DRAFT (approximately final) of a chapter that appeared in
"The Traveling Salesman Problem and its Variations,"Gutin
and Punnen (eds), Kluwer Academic Publishers, 2002, 445-487

Chapter 1

EXPERIMENTAL ANALYSIS OF
HEURISTICS FOR THE ATSP

David S. Johnson
AT&T Labs — Research, Room €239, Florham Park, NJ 07932, USA

dsj@research.att.com

Gregory Gutin
Department of Computer Science, Royal Holloway, University of London
Egham, Surrey TW20 OEX, UK, G.Gutin@rhul.ac.uk

Lyle A. McGeoch
Department of Mathematics and Computer Science,
Ambherst College, Amherst, MA 01002, USA, lam@cs.amherst .edu

Anders Yeo

Department of Computer Science, Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK, anders@cs.rhul.ac.uk

Weixiong Zhang
Department of Computer Science, Washington University, Box 1045
One Brookings Drive, St. Louis, MO 63130, USA, zhang@cs.wustl.edu

Alexei Zverovitch
Department of Computer Science, Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK, A.Zverovitch@rhul.ac.uk

2 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

1. Introduction

In this chapter, we consider what approaches one should take when
confronting a real-world application of the asymmetric TSP, that is, the
general TSP in which the distance d(c, ') from city ¢ to city ¢ need
not equal the reverse distance d(c’,c). As in the previous chapter on
heuristics for the symmetric TSP, we will discuss the performance of
a variety of heuristics exhibiting a broad range of tradeoffs between
running time and tour quality.

The situation for the ATSP is different from that for the STSP in
several respects. First, no single type of instance dominates the applica-
tions of the ATSP in the way that two-dimensional geometric instances
dominate the applications of the STSP. General-purpose ATSP heuris-
tics must thus be prepared to cope with a much broader range of instance
structures and are less likely to be robust across all of them. Moreover,
the variety of possible instance structures rules out the possibility of a
common linear-size instance representation. Thus general-purpose codes
rely on instance representations that simply list the N (N — 1) inter-city
distances, where N is the number of cities. This makes it difficult to han-
dle large instances: if each distance requires say four bytes of memory,
a 10,000-city instance would require roughly 400 megabytes of memory.
Thus the experimental study of asymptotic behavior is much less ad-
vanced than in the case of the STSP. Whereas TSPLIB! contains STSP
instances with as many as 85,900 cities, the largest ATSP instance it
contains has only 443 cities and over half of its ATSP instances have
fewer than 100 cities.

A second significant difference between the STSP and the ATSP is
that the latter appears to be a more difficult problem, both with respect
to optimization and approximation. Whereas all the randomly generated
and TSPLIB instances with 1000 cities or less covered in the chapter on
the STSP could be optimally solved using the Concorde? optimization
code under its default settings, many 316-city ATSP instances from [10]
remain unsolved. Moreover, as we shall see, there are plausibly realistic
instance classes where none of our heuristics get as close to optimal as
several STSP heuristics did for all the geometric instances in the testbeds
covered in the STSP chapter.

LTSPLIB is a database of instances for the TSP and related problems created and maintained at
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/ by Gerd Reinelt
and described in [29].

2Concorde is a publicly available software package written by Applegate, Bixby, Chvatal, and
Cook, described in [2].

Ezxperimental Analysis of Heuristics for the ATSP 3

Finally, the experimental study of heuristics for the ATSP is much
less advanced. Until recently there has been no broad-based study cov-
ering a full range of ATSP heuristics and what ATSP studies there have
been, such as [13, 30, 31, 32], have concentrated mostly on the TSPLIB
instances and randomly generated instances with no obvious connection
to applications. Nor has there been a formal ATSP Challenge like the
STSP Challenge that served as the main resource for Chapter 9. For-
tunately, a first attempt at a more comprehensive study has recently
appeared: a 2001 paper by Cirasella et al. [10]. This chapter will build
on the results in [10] by looking at them in new ways and augmenting
them with results for several additional heuristics.

The chapter is organized as follows. In Section 2 we describe the stan-
dards we use for measuring tour quality and comparing running times
and the instance classes that make up our testbeds. Section 3 describes
the various heuristics we cover, divided into groups based on approach
taken (modified STSP tour construction heuristics, heuristics that solve
assignment problems as a subroutine, and local search heuristics). Sec-
tion 4 then describes the results for the various heuristics on our testbeds
and how they compare, and attempts to derive meaningful insights based
on the wealth of disparate data provided. We conclude in Section 5 with
a summary of our major conclusions and suggestions for future research.

For a look at ATSP heuristics from a more theoretical point of view,
see Chapter 6.

2. Methodology

In this chapter we evaluate heuristics on the basis of their performance
on the collection of benchmark instances used in [10]. We begin in
Section 2.1 by discussing the various measures of tour quality that we use
in our comparisons (the optimal tour length, the Held-Karp lower bound,
and the assignment problem lower bound) and the relations between
them. In Section 2.2 we describe how running times were measured and
the normalization process by which running times on different machines
were compared (a variant on the approach taken in Chapter 9). In
Section 2.3 we describe the benchmark instances and how they were
obtained or generated.

2.1. Evaluating Tour Quality

The most natural standard for tour quality is the distance from the
optimal solution, typically measured as the percentage by which the
tour length exceeds the length of an optimal tour. In order to use this
standard, one unfortunately must know the optimal solution value, and

4 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

as remarked above, optimization technology for the ATSP is even less
advanced than that for the STSP. Whereas optimal tour lengths were
known for all the STSP testbed instances with 3,162-city cities or less,
there are quite a few 316-city instances in our ATSP testbeds for which
we have been unable to determine the optimal tour length.

Thus, as was the case for the STSP, we must settle for some com-
putable lower bound on the optimal tour length as our standard of com-
parison. We shall actually consider two such bounds. Until recently, the
most commonly studied lower bound for the ATSP was the Assignment
Problem (AP) lower bound: Treat the distance matrix as representing
the edge weights for a complete (symmetric) bipartite graph on 2N ver-
tices, and compute the minimum-cost perfect matching for this graph,
a computation that can be done in worst-case ©(N3) time but usually
can be performed much more quickly. It is not difficult to see that this
matching corresponds to a minimum-cost cover of the cities by vertex-
disjoint directed simple cycles, and hence is a lower bound on the optimal
tour length, which is the minimum cost cover of the cities by a single
directed simple cycle. As we shall see, the AP bound is quite close to
the optimal tour length for many of our instance classes. However, this
is not always true. In the worst case the percent by which the optimal
tour length exceeds it is not bounded by any constant even for N = 4.
For five of our random instance classes the average gap is well over 10%.

To obtain a better lower bound, [10] proposed using the generaliza-
tion of the Held-Karp STSP lower bound (HK bound) [15, 16] to the
asymmetric case. As in the symmetric case, the asymmetric HK bound
is the solution to the linear programming relaxation of the standard
integer programming formulation of the problem. For the ATSP, that
formulation is presented in Chapter 4. As in the symmetric case, we
can use Concorde to compute it, although to compute the bound for an
ATSP instance I, we first need to transform the instance to an STSP
instance I' to which Concorde can be applied. We use the standard
transformation that replaces each city ¢; by three cities czl, 022, c;-)’ with an
(undirected) path of 0-cost edges linking them in the given order. The
directed arc (c;, ¢;) then corresponds to the undirected edge {c3, c;} All
edges not specified in this transformation are given lengths longer than
the tour computed by Zhang’s heuristic for the ATSP instance. It is easy
to see that the optimal undirected tour for I’ has the same length as the
optimal directed tour for I and that the HK bounds likewise coincide.
The (normalized) time to compute the HK bound by this process (in-
cluding running Zhang’s heuristic and performing the transformation)
ranges from seconds for 100-city instances to 35 minutes for 3,162-city
instances. For full running time details, see the tables of Section 4.6.

Ezxperimental Analysis of Heuristics for the ATSP 5

This same approach can be used to attempt to find optimal tours,
simply by setting Concorde’s flags to make it do optimization instead
of computing the Held-Karp bound. For this a good upper bound is
needed, for which we would now recommend running Helsgaun’s heuris-
tic (different heuristics were used in [10]). When the optimum could be
computed, the maximum average gap between it and the HK bound for
any of our instance classes was 1.86%, with most averages being well
under 1%. The maximum gap for any of the real-world instances in our
testbed was 1.79%. Thus the HK bound appears to be a much more
robust estimate of the optimal solution than the AP bound. Moreover,
as we shall see, the gap between the AP and HK bounds has interesting
correlations with algorithmic behavior.

2.2. Running Time Normalization

As in the chapter on STSP heuristics, this chapter summarizes results
obtained on a variety of machines. Although we rely heavily on the
results reported in [10], which were all obtained on the same machine (an
SGI Power Challenge using 196 Mhz MIPS R10000 processors), we have
augmented these with results from additional researchers, performed on
their home machines. We thus again need a mechanism for comparing
running times on different machines.

As in the STSP chapter, we base our comparisons on normalization
factors derived from runs of a standard benchmark code. For the ATSP,
our benchmark code is an implementation of the “Hungarian method”
for solving the Assignment problem (available as part of the ATSP down-
load from the TSP Challenge website [19]). It is intended to reflect
ATSP computations more accurately than the Greedy geometric bench-
mark code used for the STSP. Contributors ran this code on 100-, 316-,
1,000-, and 3,162-city instances from the rtilt class described below on
the same machine they used to test their own heuristics and reported the
benchmark’s running times along with the results for their own heuris-
tics. The benchmark times were then used to construct size-dependent
normalization factors by which their heuristics’ running times could be
multiplied to produce a rough estimate of what they would have been
on our target machine. To facilitate comparisons with results from the
STSP chapter, we use the same target machine: a Compaq ES40 with
500 Mhz Alpha processors and 2 gigabytes of main memory.

For more details on the conversion process (and its potential weak-
nesses), see Chapter 9. Based on limited tests, it appears that our
normalization process is likely once again to introduce no more than a
factor-of-two error in running time. Indeed, for the ATSP and its bench-

6 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

N = 100 316 1000 3162
Class Heuristic Time in Seconds

disk Zhang Normalized .05 .56 6.4 105
Actual .09 .54 7.0 111

Discrepancy | -44% +4% -9% -5%
coin Helsgaun Normalized | 1.40 17.45 205.4 4975
Actual .90 13.20 230.7 4522

Discrepancy | +55% +32% -11% +10%

Table 1.1. Comparisons between normalized 196 Mhz MIPS processor time and ac-

tual running time on the 500 Mhz Alpha target machine.

mark code, we may be slightly more accurate than that. See Table 1.1,
where the predicted and actual running times on the target machine are
summarized for two pairs of (heuristic,instance class). As in the sym-
metric case, we get both under- and over-estimates, but here the times
are typically within 33% of each other except for the 100-city instances
where running times are too small to estimate accurately.

2.3. Testbeds

Thirteen classes of instances were covered in [10]. Twelve of those
classes were randomly generated. The generators for seven of the twelve
classes were designed to produce instances with some of the structure
that might arise in particular applications. The other five generators
produced less-structured instances of types previously studied in the
literature, three of which were actually symmetric instances viewed as
asymmetric ones. For each class there were ten instances with 100 and
316 cities, three instances with 1,000 cities, and one instance with 3,162
cities. The thirteenth class consisted of “real-world” instances from
TSPLIB and other sources, ranging in size from 43 to 1,000 cities.

For space reasons, in this chapter we consider a slightly restricted set
of testbeds. First, we ignore all real-world instances with fewer than 100
cities, just as STSP instances with fewer than 1,000 cities were ignored
in Chapter 9. (The lower threshold in the case of the ATSP reflects
the fact that this problem appears to be harder in general.) All the
real-world instances with 100 cities or less from [10] and all the 100-city
randomly generated instances in our testbed can be solved to optimality
in reasonable time using the technique described in Section 2.1. More-
over, the publicly available implementation of Helsgaun’s heuristic [17]
should suffice for most practical situations when instances are this small.
It gets within 0.3% of optimal within a (normalized) second for all the
real-world instances with less than 100 cities from [10], and as we shall
see it averages two seconds or less to get within 0.1% of optimal for the
100-city instances in each of our random classes.

Ezxperimental Analysis of Heuristics for the ATSP 7

One can conceive of applications with a greater need for speed, for
example the phylogenetic inference problem discussed by Moret et al.
in [27, 28], where millions of ATSP instances with 37 cities or less need
to be solved as part of the overall process. However, in such cases it
typically becomes necessary to use extensive problem-specific algorithm
engineering, which is well beyond the scope of this chapter. (In fact,
Moret et al. ended up using a highly tuned branch-and-bound optimiza-
tion code for their application [27].) Thus our lower bound of 100 cities
seems quite reasonable.

