 1061 2.0420 .0188 2.0409 2.0431 .0022_ __________________________________________________________ 



















































































TABLE 9. Estimates of the constant for random distance matrices.
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