In addition, we restrict ourselves to just two of the three symmetric
instance classes from [10]: the ones corresponding to the Random Uni-
form Euclidean instances and Random Matrix instances of Chapter 9.
We consider these classes mainly to illustrate the loss in tour quality
that ATSP heuristics experience in comparison to their STSP counter-
parts. The third class, consisting of the closure under shortest paths of
Random Matrix instances, adds little additional insight to this question.

We now say a bit about each of the twelve classes we do cover. For
more details the interested reader is referred to [10] or to the code for
the generators themselves, which together with associated README files
is available from the DIMACS Implementation Challenge website [19].

Random Symmetric Matrices (smat). These are the Random
Matrix instances of Chapter 9 written in asymmetric format. For this
class, d(c;,c;) is an independent random integer z, 0 < z < 108 for each
pair 1 <i < j < N, and d(c;,¢j) is set to d(cj,c;) when i > j. (Here
and in what follows, “random” actually means pseudorandom, using an
implementation of the shift register random number generator of [23,
pages 171-172].) Such instances have no plausible application, but have
commonly been studied in this context and at least provide a ground for
comparison to STSP heuristics.

Random 2-Dimensional Rectilinear Instances (rect). These
correspond to the Random Uniform Fuclidean instances of Chapter 9
written in asymmetric format, except that we use the Rectilinear rather
than the Euclidean metric. That is, the cities correspond to random
points uniformly distributed in a 10® by 10° square, and the distance
between points (z1,y1) and (z2,y2) is |2 — 21| + |y2 — y1]. For STSP
heuristics, tour quality and running times for the Fuclidean and Recti-
linear metrics are roughly the same [18].

Random Asymmetric Matrices (amat). The random asymmetric
distance matrix generator chooses each distance d(c;,c¢;) as an indepen-
dent random integer z, 0 < z < 10%. For these instances it is known that
both the optimal tour length and the AP bound approach a constant

8 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

(the same constant) as N — oo. The rate of approach appears to be
faster if the upper bound U on the distance range is smaller, or if the
upper bound is set to the number of cities N, a common assumption in
papers about optimization algorithms for the ATSP (e.g., see [8, 26]).
Surprisingly large instances of this type can be solved to optimality, with
[26] reporting the solution of a 500,000-city instance. (Interestingly, the
same code was unable to solve a 35-city instance from a real-world man-
ufacturing application.) Needless to say, there are no known practical
applications of asymmetric random distances matrices. We include this
class to provide a measure of comparability with past studies.

Shortest-Path Closure of amat (tmat). One of the reasons the
previous class is uninteresting is the total lack of correlation between
distances. Note that instances of this type are unlikely to obey the tri-
angle inequality, i.e., there can be three cities ¢y, co, c3 such d(ci,c3) >
d(cy,c2) + d(cz,c¢3). Thus heuristics designed to exploit the triangle in-
equality, such as the Repeated Assignment heuristic of [11] may perform
horribly on them. A somewhat more reasonable instance class can be
obtained by taking Random Asymmetric Matrices and closing them un-
der shortest path computation. That is, if d(c;, ¢;) > d(cs, ck) + d(c, ¢;)
then set d(c;, ¢j) = d(c;, cx) + d(cg, ¢;) and repeat until no more changes
can be made. This is also a commonly studied class.

Tilted Drilling Machine Instances, Additive Norm (rtilt).
These instances correspond to the following potential application. One
wishes to drill a collection of holes on a tilted surface, and the drill
is moved using two motors. The first moves the drill to its new z-
coordinate, after which the second moves it to its new y-coordinate.
Because the surface is tilted, the second motor can move faster when
the y-coordinate is decreasing than when it is increasing. The gener-
ator starts with an instance of rect and modifies it based on three
parameters: ug, the multiplier on |Az| that tells how much time the
first motor takes, and u, and u,, the multipliers on |Ay| when the di-
rection is up/down. For this class, the parameters u, = 1, u;' = 2,
and u, = 0 were chosen, which yields the same optimal tour lengths
as the original symmetric rect instances because in a cycle the sum of
the upward movements is precisely balanced by the sum of the down-
ward ones. Related classes based on perturbing the Euclidean metric
were proposed by Kataoko and Morito in [22] to model the problem of
scheduling temperature-dependent operations in a factory where cooling
was faster than heating.

Ezxperimental Analysis of Heuristics for the ATSP 9

Tilted Drilling Machine Instances, Sup Norm (stilt). For
many drilling machines, the motors operate in parallel and so the proper
metric is the maximum of the times to move in the x and y directions
rather than the sum. This generator has the same three parameters as
for rtilt, although now the distance is the maximum of uz|Az| and
u, |Ay| (downward motion) or w}|Ay| (upward motion). For this class,
the parameters u, = 2, u;‘ =4, and u, = 1 were chosen.

Random Euclidean Stacker Crane Instances (crane). In the
Stacker Crane Problem one is given a collection of source-destination
pairs s;,d; in a metric space where for each pair the crane must pick up
an object at location s; and deliver it to location d;. The goal is to order
these tasks so as to minimize the time spent by the crane going between
tasks, i.e., moving from the destination of one pair to the source of the
next one. This can be viewed as an ATSP in which city ¢; corresponds
to the pair s;,d; and the distance from ¢; to ¢; is the metric distance
between d; and s;. The generator has a single parameter v > 1, and
constructs its source-destination pairs as follows. The sources are gener-
ated uniformly in the same way that cities are generated in an instance
of rect. Then for each source s we pick two integers z and y uniformly
and independently from the interval [—10°/u, 10 /u]. The destination
is the vector sum s + (z,y). In order to preserve a sense of geometric
locality, we let u vary as a function of N, choosing values so that the
expected number of other sources that are closer to a given source than
its destination is roughly a constant, independent of N. For more details
see [10]. These instances do not necessarily obey the triangle inequality
since the time for traveling from source to destination is not counted.

Disk Drive Instances (disk). These instances attempt to capture
some of the structure of the problem of scheduling the read head on a
computer disk. This problem is similar to the stacker crane problem
in that the files to be read have a start position and an end position
in their tracks. Sources are again generated as in rect instances, but
now destinations have the same y-coordinates as their sources. To de-
termine the z-coordinate of a destination, we generate a random integer
z € [0,10%/u] and add it to the z-coordinate of its source modulo 108,
thus capturing the fact that tracks can wrap around the disk. The dis-
tance from a destination to the next source is computed based on the
assumption that the disk is spinning in the z-direction at a given rate
and that the time for moving in the y direction is proportional to the
distance traveled at a significantly slower rate. To get to the next source
we first move to the required y-coordinate and then wait for the spinning
disk to deliver the z-coordinate to us. For more details see [10].

10 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Pay Phone Coin Collection Instances (coin). These instances
model the problem of collecting money from pay phones in a grid-like
city. We assume that the city is a k by k grid of city blocks with 2-way
streets running between them and a 1-way street running around the
exterior boundary of the city. The pay phones are uniformly distributed
over the boundaries of the blocks. We can only collect from a pay phone
if it is on the same side of the street as we are currently driving on, and
we cannot make “U-turns” either between or at street corners. Finding
the shortest route is trivial if there are so many pay phones that most
blocks have one on all four of their sides. This class is thus generated
by letting k grow with N, in particular as the nearest integer to 10v/N.

No-Wait Flowshop Instances (shop). The no-wait flowship was
the application that inspired the local search heuristic of Kanellakis and
Papadimitriou [20]. In a k-processor no-wait flowshop, a job @ consists
of a sequence of tasks (uy,ug,...,u;) that must be performed by a fixed
sequence of machines. The processing of u;,1 must start on machine i+1
as soon as processing of u; is complete on machine . This models the
processing of heated materials that must not be allowed to cool down and
situations where there is no storage space to hold waiting jobs. These
instances have k& = 50 processors and task lengths are independently
chosen random integers between 0 and 1000. The distance from job v to
job @ is the minimum possible amount by which the finish time for uy
can exceed that for vy if u is the next job to be started after v.

Approx. Shortest Common Superstring Instances (super).
This class is intended to capture some of the structure in a computational
biology problem relevant to genome reconstruction. Given a collection of
strings C, we wish to find a short superstring S in which all are (at least
approximately) contained. If we did not allow mismatches the distance
from string A to string B would be the length of B minus the length of
the longest prefix of B that is also a suffix of A. Here we add a penalty
equal to twice the number of mismatches, and the distance from string
A to string B is the length of B minus max{j + 2k: there is a prefix of
B of length j that matches a suffix of A in all but k positions}. The
generator uses this metric applied to random binary strings of length 20.

Specific Instances: TSPLIB and Other Sources (realworld).
This collection includes the 13 ATSP instances with 100 or more cities
currently in TSPLIB plus 16 new instances from additional applications.
Applications covered include stacker crane problems (the rbg instances),

Ezxperimental Analysis of Heuristics for the ATSP 11

vehicle routing (the ftv instances), coin collection (big702), robotic
motion planning (atex600, called atex8 in [10]), tape drive reading
(the td instances), code optimization (the code instances), and table
compression (the dc instances). We omit the TSPLIB instance kro124p
since it is simply a perturbed random Euclidean instance, rather than
from an application. For more details, see [10].

In what follows we shall consider which measurable properties of in-
stances correlate with heuristic performance. Likely candidates include
(1) the gap between the AP and HK bounds, (2) the extent to which
the distance metric departs from symmetry, and (3) the extent to which
it violates the triangle inequality. The specific metrics we use for these
properties are as follows. For (1) we use the percentage by which the AP
bound falls short of the HK bound. For (2) we use the ratio of the average
value of |d(c;,c;) — d(cj, c;)| to the average value of |d(c;, ¢;) + d(cj, ci)l,
a quantity that is 0 for symmetric matrices and has a maximum value
of 1. For (3) we first compute, for each pair c;,c; of distinct cities,
the minimum of d(c;,¢;) and min{d(c;, cx) + d(ck,¢j) : 1 < k < N}
(call it d'(ci,cj)). The metric is then the average, over all pairs ¢;, ¢j,
of (d(c;,¢;) — d'(ci,¢5))/d(ciycj). A value of 0 implies that the instance
obeys the triangle inequality. (The latter two metrics are different and
perhaps more meaningful than the ones used in [10].)

Tables 1.2 and 1.3 report the values for these metrics on our randomly
generated classes and real-world instances respectively. For the random
instances, average values are given for N = 100, 316, and 1,000. In
Table 1.2 the classes are ordered by increasing value of the HK-AP gap
for the 1,000-city entry. In Table 1.3 instances of the same type are
ordered by increasing gap, and types are ordered by increasing average
gap. For the random instance classes, there seems to be little correlation
between the three metrics, although for some there is a dependency on
the number N of cities. For the realworld instances there are some
apparent correlations between metrics for instances of the same type,
e.g., for the ftv instances, increasing HK-AP gap seems to go with
increasing asymmetry, whereas for the dc¢ instances increasing HK-AP
gap seems to go with decreasing asymmetry (and increasing triangle
inequality violations).

Table 1.3 also displays the percentage by which the optimal tour
length exceeds the HK bound for our realworld instances. (The analo-
gous information for our random instance classes is shown in the tables
of Section 4.6.) Note that for these instances the OPT-HK gap is 0.03%
or less whenever the HK-AP gap is less than 1%, a first suggestion of
the significance of the latter metric.

12 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

% HK-AP Asymmetry Triangle
100 316 1,000 | 100 316 1,000 | 100 316 1,000
tmat .34 .16 .03 | .232 189 .165 - - -
amat .64 .29 .05 | 333 .332 .333 | .633 .752 .837
shop .50 .22 .15 | .08 .498 .515 - - -

disk 2.28 71 .34 | .044 .045 046 | .250 .313 .354
super 1.04 1.02 1.17 | .076 .075 .075 - - -
crane 7.19 6.34 5.21 | .061 .035 .020 | .101 .087 .066
coin 15.04 13.60 13.96 | .010 .007 .003 - - -
stilt | 18.41 14.98 14.65 | .329 .333 .336 - - -
rtilt | 2042 17.75 17.17 | .496 .500 .503 - - -
rect 20.42 17.75 17.17 — — - - — —
smat 19.83 20.73 19.66 - - - 632 .751 837

Table 1.2. For the 100-, 316-, and 1000-city instances of each class, the average
percentage shortfall of the AP bound from the HK bound and the average asymmetry

and triangle inequality metrics as defined in the text. “-” stands for .000.
Instance | N %OPT-HK | %HK-AP Asymmetry Triangle
rbg323 323 .00 .00 .206 .3892
rbg358 358 .00 .00 .226 .4251
rbg403 403 .00 .00 231 .4489
rbg443 443 .00 .00 .229 .4358
td100 101 .00 .00 115 .0001
td316 317 .00 .00 115 .0002
td1000 1001 .00 .00 117 .0006
big702 702 .00 .00 131 -
dc849 849 .00 .09 .010 -
dcb563 563 .01 .33 .008 -
dc134 134 .01 .36 .005 -
dc895 895 .03 .68 .003 -
dcl76 176 .02 .81 .005 -
dcl12 112 .02 .87 .002 -
dc188 188 .02 1.22 .001 -
dc932 932 .01 2.48 .001 .0002
dc126 126 .01 3.78 .001 .0017
ftv170 171 1.47 3.10 114 -
ftv150 151 .77 3.17 115 -
ftv160 161 1.36 3.29 114 -
ftv130 131 .89 3.61 112 -
ftv140 141 .83 4.12 118 -
ftv110 111 1.79 4.18 124 -
ftv120 121 1.68 4.93 122 -
ftv100 101 1.16 5.52 123 -
codel98 198 .00 .09 1.000 .0224
code253 253 .74 17.50 1.000 0598
atex600 600 1.13 97.69 118 -

Table 1.3. Metrics for realworld test instances.

Ezxperimental Analysis of Heuristics for the ATSP 13

3. Heuristics

In this section we briefly describe the heuristics covered in this study
and their implementations. Substantially fewer implementations are cov-
ered than in the STSP chapter. This is in part because we did not
announce a formal challenge covering the ATSP, but mainly because
there has been far less research on this more general problem. Thus a
smaller sample of implementations can still include top-performing rep-
resentatives of all the effective approaches. As was the case with the
STSP, these effective approaches do not currently include any represen-
tatives from the world of metaheuristics (e.g., simulated annealing, tabu
search, neural nets, etc.). The best ATSP heuristic from that field that
we know of is a “memetic” algorithm of [5], but it is not yet fast enough
to be competitive, given the quality of tours that it produces for most of
our instance classes. We cover four basic groups of heuristics: Classical
tour construction heuristics derived from those for the STSP, heuristics
based on solutions to the Assignment Problem (these have no effective
analogue in the case of the STSP), local search heuristics and repeated
local search heuristics. We unfortunately do not have space to present all
the algorithmic and implementation details for the heuristics (especially
the more complicated local search and repeated local search heuristics),
but we provide pointers to where more details can be found.

3.1. Classical Tour Construction Heuristics

Nearest Neighbor (NN) and Greedy (Greedy). These are ATSP
versions of the classical Nearest Neighbor and Greedy heuristics for the
STSP. In NN one starts from a random city and then successively goes
to the nearest as-yet-unvisited city, returning at last to the starting city
to complete the tour. In Greedy, we view the instance as a complete
directed graph with arc lengths equal to the corresponding inter-city
distances. Sort the arcs in order of increasing length. Call an arc eligible
if it can be added to the current set of chosen arcs without creating a
(non-Hamiltonian) cycle or causing an in- or out-degree to exceed one.
The implementation covered here works by repeatedly choosing (ran-
domly) one of the two shortest eligible arcs until a tour is constructed.
Randomization is important as the implementations we cover are both
part of a Johnson-McGeoch local search code to be described below, and
a common way of using the latter is to perform a set of randomized runs
and output the best tour found. The running times reported for these
NN and Greedy implementations may be somewhat inflated from what
they would be for stand-alone codes, as they include some preprocessing
steps not strictly needed for tour construction alone.

14 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

3.2. Cycle Cover Heuristics

Recall from Section 2.1 that a solution to the Assignment Problem
for the distance matrix of an ATSP instance corresponds to a minimum
length cover of the cities by vertex-disjoint directed simple cycles. This
section covers heuristics that solve such Assignment Problems as a sub-
routine. Analogous heuristics for the STSP are not particularly effective,
but one might hope for better results in the case of the ATSP, especially
for those instances classes with a small gap between the AP bound and
the optimal tour length.

Cycle Patching, Two Largest Cycle Variant (Patch). This
heuristic computes the minimum cycle cover for the full instance and
then patches the cycles together into a tour using a heuristic analyzed
by Karp and Steele in [21]: Repeatedly select the two cycles containing
the most cities and combine them into the shortest overall cycle that can
be constructed by breaking one arc in each cycle and linking together
the two resulting directed paths. The running time for this heuristic
is typically dominated by the time needed to construct the initial cycle
cover. Patch provides better results than related variants, such as re-
peatedly patching together the two shortest cycles. The implementation
for which we report results is due to Zhang.

Repeated Assignment (RA). This heuristic was originally studied
by Frieze, Galbiati, and Maffioli in [11] and currently has the best proven
worst-case performance guarantee of any polynomial-time ATSP heuris-
tic (assuming the triangle inequality holds): Its tour lengths are at most
log, N times the optimal tour length. This is not impressive in compari-
son to the 3/2 guarantee for the Christofides heuristic for the symmetric
case, but nothing better has been found in two decades. The heuris-
tic works by constructing a minimum cycle cover and then repeating
the following until a connected graph is obtained. For each connected
component of the current graph, select a representative vertex. Then
compute a minimum cycle cover for the subgraph induced by these cho-
sen vertices and add that to the current graph. A connected graph will
be obtained before one has constructed more than log, N cycle covers,
and each cycle cover can be no longer than the optimal ATSP tour which
is itself a cycle cover. Thus the total arc length for the connected graph
is at most logy N times the length of the optimal tour. Note also that it
must be strongly connected and all vertices must have in-degree equal
to out-degree. Thus it is Eulerian, and if one constructs an Euler tour
and follows it, shortcutting past any vertex previously encountered, one
obtains an ATSP tour that by the triangle inequality can be no longer
than the total arc length of the graph. We report on a Johnson-McGeoch

Ezxperimental Analysis of Heuristics for the ATSP 15

implementation that in addition uses heuristics to find good choices of
representatives and performs “greedy” shortcutting as described in re-
lation to the Christofides heuristic in Chapter 9. The combination of
these measures yields substantial improvements in tour length with a
negligible increase in running time, as reported in [10] (which called this
enhanced version of the heuristic “RA+”).

Contract or Patch (COP). This heuristic, as proposed by Glover,
Gutin, Yeo, and Zverovich in [13] and refined by Gutin and Zverovich
in [14], again begins by constructing a minimum length cycle cover. We
then execute the following loop:

1. While the current cycle cover contains more than a single cycle
and at least one cycle with fewer than t cities (short cycle):

(1.1) Delete the longest arc in each short cycle and “contract” the
resulting path into a single composite city whose out-arcs
corresponds to the out-arcs of the path’s head and whose
in-arcs correspond to the in-arcs of the path’s tail.

(1.2) Compute a minimum length cycle cover from the resulting
contracted graph.

2. Recursively expand the composite cities in the final cycle cover to
obtain a cycle cover for the original instance.

3. Patch the cycle cover as in Patch.

The dependence of the performance of COP on the value of ¢ was studied
by Gutin and Zverovich in [14], who recommended setting ¢ = 3, in which
case only cycles of length two are contracted. The results presented here
were obtained using their implementation with this choice of ¢.

Zhang’s Heuristic (Zhang). Zhang’s heuristic [31] works by trun-
cating the computations of an AP-based branch-and-bound optimization
algorithm that uses depth first search as its exploration strategy. We
start by computing a minimum length cycle cover My and determining
an initial champion tour by patching as in Patch. If this tour is no
longer than M, (for instance if My was itself a tour), we halt and return
it. Otherwise, call My the initial incumbent cycle cover, and let Iy, the
set of included arcs, and X, the set of excluded arcs, be initially empty.
The variant we cover in this chapter proceeds as follows.

Inductively, the incumbent cycle cover M; is the minimum length cycle
cover that contains all arcs from I; and none of the arcs from X;, and
we assume that M; is shorter than the current champion tour and is not
itself a tour. Let C' = {ej,e2,...,ex} be a cycle in M; that contains
a minimum number of free arcs (arcs not in I;). As pointed out in [9],
there are k distinct ways of breaking this cycle: We can force the deletion
of ey, retain e; and force the deletion of ey, retain e; and es and force
the deletion of ez, etc. We solve a new assignment problem for each of

16 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

these possibilities that is not forbidden by the requirement that all arcs
in I; be included. In particular, for all A, 1 < h < k, such that e is not
in I;, we construct a minimum cycle cover that includes all the arcs in
I; U{e; : 1 < j < h} and includes none of the arcs in X; U {es}. (The
exclusion of the arcs in this latter set is forced by adjusting their lengths
to a value exceeding the initial champion tour length.) If we retain the
data structures used in the construction of M; each new minimum cycle
cover can be computed using only one augmenting path computation.

Let us call the resulting cycle covers the children of M;. Call a child
viable if its length is less than the current champion tour. If any of the
viable children is a tour and is better than the current champion, we
replace the champion by the best of these (which in turn will cause the
set of viable children to shrink, since now none of the other children
that are tours will be viable). If at this point there is no viable child,
we halt and return the best tour seen so far. Otherwise, we let the new
incumbent M; 1 be a viable child of minimum length. We then patch
M; 1 and if the result is better than the current champion tour, update
the latter. Then we update I; and X; to reflect the sets of included
and excluded arcs specified in the construction of M;,; and continue.
This process must terminate after at most N? phases, since each phase
adds at least one new arc to I; U X;, and so we must eventually either
construct a tour or obtain a graph in which no cycle cover is shorter
than the current champion tour.

The results reported here were obtained using Zhang’s implementa-
tion. In [10], which called the above heuristic “ZHANG1,” several variants
were also considered. The most interesting of these, ZHANG2, differs from
the above in that in each phase all viable children are patched to tours
to see if a new champion can be produced. As reported there, this vari-
ant produces marginally better tours than does ZHANG1, but at a typical
cost of roughly doubling the running time.

3.3. Local Search

Local search heuristics are typically defined in terms of a neighborhood
structure, where tour B is a neighbor of tour A if it can be obtained from
A by a specific type of perturbation or move. The standard local search
heuristic uses a tour construction heuristic to generate an initial tour
and then repeatedly looks for an improving move and, if it finds one,
performs it to obtain a new and better tour. This process continues
until no such move exists (or none can be found by the particular search
process employed by the heuristic). We cover two local search heuristics.

Ezxperimental Analysis of Heuristics for the ATSP 17

3-Opt (3opt). In this heuristic, the neighborhood consists of all
tours that can be obtained by deleting three arcs and permuting the
three resulting paths. In contrast to the STSP version of 3opt, we do
not consider moves in which any of the three paths is reversed. Reversing
a path potentially changes the lengths of all the arcs in the path, and
hence is much more expensive to evaluate than in the symmetric case.
We present results for a Johnson-McGeoch implementation of 3-Opt that
generates its starting tours using NN and employs many of the speedup
tricks exploited by their implementation of symmetric 3opt. For details
on these, see Chapter 9 and [18].

Kanellakis-Papadimitriou (KP). This heuristic, invented by Kanel-
lakis and Papadimitriou in [20], attempts to mimic the Lin-Kernighan
heuristic for the STSP [24], subject to the constraint that it does not
reverse any tour segments. (The symmetric version of Lin-Kernighan is
discussed in more detail in Chapters 8 and 9.) KP consists of two alter-
nating search processes. The first process is a variable-depth search that
tries to find an improving k-opt move (breaking k arcs and permuting
the resulting k segments) for some odd k& > 3 by a constrained sequen-
tial search procedure modeled on that in Lin-Kernighan. The second
process is a search for an improving, non-sequential “double-bridge” 4-
Opt move. In such a move, if (a,b,c,d) is the original ordering of the
four tour segments formed by deleting four edges, the new tour contains
them in the order (b,a,d,c), without reversals. The implementation
on which we report here is that of Johnson and McGeoch described in
[10] and called KP4 there. The details are too complicated to go into
here. Suffice it to say that many of the same speedup tricks as used
in the Johnson-McGeoch implementation of Lin-Kernighan (see Chap-
ter 9) are incorporated, and in the 4-Opt phase the best 4-Opt move is
found using a dynamic programming approach suggested by [12] that
takes only ©(N?) time.

3.4. Repeated Local Search Heuristics

Each of the heuristics in the previous section can be used as the en-
gine for an “iterated” (or “chained”) local search procedure that obtains
significantly better tours, as originally proposed by [25]. (Other ways
of improving on basic local search heuristics, such as the dynamic pro-
gramming approach of [3], do not seem to be as effective here, although
hybrids of this approach with iteration might be worth further study.) In
an iterated procedure, one starts by running the basic heuristic once to
obtain an initial champion tour. Then one repeats the following process
some predetermined number of times:

18 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Apply a random double-bridge 4-Opt move to the current champion to
obtain a new (and presumably worse) tour. Use this new tour as the
starting tour for another run of the heuristic. If the resulting tour is
better than the current champion, declare it to be the new champion.
If one is using the “don’t-look bit” speedup trick of Bentley [4] in the ba-
sic local search heuristic, the fact that a double-bridge move changes the
neighbors of only 8 cities can be exploited to obtain further speedups, as
described in Chapter 9. All the iterated local search heuristics on which
we report here use unbiased random double-bridge moves to perturb the
tour, although better results might be obtainable if one biases the choice
toward better moves, as is done for example in [1] for the STSP. In this
chapter we present results for three iterated local search heuristics plus
one additional heuristic that uses a different repetition mechanism.

Iterated 3-Opt (I3opt). A Johnson-McGeoch implementation that
performs 10N iterations, where N is the number of cities.

Iterated Kanellakis-Papadimitriou (IKP). A Johnson-McGeoch
implementation that performs N iterations. The basic local search
heuristic used is a variant on KP that searches more broadly in the
variable-depth search phase. This was called IKP4F in [10].

Iterated HyperOpt (Ihyper-k). This heuristic uses for its basic
local search heuristic an asymmetric variant on the HyperOpt heuristic
for the STSP introduced by Burke, Cowling, and Keuthen in [6] and
described in Chapter 9. The HyperOpt neighborhood with parameter k
is a restricted version of 2k-Opt. In the variant used here and described
more fully in [7], this neighborhood is augmented with (non-reversing)
3-Opt moves. Although that paper talks about using a “Variable Neigh-
borhood Search” version of the above iteration process, the results we
report are for an implementation from the authors that uses the stan-
dard double-bridge perturbation and performs N iterations. There is
one added detail however: whenever a new champion tour is found in an
iteration, the implementation attempts to improve it using 2-Opt moves.
A 2-Opt move involves the reversal of a tour segment, so as remarked
above this is expensive, but it does here yield a slight improvement in
tour length for the near-symmetric instances. We report on the results
for Thyper-3. The tours found by Ihyper-4 are slightly better on aver-
age, but the running times are 2-10 times longer.

Helsgaun’s Heuristic (Helsgaun). This heuristic successfully ap-
plies the same sort of trick we used to compute Held-Karp bounds and
optimal tour lengths for ATSP instances using Concorde: the ATSP
instance is transformed into an equivalent STSP instances and then an
STSP code is applied, in this case the repeated search version of Hels-
gaun’s heuristic [17] as described in Chapter 9. The transformation used

Ezxperimental Analysis of Heuristics for the ATSP 19

is somewhat simpler than the one used for Concorde. Here we replace
each city ¢; by a pair of cities ¢, and ¢, , and set d(c;",cj_) = d(c;, ¢j)
and d(c;r, ¢;) = d(cj, ¢;). In addition we set d(c; , ¢) to —oo and all the
remaining distances to +00, where oo is a sufficiently large number that
all arcs with length —oo must be included in the tour and none of the
arcs with length +00 can be used. (This transformation doesn’t work for
Concorde because Concorde has trouble with large negative arc lengths
and currently has no other facility for forcing arcs into the tour.)

The results we report are for version LKH-1.1 of Helsgaun’s code, with
N iterations, called Helsgaun[N] in Chapter 9. (A significant number
of iterations is needed just to get all the required arcs into the tour, so
one must use the iterated version of Helsgaun heuristic.) In Helsgaun’s
approach, the starting tours for iterations after the first are not generated
by double-bridge perturbations. Instead we run a full tour construction
heuristic that biases its choices based on the arcs in the best tours seen
so far. Note that since the ATSP to STSP transformation constructs an
instance with 2N cities, the actual number of iterations is 2NV.

4. Results

In this section we summarize the results for the heuristics and in-
stance classes describe above. We begin in Section 4.1 by using the two
symmetric instance classes (rect and smat) to illuminate the question
of how much more powerful symmetric codes can be than asymmetric
ones. This is further examined in Section 4.2, which displays the best
tour quality obtainable by any of our heuristics within given time bounds
and compares this with what is possible in the symmetric case.

We then consider the relative advantages of the various heuristics.
Section 4.3 looks at those heuristics that appear to be consistently fast
(NN, Greedy, and 3opt) and compares their performance. Section 4.4
considers the four heuristics based on the computation of minimum cycle
covers. Section 4.5 then considers the remaining local and repeated local
search heuristics KP, Thyper-3, I3opt, IKP, and Helsgaun.

The final three “results” sections provide more detailed comparisons
between heuristics. Section 4.6 gives a class-by-class comparison, pre-
senting tables for each of the asymmetric classes ranking all the heuristics
in the study. Section 4.7 compares the heuristics according to various
robustness metrics. Section 4.8 then discusses the lessons learned from
the experiments on our random instance classes and sees how well they
apply to our testbed of real world instances.

20 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

4.1. Symmetric Instances and Codes

In this section we illustrate our claim that ATSP heuristics are in a
sense less powerful than STSP heuristics. We have already seen that
they are more limited, for instance by the fact that moves involving the
reversal of a tour segment are typically too expensive to evaluate. We
see how this translates into performance by looking at pairs of related
ATSP/STSP heuristics and comparing their results on our two classes
of symmetric instances (rect and smat). See Table 1.4.

The only heuristic that appears to be as powerful in its asymmetric
form as in its symmetric form is Nearest Neighbor (NN). This is not sur-
prising, given that for any given starting city it will construct the same
tour in either case. Differences in running time come from the differences
in input representation. In contrast, our other tour construction heuris-
tic, the Greedy heuristic, completely falls apart in the asymmetric case.
This is because two paths that will eventually be merged by the symmet-
ric Greedy heuristic may be constructed with inconsistent orientations
by the asymmetric Greedy heuristic and hence be unmergeable.

The results for the remaining local search and repeated local search
pairs all show an advantage in tour quality for the symmetric members of
each pair, reflecting the richer neighborhoods that they search. Note that
this is true in the KP versus Lin-Kernighan comparison, even though the
KP implementations includes a double-bridge 4-Opt phase absent from
the LK implementation. Note also that the ATSP variants on repeated
local search pay a substantial running time penalty (far greater than
the simple difference attributable to the larger size of the asymmetric
instance representation).

4.2. Asymmetric State of the Art

In this section we further address the differences in the states of the
art for the STSP and ATSP by examining what can be accomplished
within given time thresholds, assuming we can choose the most appro-
priate heuristic for each instance class and number of cities. See Table
1.5, which for N = 316, 1,000, and 3,162 and appropriate time thresh-
olds reports the best average excess over the HK bound obtainable in
normalized time less than that threshold and the heuristic that obtains
it. For space reasons, we do not list results for our 100-city instances.
We note, however, that for all nine classes Helsgaun’s average running
time on 100-city instances is 2 seconds or less and it never averages more
than .1% above optimal. More detailed results on the tradeoffs for each
class can be found in the tables of Section 4.6.

Ezxperimental Analysis of Heuristics for the ATSP 21
rect
Percent above HK Time in Seconds
Heuristic 100 316 1000 3162 | 100 316 1000 3162
NN-S 26.39 27.35 26.07 26.68 .00 .01 .0 0
NN-A 26.39 27.51 26.11 26.55 .04 .26 1.9 22
Greedy-S 18.72 19.35 17.91 16.46 .01 .01 .0 0
Greedy-A | 153.78 292.21 547.94 1005.68 .04 27 1.9 22
3opt-S 2.81 2.86 2.88 3.25 .04 .12 2 0
3opt-A 7.89 8.30 8.37 8.76 .22 1.82 5.9 22
I30pt-S .86 .94 1.11 1.29 41 1.34 4.1 18
I3opt-A 2.02 2.57 2.66 3.09 .44 2.19 11.4 124
LK-S 1.32 1.55 1.77 1.92 .05 .14 .3 0
KP-A 5.11 5.06 5.00 5.17 .04 31 2.0 23
I3opt-S .86 94 1.11 1.29 41 1.34 4.1 18
I3opt-A 2.02 2.57 2.66 3.09 .44 2.19 114 124
Hgaun-S .68 .67 .69 .62 47 4.67 55.0 887
Hgaun-A .68 1.00 1.62 2.35 | 2.00 21.50 247.3 6244
smat
Percent above HK Time in Seconds

Heuristic 100 316 1000 3162 | 100 316 1000 3162
NN-S 139.28 180.75 235.51 298.05 .02 .13 1.0 12
NN-A 139.28 181.18 233.10 307.11 .03 .26 1.9 21
Greedy-S | 103.48 136.78 177.17 213.90 .02 .16 1.0 12
Greedy-A | 653.13 1842.80 5396.52 12073.47 .03 31 1.9 21
3opt-S 11.38 19.18 31.29 46.59 11 1.03 3.1 12
3opt-A 32.36 44.31 61.69 85.58 .19 1.76 5.8 21
I30pt-S 1.21 3.18 6.34 10.83 .45 1.84 7.8 58
I3opt-A 8.43 15.57 25.55 39.84 .50 2.63 14.0 121
LK-S 1.72 2.22 3.43 4.68 12 97 4.2 12
KP-A 10.59 11.50 13.13 15.31 .04 .36 2.2 26
Hgaun-S .10 .04 .01 .00 27 1.94 13.8 302
Hgaun-A .88 2.16 3.78 5.72 | 1.40 16.45 180.9 4756

Table 1.4. Tour quality and normalized times for corresponding symmetric (-S) and
asymmetric (-A) codes. Hgaun is an abbreviation for Helsgaun. LK is the Johnson-

McGeoch implementation of (symmetric) Lin-Kernighan covered in Chapter 9.

22 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Note that almost all our heuristics are represented in the table for
some combination of class and N. Only Greedy, RA, and Thyper-3 are
missing, and the latter would have made it into the table for rtilt and
N > 1,000 had we chosen slightly different thresholds. Thus depending
on the application and instance size, almost any of the heuristics we
cover might be useful.

The tradeoffs between running time and tour quality are not as good
as in the case of the STSP, however. We don’t have the space here for a
detailed comparison, but let us simply consider the behavior of the STSP
heuristic Helsgaun[.1N] as discussed in Chapter 9. For the 1,000-city
instances of all four classes discussed in that chapter, Helsgaun[.1N]
averages within 1.05% of the HK bound in 12 seconds or less (normalized
to the same target machine used in this chapter). Here that level of
behavior can’t be attained in 2 minutes for four of the classes and 10
minutes for three. For the 3,162-city instances, Helsgaun[.1N] averages
within .87% of the HK bound in less than 2 minutes for each of the four
STSP classes, whereas here that level of behavior cannot be attained in
3 hours for four of our nine classes. It would thus seem that at least
some potential ATSP applications may be more difficult to handle than
the current applications of the STSP. We will return to this question
when we consider “real-world” instances in Section 4.8.

4.3. Consistently Fast Heuristics

In this section we consider our options if we need to obtain tours very
quickly, i.e., within a small multiple of the time to read the instance. In
the case of geometric instances of the STSP, this restriction was quite
severe and only allowed us to use heuristics that did little more than
sort. For the general ATSP, with its ©(/N?) instance size, much more
sophisticated heuristics satisfy this restriction, at least asymptotically:
not only tour construction heuristics like NN and Greedy, but even simple
local optimization heuristics like 3opt. Table 1.6 presents the results for
these three heuristics on our nine truly asymmetric instance classes, the
classes ordered by increasing values of the gap between AP and HK
bounds. In comparison, the time simply to read and store the distance
matrix using standard C input/output routines is .02—.03 (normalized)
seconds for N = 100, .14-.18 seconds for N = 316, .9-1.2 seconds for
N = 1,000, and 10-14 seconds for N = 3,162, depending on the class.
Observe that NN and Greedy typically use at most 2.5 times the read
time, and although 3opt has higher multiples for small N, it appears to
be settling asymptotically to a similar multiple. Also, for none of the
three heuristics does running time vary markedly from class to class.

Ezxperimental Analysis of Heuristics for the ATSP 23

316 Cities

Class | < .33 Seconds < 2 Seconds < 10 seconds < 30 seconds

tmat .01 Zhang .01 Zhang .01 Zhang .00 Helsgaun
amat 3.15 COP .16 Zhang .08 Helsgaun .08 Helsgaun
shop 14.65 NN .08 Zhang .08 Zhang .02 Helsgaun
disk 1.13 cCopP .27 Zhang .06 Helsgaun .06 Helsgaun
super 1.20 copP .15 IKP .04 Helsgaun .04 Helsgaun
crane 4.45 KP 4.29 Zhang 1.79 IKP 1.30 Helsgaun
coin 6.59 KP 6.59 KP 2.99 IKP 1.47 Helsgaun
stilt | 22.79 Patch 8.79 KP 3.95 I3opt 2.33 Helsgaun
rtilt | 18.91 Patch | 1891 Patch 735 KP 2.76 Helsgaun

1000 Cities

Class < 5 Seconds < 30 Seconds < 2 Minutes < 10 Minutes
tmat .00 Zhang .00 Zhang .00 Zhang .00 Zhang
amat 2.66 COP 1.29 IKP .03 Helsgaun .03 Helsgaun
shop 13.29 NN .03 Helsgaun .03 Helsgaun .01 Helsgaun
disk .88 Patch .02 Zhang .01 Helsgaun .01 Helsgaun
super 1.22 COP .21 Zhang .05 Helsgaun .05 Helsgaun
crane 4.78 KP 1.27 IKP 1.27 IKP 1.02 Helsgaun
coin 6.15 KP 2.66 IKP 2.66 IKP 1.61 Helsgaun
stilt 8.80 KP 431 1I3opt 431 1I3opt 2.61 Helsgaun
rtilt | 18.38 Patch 8.33 KP 8.33 KP 1.50 Helsgaun

3,162 Cities

Class < 1 minute < 5 minutes < 30 Minutes < 3 hours

tmat .00 Zhang .00 Zhang .00 Zhang .00 Zhang

amat 1.01 cop .04 Zhang .04 Zhang .03 Helsgaun
shop 10.88 3opt .24 Patch .01 Zhang .01 Zhang

disk 25.64 3opt .01 Zhang .01 Zhang .01 Helsgaun
super 1.88 I3opt .52 IKP .43 Zhang .13 Helsgaun
crane 4.26 KP 1.36 IKP 1.36 IKP .92 Helsgaun
coin 6.34 KP 2.87 IKP 2.87 IKP 2.16 Helsgaun
stilt 8.15 KP 4.28 I3opt 4.28 I3opt 3.39 Helsgaun
rtilt | 19.83 3opt 9.68 KP 9.68 KP 2.76 Helsgaun

Table 1.5. Best average percentage above the HK bound obtained within various
normalized running time thresholds for the 316-, 1,000-, and 3162-city instances of
the nine asymmetric classes.

24 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

As for tour quality, observe first that the Greedy heuristic continues
to perform poorly, being significantly worse than NN on all but three
classes (tmat and super, where it is better, and crane, where it is
roughly equivalent). Moreover, on four classes (amat, disk, stilt, and
rtilt) Greedy might be said to self-destruct, as the ratio of its tour
length to the HK bound grows rapidly as N increases, whereas NN only
self-destructs on two of these and actually improves as N gets larger on
the other two (stilt and rtilt). Consequently, although symmetric
Greedy typically outperforms symmetric NN, their roles are reversed in
the asymmetric case. This is why the Johnson-McGeoch local search im-
plementations for the ATSP use NN to generate their starting tours rather
than Greedy, which was the default for their STSP implementations. Al-
though for three of the asymmetric instances classes (tmat, super, and
crane again) Greedy manages to provide more effective (although not
necessarily shorter) starting tours than NN, it is not sufficiently robust
to be used as a general-purpose starting tour generator.

Consider now 3opt. Note that the ratio of its overall running time to
that for its tour generator NN declines from a factor of 6 or more when
N < 316 to little more than a factor of 1 when N = 3,162. On the
other hand, the amount by which its average tour length improves over
its NN starting tour also declines as N increases for all but two of the
classes, those being the two classes where NN self-destructs (amat and
disk). The improvements over NN do however remain significant, even
for N = 3,162, although the amount of significance varies with class.
3opt would thus be the heuristic of choice among these three unless
high speed on small instances is a requirement. Indeed, as we shall see,
it might well be a best overall choice in many situations, given that it
averages within 27% of the HK bound in less than 30 seconds for all
classes except the totally unstructured instances of amat.

Let us now consider the extent to which these results correlate with
the abstract instance metrics in Tables 1.2 and 1.3. A first observation
is that for none of the three heuristics is there much of a correlation
with the gap between AP and HK bounds, which is less than 2% for
the first five classes in the table and greater than 13% for the last three.
Such correlations will not be evident until we consider the heuristics of
the next section. On the other hand, the two classes where both NN
and Greedy self-destruct are those with the biggest triangle inequality
violations (amat and disk), and Greedy self-destructs on all but one of
the four classes with the highest asymmetry metrics (amat, shop, stilt,
and rtilt). Whether such possible correlations are meaningful can only
be determined once we have a more extensive set of instance classes to
study.

Ezxperimental Analysis of Heuristics for the ATSP 25

Greedy
Percent above HK Time in Seconds
Class 100 316 1000 3162 | 100 316 1000 3162
tmat 31.23 29.04 26.53 26.25 .03 .26 1.7 20
amat 243.09 362.86 418.56 695.29 .04 27 1.9 21
shop 49.34 56.07 61.55 66.29 | .03 .26 2.1 40
disk 188.82 307.14 625.76 1171.62 | .03 .28 2.7 23
super 6.03 5.40 5.16 5.79 .03 .22 1.5 18
crane 41.86 44.09 39.70 41.60 .03 27 1.9 21
coin 48.73 46.76 42.33 35.94 | .04 .24 1.7 20
stilt 106.25 143.89 178.34 215.84 .04 .28 1.9 23
rtilt 350.12 705.56 1290.63 2350.38 | .03 .28 2.0 23

NN
Percent above HK Time in Seconds
Class 100 316 1000 3162 | 100 316 1000 3162
tmat 38.20 37.10 37.55 36.66 | .03 .24 1.7 20
amat 195.23 253.97 318.79 384.90 | .03 .26 1.9 21
shop 16.97 14.65 13.29 11.87 | .03 .23 2.5 20
disk 96.24 102.54 115.51 161.99 | .04 27 1.9 23
super 8.57 8.98 9.75 10.62 .03 21 1.5 18
crane 40.72 41.66 43.88 43.18 .03 .26 1.9 21
coin 26.08 26.71 26.80 25.60 | .03 .23 1.7 20
stilt 30.31 30.56 27.62 24.79 .03 .30 1.9 22
rtilt 28.47 28.28 27.52 24.60 .04 .26 1.9 22

3opt
Percent above HK Time in Seconds
Class 100 316 1000 3162 | 100 316 1000 3162
tmat 6.44 9.59 12.66 16.20 19 1.71 5.5 20
amat 39.23 58.57 83.77 112.08 19 1.75 5.8 21
shop 3.02 7.25 10.22 10.88 | .23 1.78 5.6 21
disk 12.11 16.96 20.85 25.64 19 1.82 6.1 23
super 3.12 4.30 5.90 7.94 .15 1.43 4.8 18
crane 9.48 941 10.65 10.64 19 1.76 7.3 22
coin 8.06 9.39 9.86 9.92 | .18 1.62 5.3 20
stilt 11.39 12.65 12.62 12.27 19 1.80 8.2 22
rtilt 10.04 13.09 18.00 19.83 | .19 2.05 6.6 23

Table 1.6. Tour quality and normalized running times for fast heuristics.

26 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

4.4. Cycle Cover Heuristics

Table 1.7 presents the results for three of the four heuristics of Section
3.2: the simple Cycle Patching heuristic (Patch), the Contract-or-Patch
heuristic (COP), and Zhang’s heuristic (Zhang). We omit the Repeated
Assignment heuristic (RA) as for every class it finds worse tours and takes
more time than Patch, despite the fact that it is the only polynomial-
time heuristic known to have a reasonable worst-case guarantee for in-
stances obeying the triangle inequality. (Its domination by Patch is
shown in the class-based summary tables of Section 4.6.)

Note that for all three heuristics in the table, there is a strong corre-
lation between good average tour length and the gap between the HK
and AP bounds. (Once again, the classes in the table are ordered by
increasing gap.) The only exceptions are the amat class, whose lack of
structure appears to cause trouble for Patch and COP on the smaller
instances, and the N = 100 entry for disk. Note, however, that for
N = 100 disk has a bigger average gap than super. All three heuristics
find better tours than does 3opt on the first five classes and the larger
instances of the sixth, while Patch and COP are worse than 3opt on the
last three classes. Zhang, although better than 3opt on one of the last
three classes (rtilt), has a running time that is over 400 times longer.

The running times for all three cycle cover heuristics are highly de-
pendent on instance class. For PATCH and to a lesser extent COP, this
primarily reflects the fact that the Assignment Problem code used as
a subroutine has substantially larger running times for some instance
classes than others. See Table 1.8, which gives the normalized running
times for the Assignment Problem codes used by COP and by Patch
(and by Zhang). Note first that the times for the latter code represents
a major proportion of the times reported for Patch in Table 1.7.

The speeds of both AP codes vary substantially with instance class,
and although the first code tends to be faster, the two are slowest on
the same instance classes: shop, disk, and rtilt, with the times for
the 3162-city instances of shop being from 18 to 87 times slower than
those for coin, depending on the subroutine used. As to running time
growth rates, note that if the rate for a class were merely quadratic,
then the average times would go up roughly by a factor of 10 from one
instance size to the next, while if the rate were cubic (the worst-case
bound) it would go up by factors of about 32. The times on the shop
and disk classes for both codes are thus consistent with a cubic growth
rate, whereas the times for amat, crane, coin, and stilt are much
closer to quadratic, at least in the case of the AP code used by Patch.

Ezxperimental Analysis of Heuristics for the ATSP 27

Patch
Percent above HK Time in Seconds
Class 100 316 1000 3162 | 100 316 1000 3162
tmat .84 .64 17 .00 .03 .22 1.8 29
amat 10.95 6.50 2.66 1.88 .03 .22 1.9 18
shop 1.15 .59 .39 .24 | .04 48 8.4 260
disk 9.40 2.35 .88 .30 | .03 .26 2.9 75

super 1.86 2.84 3.99 6.22 | .02 .19 1.7 29
crane 9.40 10.18 9.45 8.24 | .03 21 1.5 23
coin 16.48 16.97 17.45 18.20 | .02 18 1.4 17
stilt 23.33 2279 23.18 2441 | .03 .24 2.2 29
rtilt 17.03 1891 1838 19.39 | .03 .28 2.9 54

cop
Percent above HK Time in Seconds
Class 100 316 1000 3162 | 100 316 1000 3162
tmat b7 .36 .16 .00 .01 12 7 15
amat 9.31 3.15 2.66 1.01 .01 .15 .6 26
shop .68 .36 .19 10 | .08 141 20.1 1152
disk 6.00 1.13 .51 15 | .03 31 8.7 297

super 1.01 1.20 1.22 2.06 | .03 .24 4.6 243
crane 10.32 9.08 7.28 6.21 | .04 44 3.5 53
coin 16.44 17.68 16.23 16.06 | .02 .10 1.2 22
stilt 22.48 2331 2280 2290 | .07 94 8.1 105
rtilt 19.62 22.86 2095 20.37 | .05 .33 5.6 117

Zhang
Percent above HK Time in Seconds
Class 100 316 1000 3162 | 100 316 1000 3162
tmat .06 .01 .00 .00 | .03 27 2.5 30
amat 97 .16 .04 .04 .04 A7 7.6 296
shop .20 .08 .03 01| .06 1.02 19.6 460
disk 1.51 27 .02 .01 .05 .56 6.4 105
super 27 17 21 .43 .04 .61 20.4 995
crane 4.36 4.29 4.05 410 | .07 1.96 66.7 3176
coin 820 11.03 11.14 11.42 10 3.82 1684 9610
stilt 10.75 13.99 12.66 12.86 A1 411 163.7 4184
rtilt 9.82 12.20 11.81 11.45 A3 437 178.0 9594

Table 1.7. Tour quality and normalized running times for Cycle Cover Heuristics.

28 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

CoP AP Code Patch and Zhang AP Code
Time in Seconds Time in Seconds

Class 100 316 1000 3162 | 100 316 1000 3162
tmat .00 .05 .6 12 03 .22 1.8 26
amat .01 .06 .5 9 .03 .22 1.8 17
shop .02 .37 8.1 262 | .03 .47 8.3 251
disk .00 .08 1.7 63 .03 .26 2.8 72
super .00 .03 .5 9 .02 .18 1.7 26
crane 02 .09 .8 12 | .03 .21 1.5 19
coin .00 .02 1 3 .02 17 1.2 14
stilt .01 .26 2.0 27 .03 .23 2.0 26
rtilt .01 .15 2.1 43 .03 27 2.7 49

Table 1.8. Normalized running times for reading an instance and solving the corre-
sponding Assignment Problem with the AP codes used by COP, Patch, and Zhang.

These growth rates should be compared to those for 3opt in Table 1.6,
which seems to be subquadratic, at least within this range. (Asymptoti-
cally it must be at least quadratic, because it needs to read the instance,
but within this range reading time is not the dominant running time com-
ponent.) Thus, although Patch is faster than 3opt for all classes when
N < 316, it begins losing ground thereafter. It is significantly slower on
shop when N = 1,000, and on five additional classes when N = 3,162.

When we turn to COP and Zhang, additional factors affect running
times. Most importantly, these heuristics may call the AP code more
than once, and the number of calls also varies among instance classes,
adding further to overall running time variability. For Patch the ratio
between slowest and fastest class running times at 3,162 cities is about
15, whereas for COP it is 77 and for Zhang it is 320.

Because of its extra AP calls and despite its often-faster AP code, COP
is typically slower than Patch. The only exceptions are those classes
where the initial cycle cover typically has no 2-cycles, as appears to be
the case for tmat. In such cases COP is just a version of PATCH with
different tie-breaking rules. COP does, however, get better results than
PATCH on all but one of the classes (rtilt), although there isn’t much
room for improvements on Patch’s results for tmat, shop, and the larger
instances of disk.

Zhang finds better tours than Patch and COP for all classes. (In the
first case this is unsurprising, since the first step of Zhang is to perform
Patch.) Where there is room for substantial improvements, Zhang’s
improvements are comparatively larger (although still not enough to
beat 3opt on the coin and stilt instances). Zhang’s better tour quality
often comes at a significant running time cost, however. For example,

Ezxperimental Analysis of Heuristics for the ATSP 29

Zhang is over 100 times slower than COP on the larger coin instances.
Its running time growth rates look worse than quadratic for all classes
except possibly tmat, and worse even than cubic for amat, super, crane,
coin, and rtilt. Only two of these five (amat and super) have small
HK-AP gaps, however, and in neither of these two cases is the time at
N = 3,162 nearly as bad as for the last four classes. Moreover, for
the shop and larger disk instances Zhang is actually faster than COP.
Indeed, for the five classes with small HK-AP gaps and instances with
1,000 or fewer cities, Zhang gets its good results while never averaging
more than 20.4 normalized seconds. Thus assuming one is not dealing
with larger instances and one has small gaps, Zhang might well be the
heuristic of choice. For instance classes that have larger HK-AP gaps,
however, there are better alternatives, as we shall see in the next section.

4.5. Local and Repeated Local Search Heuristics

Table 1.9 presents the results for the Johnson-McGeoch implementa-
tion of the Kanellakis-Papadimitriou heuristic (KP) and iterated versions
of two simpler local search heuristics: the Johnson-McGeoch implemen-
tation of Iterated 3-Opt (I3opt) and the Burke, Cowling, and Keuthen
implementation of their Iterated HyperOpt heuristic (Ihyper-3). All
three implementations perform 3-Opt as part of their search, so it is no
surprise that they find better tours than does 3opt for all classes. For
KP, this often comes with only a small running time penalty. For five of
the classes (amat, super, crane, and stilt), its running time is within
50% or less of that for 3opt.

Comparisons to the cycle cover heuristics are more complicated, but
reflect the correlation for the latter between good behavior and small
HK-AP gaps. For the first four classes, KP is outperformed by the faster
Patch heuristic and the comparably fast COP heuristic on all but the
100-city instances of amat and disk, where KP finds significantly better
tours, although not ones as good as those found by Zhang. Interestingly,
for all four classes KP’s tours get progressively worse as N increases,
while those of the cycle cover heuristics get progressively better. On the
other hand, for the last three classes KP finds much better tours than
Zhang in much less time, with the time advantage growing dramatically
with N. For crane it finds tours that are almost as good as Zhang’s
with a time advantage that grows to a factor of over 100 for N = 3,162.

I3opt is slower than KP for all classes except disk. For most classes
its running time is about 10 times slower for 100 cities, but the ratio
declines as N increases. On the other hand, its tours for classes crane,
coin, and stilt are the best we have seen so far, and its tours for

30 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

KP
Percent above HK Time in Seconds
Heur 100 316 1000 3162 100 316 1000 3162
tmat 1.41 2.23 3.09 4.03 11 .64 4.2 49
amat 5.82 6.95 8.99 11.51 .04 .36 2.3 27
shop 1.57 2.92 3.88 4.54 2.08 17.46 118.2 1005
disk 2.99 3.81 5.81 9.17 .05 .55 8.2 324

super 1.05 1.29 1.59 2.10 .04 .24 1.7 19
crane 4.58 4.45 4.78 4.26 .05 .32 2.0 22
coin 5.74 6.59 6.15 6.34 .04 27 1.8 20
stilt 8.57 8.79 8.80 8.15 .09 .56 3.0 31
rtilt 6.06 7.35 8.33 9.68 27 2.15 14.9 133

I3o0pt
Percent above HK Time in Seconds
Heur 100 316 1000 3162 100 316 1000 3162
tmat .30 .85 1.63 2.25 1.02 3.93 15.5 98
amat 5.10 13.27 27.12 45.53 .50 2.59 14.3 116
shop .49 4.02 9.23 10.76 9.90 37.73 102.9 401
disk 97 2.32 3.89 5.29 .49 3.14 24.1 293
super .28 .61 1.06 1.88 .40 1.77 7.8 59
crane 1.98 2.27 1.95 2.12 .45 2.22 12.1 115
coin 2.98 3.37 3.48 3.83 .43 2.06 10.9 110
stilt 3.29 3.95 4.32 4.28 .92 5.21 29.1 256
rtilt 1.69 4.22 1297 18.41 3.08 24.22 98.2 412

Thyper-3
Percent above HK Time in Seconds
Heur 100 316 1000 3162 100 316 1000 3162
tmat 1.29 2.71 4.96 7.29 2.82 15.45 62.7 1048
amat 15.29 34.74 66.66 103.10 1.93 15.78 81.9 529
shop .46 1.85 5.05 9.36 | 10.07 75.38 300.3 1077
disk 2.02 6.53 10.52 14.77 2.02 21.95 166.5 1812
super .62 1.53 2.81 4.69 1.35 9.09 47.6 741
crane 1.83 2.46 2.66 3.28 1.58 11.37 75.8 920
coin 2.22 3.09 3.83 4.60 1.44 9.99 62.6 675
stilt 3.20 4.32 5.67 6.45 2.38 18.35 91.0 869
rtilt 1.31 2.16 4.63 8.10 4.33 42.26 300.2 2531

Table 1.9. Tour quality and normalized running times for KP, I3opt, and IThyper-3.

Ezxperimental Analysis of Heuristics for the ATSP 31

super have only been bested by Zhang which took more than 10 times
as long. It does perform relatively poorly, however, on the four classes
with smallest HK-AP gap and on rtilt.

Turning to Thyper-3, we see substantially greater running times than
for either KP or I3opt. For the four classes with smallest HK-AP gaps,
it is also significantly slower than Zhang and produces worse results. For
the remaining classes it is outperformed by I3opt except for the rtilt
class and the 100-city crane and stilt instances, where it produces the
best results seen so far.

Table 1.10 presents results for the two most sophisticated repeated lo-
cal search codes in this study: The Johnson-McGeoch implementation of
Iterated Kanellakis-Papadimitriou (IKP) and Helsgaun’s Helsgaun vari-
ant on Lin-Kernighan.

Note that IKP finds better tours than does I3opt for all classes, but
at much greater running time cost. It performs poorly in the same

IKP
Percent above HK Time in Seconds
Heur 100 316 1000 3162 100 316 1000 3162
tmat .09 .14 41 .65 5.91 31.21 189.1 1934
amat .56 .74 1.29 2.43 .34 3.19 29.6 488
shop 49 236 3.66 4.55 | 214.48 1585.19 7449.1 31738
disk .56 48 .96 1.77 43 12.57 479.4 26277
super .13 .15 .28 .52 17 1.33 10.2 138
crane 1.46 1.79 1.27 1.36 .44 3.52 23.5 297
coin 2.71 2.99 2.66 2.87 .35 2.35 16.9 231
stilt 3.00 354 396 4.13 4.78 89.67 1577.0 30916
rtilt 1.80 4.12 7.29 8.89 25.93 657.80 7420.4 61939

Helsgaun
Percent above HK Time in Seconds
Heur 100 316 1000 3162 100 316 1000 3162
tmat .03 .00 .00 .00 1.00 10.22 91.8 1634
amat .29 .08 .03 .03 .80 7.89 75.6 1802
shop .05 .02 .01 .02 .87 20.17 483.0 13671
disk .24 .06 .01 .01 1.00 9.39 93.9 1914
super .06 .04 .05 .13 1.07 7.67 77.3 1828
crane 1.21 1.30 1.02 .92 1.20 14.89 162.2 4040
coin 1.15 147 1.61 2.16 1.40 17.45 205.4 4975
stilt 1.95 233 261 3.39 1.67 18.67 221.0 5863
rtilt .69 99 150 2.76 2.00 23.45 318.2 8574

Table 1.10. Tour quality and normalized running times for IKP and Helsgaun.

32 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

places, however. For the four classes with smallest HK-AP gap Zhang
finds better tours in less time. For the intermediate class super, the
two heuristics are roughly equal in tour quality while IKP takes twice
as long (on the same machine). On the problematic rtilt class, IKP is
marginally beaten by Ihyper-3, which takes much less time.

The final heuristic Helsgaun has the best average tour length for
all classes and all N (except the 3162-city shop instance, where it was
beaten by Zhang, which was 0.1% over HK as opposed to Helsgaun’s
0.2%). Helsgaun also has substantial running times, although ones that
are exceeded by those for Zhang on two classes and by IKP on four. This
is clearly the general-purpose algorithm of choice when time is not an
issue or when instances are small.

As a final point of comparison, Table 1.11 presents results for the
“heuristic” that computes the optimal tour length using Concorde’s
STSP optimization code via our ATSP-to-STSP transformation, with
Zhang or Helsgaun run to provide an initial upper bound. Note that
for the four classes with smallest HK-AP gap, the running time for op-
timization, if exponential, is not yet showing strong evidence of that
behavior, although the data suggests such behavior for coin. Indeed,
optimization is actually faster than IKP for all sizes of classes tmat and
shop and for the larger sizes of disk. It also beats Helsgaun on the
larger tmat instances, and is even faster than computing the HK bound
for these and the largest disk instance. Average times should not be
trusted, however, especially for the last five classes, where running times
are far more variable than were the times for our heuristics. The times

Optimization via Concorde

Percent above HK Normalized Time in Seconds
Heur 100 316 1000 3162 100 316 1000 3162
tmat .03 .00 .00 .00 4.14 11.50 38.0 568
amat .29 .08 .02 .01 16.60 109.00 399.0 40317
shop .05 .02 .01 .00 54.80 315.00 1039.0 20234
disk .24 .06 .01 .01 15.20 40.00 160.0 1176
super .05 .03 .01 - 4.30 33.60 1629.0 -
crane 1.21 1.30 - - 117.00 7081.00 - -
coin 1.06 1.36 - - 193.00 83285.00 - -
stilt 1.86 — — - | 1119.00 — — —
rtilt .68 .67 - - 82.00 1734.00 - -

Table 1.11. Results for optimization via Concorde. A “~” entry indicates that op-

timization was not feasible via this approach. Running times include the time for
running Zhang (first four classes) or Helsgaun (last five) to obtain an initial upper
bound, but not the (relatively small) time for the ATSP-to-STSP transformation.

Ezxperimental Analysis of Heuristics for the ATSP 33

for the 100-city stilt instances ranged from 5 seconds to 3500 seconds.
The gap between the optimal tour length and the HK bound for a given
class and value of N was relatively consistent, however. Note that the
optimal solution value is quite close to the HK bound for classes with
small HK-AP gap, but somewhat farther away when the gap is larger.

4.6. Results Organized by Instance Class

In the last three “Results” sections, we more directly address the
question of which heuristics one should use in practice. Here we consider
what one should do if one knows a great deal about the application in
question, as we now do in the case of our nine random asymmetric
instance classes. The choice of what to use of course depends on the
relative importance one places on tour quality and running time. In
Tables 1.12 through 1.16 we present for each of those nine classes the
average tour quality and normalized running times for all the heuristics
in this study. This expands on the more restricted class-based results
of Section 4.2 by showing the full range of quality/time tradeoffs for
each class. We include the previously-ignored results for the Greedy and
Repeated Assignment heuristics and data on the HK-AP and Opt-HK
gaps and the time for computing the associated bounds. The AP bounds
were computed using the AP code of Patch. All codes except COP and
Ihyper-3 were run on the same 196 Mhz MIPS R10000 processors, and
running time comparisons among all but those two are thus unaffected
by normalization errors (although the actual values presented may be
affected by their translation to the target machine).

In order to fit the tables to the width of the page, we use the abbrevia-
tions “Hgaun” for Helsgaun and “Ihyper” for Ihyper-3. The identities
of the algorithms behind the names are all explained in Section 3. For
each class we have sorted the heuristics by their average excess over the
HK bound on 3,162-city instances. Note that the ordering would often
have been significantly different had we sorted on the 100-city results.
Beyond these remarks, we will let the results speak for themselves.

4.7. Robustness of the Heuristics

In this section we consider the question of which heuristics to choose
for general purpose ATSP tour generation in cases where one may not
yet know much about the instance structure. For such uses, one would
want a heuristic that was relatively robust, producing good results in
reasonable time for a wide variety of instance types, the meaning of
“good” and “reasonable” of course depending on the situation. As a

34 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

tmat
Percent above HK Time in Seconds
Heur 100 316 1000 3162 100 316 1000 3162
NN 38.20 37.10 37.55 36.66 .03 .24 1.7 20
Greedy 31.23 29.04 26.53 26.25 .03 .26 1.7 20
3opt 6.44 9.59 12.66 16.20 .19 1.71 5.5 20
Thyper 1.29 2.71 4.96 7.29 2.82 15.45 62.7 1048
KP 1.41 2.23 3.09 4.03 11 .64 4.2 49
I3opt .30 .85 1.63 2.25 1.02 3.93 15.5 98
IKP .09 .14 41 .65 5.91 31.21 189.1 1934
RA 4.88 3.10 1.55 .46 .06 .63 7.8 278
Patch .84 .64 17 .00 .03 .22 1.8 29
cop b7 .36 .16 .00 .01 12 7 15
Zhang .06 .01 .00 .00 .03 27 2.5 30
Hgaun .03 .00 .00 .00 1.00 10.22 91.8 1634
OPT .03 .00 .00 .00 4.14 11.50 38.0 568
HK .00 .00 .00 .00 77 4.46 43.8 968
AP -.34 -.16 -.03 .00 .03 .22 1.8 26
amat
Percent above HK Time in Seconds
Heur 100 316 1000 3162 100 316 1000 3162
Greedy | 243.09 362.86 418.56 695.29 .04 27 1.9 21
NN 195.23 253.97 318.79 384.90 .03 .26 1.9 21
RA 86.60 100.61 110.38 134.14 .07 .69 10.2 265
3opt 39.23 58.57 83.77 112.08 .19 1.75 5.8 21
Thyper 15.29 34.74 66.66 103.10 1.93 15.78 81.9 529
I3opt 5.10 13.27 27.12 45.53 .50 2.59 14.3 116
KP 5.82 6.95 8.99 11.51 .04 .36 2.3 27
IKP .56 .74 1.29 2.43 .34 3.19 29.6 488
Patch 10.95 6.50 2.66 1.88 .03 .22 1.9 18
cop 9.31 3.15 2.66 1.01 .01 .15 .6 26
Zhang 97 .16 .04 .04 .04 A7 7.6 296
Hgaun .29 .08 .03 .03 .80 7.89 75.6 1802
OPT .29 .08 .02 .01 | 16.60 109.00 399.0 40317
HK .00 .00 .00 .00 .70 4.33 36.7 703
AP -.65 -.29 -.04 -.04 .03 .22 1.8 17

Table 1.12. Tour quality and normalized running times for classes amat (Random
Asymmetric Matrices) and tmat (Random Asymmetric Matrices closed under shortest
paths).

Ezxperimental Analysis of Heuristics for the ATSP 35
shop
Percent above HK Time in Seconds
Heur 100 316 1000 3162 100 316 1000 3162
Greedy 49.34 56.07 61.55 66.29 .03 .26 2.1 40
NN 16.97 14.65 13.29 11.87 .03 .23 2.5 20
3opt 3.02 7.25 10.22 10.88 .23 1.78 5.6 21
I3opt .49 4.02 9.23 10.76 9.90 37.73 102.9 401
Thyper .46 1.85 5.05 9.36 10.07 75.38 300.4 1077
IKP .49 2.36 3.66 4.55 | 214.48 1585.19 7449.1 31738
KP 1.57 2.92 3.88 4.54 2.08 17.46 118.2 1005
RA 4.77 2.77 1.69 1.05 .10 1.68 28.7 1103
Patch 1.15 .59 .39 .24 .04 .48 8.4 260
CcopP .68 .36 .19 .10 .08 1.41 29.1 1152
Hgaun .05 .02 .01 .02 87 20.17 483.0 13671
Zhang .20 .08 .03 .01 .06 1.02 19.6 460
OPT .05 .02 .01 .00 54.80 315.00 1039.0 20234
HK .00 .00 .00 .00 1.53 10.12 104.3 1581
AP -.50 -.22 -.15 -.07 .03 47 8.3 251
disk
Percent above HK Time in Seconds
Heur 100 316 1000 3162 100 316 1000 3162
Greedy | 188.82 307.14 625.76 1171.62 .03 .28 2.7 23
NN 96.24 102.54 115.51 161.99 .04 27 1.9 23
3opt 12.11 16.96 20.85 25.64 .19 1.82 6.1 23
RA 86.12 58.27 42.45 25.32 .07 .92 18.9 658
Ihyper 2.02 6.53 10.52 14.77 2.02 21.95 166.5 1812
KP 2.99 3.81 5.81 9.17 .05 .55 8.2 324
I3o0pt 97 2.32 3.89 5.29 .49 3.14 24.1 293
IKP .56 .48 .96 1.77 43 12.57 479.4 26277
Patch 9.40 2.35 .88 .30 .03 .26 2.9 75
CcaopP 6.00 1.13 bl .15 .03 31 8.7 297
Zhang 1.51 27 .02 .01 .05 .56 6.4 105
Hgaun .24 .06 .01 .01 1.00 9.39 93.9 1914
OPT .24 .06 .01 .01 15.20 40.00 160.0 1176
HK .00 .00 .00 .00 .85 4.84 53.7 1929
AP -2.28 =71 -.34 -.11 .03 .26 2.8 72

Table 1.18. Tour quality and normalized running times for classes shop (50 Processor
No-Wait Flowshop Scheduling) and disk (Random Disk Head Motion Scheduling).

36 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

super
Percent above HK Time in Seconds

Heur 100 316 1000 3162 100 316 1000 3162
Greedy | 48.73 46.76 4233 35.94 .04 .24 1.7 20
NN 8.57 8.98 9.75 10.62 .03 21 1.5 18
RA 4.24 5.22 6.59 8.34 .01 47 2.1 167
3opt 3.12 4.30 5.90 7.94 .15 1.43 4.8 18
Patch 1.86 2.84 3.99 6.22 .02 .19 1.7 29
Thyper .62 1.53 2.81 4.69 1.36 9.09 47.6 741
KP 1.05 1.29 1.59 2.10 .04 .24 1.7 19
cop 1.01 1.20 1.22 2.06 .03 .24 4.6 243
I3opt .28 .61 1.06 1.88 .40 1.77 7.8 59
IKP .13 .15 .28 .52 17 1.33 10.2 138
Zhang 27 17 .21 .43 .04 .61 20.4 995
Hgaun .06 .04 .05 .13 1.07 7.67 77.3 1828
OPT .05 .03 .01 - 4.30 33.60 1629.0 -
HK .00 .00 .00 .00 .68 4.52 40.4 900
AP -1.04 -1.02 -1.17 -1.61 .02 .18 1.7 26

crane

Percent above HK Time in Seconds

Heur 100 316 1000 3162 100 316 1000 3162
RA 40.80 50.33 53.60 54.91 .07 .67 7.0 251
NN 40.72 41.66 43.88 43.18 .03 .26 1.9 21
Greedy | 41.86 44.09 39.70 41.60 .03 .27 1.9 21
3opt 9.48 9.41 10.65 10.64 .19 1.76 7.3 22
Patch 9.40 10.18 9.45 8.24 .03 .21 1.5 23
cop 10.32 9.08 7.28 6.21 .04 .44 3.5 53
KP 4.58 4.45 4.78 4.26 .05 .32 2.0 22
Zhang 4.36 4.29 4.05 4.10 .07 1.96 66.7 3176
Thyper 1.83 2.46 2.66 3.28 1.58 11.37 75.8 920
I3opt 1.98 2.27 1.95 2.12 .45 2.22 12.1 115
IKP 1.46 1.79 1.27 1.36 .44 3.52 23.5 297
Hgaun 1.21 1.30 1.02 .92 1.20 14.89 162.2 4040
OPT 1.21 1.30 - — | 117.00 7081.00 - -
HK .00 .00 .00 .00 .95 7.11 357.4 669
AP -7.19 -6.34 -5.21 -4.43 .03 .21 1.5 19

Table 1.14. Tour quality and normalized running times for classes super (Approxi-
mate Shortest Common Superstring) and crane (Stacker-Crane Scheduling).

Ezxperimental Analysis of Heuristics for the ATSP 37
coin
Percent above HK Time in Seconds
Heur 100 316 1000 3162 100 316 1000 3162
RA 52.74 64.95 68.78 71.20 .06 .56 6.3 140
Greedy 48.73 46.76 42.33 35.94 .04 .24 1.7 20
NN 26.08 26.71 26.80 25.60 .03 .23 1.7 20
Patch 16.48 16.97 17.45 18.20 .02 .18 1.4 17
cop 16.44 17.68 16.23 16.06 .02 .10 1.2 22
Zhang 8.20 11.03 11.14 11.42 .10 3.82 168.4 9610
3opt 8.06 9.39 9.86 9.92 .18 1.62 5.3 20
KP 5.74 6.59 6.15 6.34 .04 27 1.8 20
Thyper 2.22 3.09 3.83 4.60 1.43 9.99 62.5 674
I3opt 2.98 3.37 3.48 3.83 .43 2.06 10.9 110
IKP 2.71 2.99 2.66 2.87 .35 2.35 16.9 231
Hgaun 1.15 1.47 1.61 2.16 1.40 17.45 205.4 4975
OPT 1.05 1.36 - - 193.00 83285 - -
HK .00 .00 .00 .00 1.11 7.64 54.8 394
AP -15.04 -13.60 -13.96 -13.09 .02 17 1.2 14
stilt
Percent above HK Time in Seconds
Heur 100 316 1000 3162 100 316 1000 3162
Greedy | 106.25 143.89 178.34 215.84 .04 .28 1.9 23
RA 55.79 62.76 65.03 71.48 .07 .61 8.5 241
NN 30.31 30.56 27.62 24.42 .03 .30 1.9 48
Patch 23.33 22.79 23.18 24.41 .03 .24 2.2 29
cop 22.48 23.31 22.80 22.90 .07 .94 8.1 105
Zhang 10.75 13.99 12.66 12.86 11 4.11 163.7 4184
3opt 11.39 12.65 12.62 12.27 .19 1.80 8.2 22
KP 8.57 8.79 8.80 8.15 .09 .56 3.0 31
Thyper 3.20 4.32 5.67 6.45 2.38 18.35 91.0 870
I3opt 3.29 3.95 4.32 4.28 .92 5.21 29.1 256
IKP 3.00 3.54 3.96 4.13 4.78 89.67 1577.0 30916
Hgaun 1.95 2.33 2.61 3.39 1.67 18.67 221.0 5863
OPT 1.86 - — - | 1119.00 — — —
HK .00 .00 .00 .00 1.24 8.63 67.4 368
AP -18.41 -14.98 -14.65 -14.04 .03 .23 2.0 26

Table 1.15. Tour quality and normalized running times for classes coin (Coinbox
Collection Routing) and stilt (Tilted Supnorm Routing).

38 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

rtilt
Percent above HK Time in Seconds
Heur 100 316 1000 3162 100 316 1000 3162
Greedy | 350.12 705.56 1290.63 2350.38 .03 .28 2.0 23
RA 61.95 73.47 78.27 82.03 .08 1.06 19.3 607
NN 28.47 28.28 27.52 24.60 .04 .26 1.9 22
COoP 19.62 22.86 20.95 20.37 .05 .33 5.6 117
3opt 10.04 13.09 18.00 19.83 .19 2.05 6.6 23
Patch 17.03 18.91 18.38 19.39 .03 .28 2.9 54
I3opt 1.69 4.22 12.97 18.41 3.08 24.22 98.2 412
Zhang 9.82 12.20 11.81 11.45 13 4.37 178.0 9594
KP 6.06 7.35 8.33 9.68 27 2.15 14.9 133
IKP 1.80 4.12 7.29 8.89 | 25.93 657.80 7420.4 61939
Ihyper 1.31 2.16 4.63 8.10 4.32 42.26 300.2 2531
Hgaun .69 .99 1.50 2.76 2.00 23.45 318.2 8574
OPT .68 .67 .68 - | 82.00 1734.00 - -
HK .00 .00 .00 .00 1.37 8.88 87.5 373
AP -20.42 -17.75 -17.17 -16.84 .03 27 2.7 49

Table 1.16. Tour quality and normalized running times for class rtilt (Tilted Rec-
tilinear Routing). Optima for 1000-city instances were computed by symmetric code
applied to equivalent rect.

first attempt at providing such advice, we propose using the following
empirical metric.

In Table 1.17 we summarize the worst average results (both excess
over the HK bound and normalized running time) obtained over three
different subsets of the classes, with heuristics ordered by their tour
quality for 3,162-city instances. The first subset consists of all of the
nine asymmetric instance classes except the Random Distance Matrix
class amat. (We omit amat because such structureless instances are un-
likely to arise in any real world application, and if one wants to study
them for some mathematical reason, we already have provided detailed
information about which heuristics to use in the previous section.) This
is the robustness criterion that might apply if one knows nothing about
the instance(s) for which tours are desired. The second and third sub-
sets yield robustness criteria that might be relevant if we at least knew
something about the HK-AP gaps for the instances in question. The
second subset consists of the four classes (other than amat) for which
the average HK-AP gap is less than 2% for all values of N we cover, and
the third consists of the remaining four classes, for which the gaps range
from 4% to over 20%.

The table omits the Greedy and NN tour construction heuristics be-
cause both are dominated with respect to the robustness metrics by

Ezxperimental Analysis of Heuristics for the ATSP 39
Worst Results over All Asymmetric Classes except amat
Percent over HK Normalized Time in Seconds
Heur 100 316 1000 3162 100 316 1000 3162
3opt 12.11 16.96 20.85 25.64 .23 2.05 8.2 23
Patch 23.33 2279 2318 2441 .04 .48 8.4 260
COoP 22.48 23.31 2280 22.90 .08 1.41 29.1 1152
I3opt 3.29 4.22 1297 1841 9.90 37.73 102.9 412
Thyper-3 3.20 6.53 10.52 14.77 10.07 75.38 300.3 2531
Zhang 10.75 13.99 12.66 12.86 13 4.37 178.0 9610
KP 8.57 8.79 8.80 9.68 2.08 17.46 118.2 1005
IKP 3.00 4.12 7.29 8.89 | 214.48 1585.19 7449.1 61939
Helsgaun 1.95 2.33 2.61 3.39 2.00 23.45 483.0 13671
WmstRemﬂtsovm:{tmat, ShOp, disk, super}
3opt 12.11 16.96 20.85 25.64 .23 2.05 8.2 23
Thyper-3 2.02 6.53 10.52 14.77 10.07 75.38 300.3 1812
I3opt 97 4.02 9.23 10.76 9.90 37.73 102.9 401
KP 2.99 3.81 5.81 9.17 2.08 17.46 118.2 1005
Patch 9.40 2.84 3.99 6.22 .04 .48 8.4 260
IKP .56 2.36 3.66 4.55 | 214.48 1585.19 7449.1 31738
COP 6.00 1.20 1.22 2.06 .08 1.41 29.1 1152
Zhang 1.51 27 .21 43 .06 1.02 204 995
Helsgaun .24 .06 .05 .13 1.07 20.17 483.0 13671

Worst Results over

{crane, coin, stilt, and rtilt}

Patch
cop

3opt
I3o0pt
Zhang

KP

IKP
Thyper-3
Helsgaun

23.33 2279 23.18
22.48 23.31 22.80
11.39 13.09 18.00
3.29 4.22 1297
10.75 13.99 12.66
8.57 8.79 8.80
3.00 4.12 7.29
3.20 4.32 5.67
1.95 2.33 2.61

24.41
22.90
19.83
18.41
12.86
9.68
8.89
8.10
3.39

.03 .28 2.9 54
.07 94 8.1 117
.19 2.05 8.2 23
3.08 24.22 98.2 412
13 4.37 178.0 9610
27 2.15 14.9 133

25.93 657.80 74204 61939
4.33 42.26 300.2 2531
2.00 23.45 318.2 8574

Table 1.17. Robustness metrics for the heuristics in this study.

3opt. We also omit the cycle cover heuristic RA, which is dominated for
all instance classes by Patch.

A first remark is that many of the values in the table would improve if
we could simply delete the classes shop and rtilt from the subsets, as

40 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

these tend to cause the most trouble for many of the heuristics. However,
as the results stand, certain heuristics do jump out as good performers.
Helsgaun is of course the best tour generator if running time is not an
issue or N is small. Zhang and Patch both might offer appealing trade-
offs for instances with small HK-AP gaps when less time is available, as
would KP for instances with large gaps. Two other contenders are COP
for small-gap instances and Ihyper-3 for large-gap instances, but the
first is perhaps not sufficiently faster than Zhang to justify its poorer
performance, and the second is not sufficiently faster than Helsgaun.

In the next section we shall see how well this advice serves us, by
applying Patch, Zhang, KP, and Helsgaun to our suite of realworld
instances.

4.8. Performance on Real-World Instances

In Table 1.18 we present the excesses over optimal and the normalized
running times for the codes Patch, KP, Zhang, and Helsgaun on our
testbed of real world instances. Within groups, the instances are ordered
by increasing value of HK-AP gap, and groups are ordered by increasing
average HK-AP gap. Note that here we are presenting the excess over
the optimal tour length, not the HK bound, since the former has been
successfully computed for all these instances (often in time less than
that required by Helsgaun). All codes were run on the same machine so
normalization errors do not affect running time comparisons. However,
since instance sizes do not align precisely with the sizes for which our
benchmark normalization runs were performed we settled for a single
normalization factor of 0.5. This is a reasonable compromise between
the actual factors for the 196 Mhz MIPS R10000 to 500 Mhz Alpha
normalization, which were .6667, .5556, .3863, and .4262 for N = 100,
316, 1,000, and 3,162 respectively.

Note that the Zhang does much better than might have been expected
based on our results for random instance classes, getting within 1% of
optimal for all but one instance (atex600), for which it is still only
2.6% over optimal. Moreover, it never takes more than a minute on
any instance. This is in contrast to Helsgaun which, although it is
within 1% of optimum for all the instances, has gigantic running times
for many of them (over 20 hours for dc932). Of our two choices for
fast heuristics, Patch is by far the faster overall, often a factor of 10
faster than KP, and provides comparable results, with the exception of
atex600, where it is almost 35% over optimal compared to 4.25% for
KP. Moreover, Patch is itself within 1% of optimal for all the instances
through the dc class, and is often significantly faster than Zhang. (The

Ezxperimental Analysis of Heuristics for the ATSP 41

% Excess over Optimal Normalized Running Time

Instance P KP Z H P KP Z H 0PT

rbg323 .00 .78 .00 .00 .22 3.71 .22 46.5 35.5
rbg358 .00 1.50 .00 .00 27 3.33 27 120.5 19.5
rbg403 .00 .22 .00 .00 .48 9.00 48 221.5 22.9
rbg443 .00 A1 .00 .00 .53 11.74 .52 164.0 20.6
td100 .00 .00 .00 .00 .02 .20 .02) 4.1
td1000 .00 .01 .00 .00 | 1.87 7.29 1.87 140.5 370.5
td316 .00 .00 .00 .11 .20 3.87 21 24.5 123.5
big702 .00 210 .00 .41 .98 6.04 97 119.0 149.6
dc849 .04 .62 .00 .23 | 2.67 114.80 26.33 2180.0 378.3
dcb63 .39 .79 .09 12 | 149 11195 10.23 2231.5 1449.7
dc134 .25 .57 18 .02 .04 13.43 .14 6.5 63.7
dc895 .55 .60 42 .25 | 4.74 14443 56.54 22077.0 35926.1
dc176 .81 .67 .09 49 .07 20.48 .19 105.0 195.1
dc112 .26 .39 A3 .28 .03 15.47 A1 4.5 76.2
dc188 .57 .59 23 13 .08 12.98 .19 28.5 122.8
dc932 .30 .26 A3 .26 | 4.98 119.17 43.86 72373.0 147224
dc126 .94 .65 21 .54 .03 22.69 .15 5.5 48.3
ftv170 1.38 4.44 36 .00 .06 .09 .10 2.5 66.3
ftv150 2.57 4.43 .00 .00 .04 .07 .05 1.0 17.4
ftv160 .60 5.89 11 .00 .04 .07 .07 2.0 40.7
ftv130 3.64 216 .00 .00 .03 .06 .07 1.0 26.5
ftv140 2.77 315 .00 .00 .03 .06 .05 1.5 29.5
ftv110 3.32 4.04 .00 .00 .02 .04 .04 1.0 24.9
ftv120 3.09 3.12 .00 .00 .02 .05 .05 1.0 33.5
ftv100 2.69 3.11 .00 .00 .02 .04 .03 1.0 22.6
code198 .00 .00 .00 .00 | .05 .54 .06 6.5 9.0
code253 3.52 .10 28 .28 .09 1.09 .23 24.5 22.6
atex600 | 34.94 425 2.60 .82 .54 3.38 24.03 123.0 -

Table 1.18. Results for realworld instances. Patch, Zhang, and Helsgaun are abbre-
viated by P, Z, and H respectively. The running time for OPT includes both the time
to obtain an initial upper bound using Zhang and the time to run Concorde using
its default settings on the transformed instance. The relatively small time needed to
perform the ATSP to STSP transformation is not included. Instance atex600 could
not be optimized in reasonable time using Concorde’s default settings.

two have roughly equivalent running times for the first eight instances,
with Zhang occasionally appearing slightly faster because of fluctuations
in running times from run to run.)

This suggests various hybrid approaches. For example, one could use
Patch unless the solution gets too far above the AP bound, in which
case KP could be run as a backup. For the current testbed, this strategy
would always get within 4.25% of optimal and never take more than 8
normalized seconds per instance. An analogous Zhang/Helsgaun com-
bination would always get with in 1% in no more than about 2 minutes.

42 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

5. Conclusions and Further Research

In this chapter we have evaluated implementations of a broad range
of heuristics for the ATSP, including the best ones currently available.
We have seen wide varieties of behavior (in tour quality and/or running
time) for the same heuristic, depending on instance class, and we have
reached some tentative conclusions about what strategies to try when
confronting a real-world application, depending on the trade-off one is
willing to make between tour quality and running time.

Our conclusions should be viewed only as preliminary, however. First,
we do not yet know how typical are the random instance classes and
real-world instances in the testbeds covered in this study. As we have
seen, there can be large performance differences depending on instance
structure, and we cannot claim to have contemplated all likely applica-
tions. Based on the results of Section 4.8, one might suppose that the
real world is actually somewhat easier than the hardest of our random
instance classes (e.g. shop and rtilt) assuming one chooses the appro-
priate heuristic. However, there is no guarantee this will always be true.
Conversely, we have been using codes with their default settings, and
it may well be that better performance (e.g., faster times for the same
tour quality) might be obtained by general or class-specific tweaking.

One definite challenge for the future concerns large instances. Here
we set the bound at 3,162 cities, because of the memory constraints for
storing instances using the ©(N?) full distance matrix representation.
For many applications (including the ones behind most of our classes),
there is actually an application-specific linear-space representation for
instances, and there might well be much larger instances for which tours
are needed. Given that essentially all the heuristics we studied here have
running time growth rates of ©(N?), ©(N3), or worse, new algorithmic
ideas may well be needed if we are to deal effectively with such situations.

Acknowledgment. The research of Gregory Gutin was supported in
part by an EPSRC grant. The research of Anders Yeo was supported in
part by the grant “Research Activities in Discrete Mathematics” from
the Danish Natural Science Research Council. The research of Weix-
iong Zhang was supported in part by NSF grants #IRI-9619554, #I1S-
0196057, and #E1A-0113618 and by DARPA cooperative agreements
F30602-00-2-0531 and F33615-01-C-1897. The authors thank Pablo
Moscato for helpful comments on an early draft of the chapter.

References

[1]

2]

D. Applegate, R. Bixby, V. Chvatal, and W. Cook.
Finding tours in the TSP, 1998. Draft available from
http://www.math.princeton.edu/tsp/.

D. Applegate, R.E. Bixby, V. Chvatal, and W. Cook. On
the Solution of Traveling Salesman Problems. Documenta
Mathematica, Extra Volume ICM III:645-656, 1998. The
12/15/1999 release of the Concorde code is currently available from
http://www.math.princeton.edu/tsp/concorde.html.

E. Balas and N. Simonetti. Linear time dynamic pro-
gramming algorithms for new classes of restricted TSPs:
A computational study. INFORMS Journal on Comput-
ing, 13:56-75, 2001. The code is currently available from
http://www.contrib.andrew.cmu.edu/~neils/tsp/index.html.

J. L. Bentley. Fast algorithms for geometric traveling salesman prob-
lems. ORSA Journal on Computing, 4:387-411, 1992.

L. Buriol, P. M. Franca, and P. Moscato. A new memetic algo-
rithm for the asymmetric traveling salesman problem. Submitted
for publication, 2001.

E. K. Burke, P. I. Cowling, and R. Keuthen. Embedded local search
and variable neighborhood search heuristics applied to the travelling
salesman problem. Unpublished manuscript, 2000.

E. K. Burke, P. I. Cowling, and R. Keuthen. Effective local and
guided variable neighborhood search methods for the asymmetric
travelling salesman problem. In E. J. W. Boers, J. Gottlieb, P. L.
Lanzi, R. E. Smith, S. Cagnoni, E. Hart, G. R. Raidl, and H. Ti-
jink, editors, Applications of Fvolutionary Computing, Proceedings
of the FEwvoWorkshops 2001, Lecture Notes in Computer Science
2037, pages 203-212, Berlin, 2001. Springer-Verlag.

G. Carpaneto, M. Dell’Amico, and P. Toth. Exact solution of large-
scale asymmetric traveling salesman problems. ACM Transactions
on Mathematical Software, 21:394-409, 1995.

43

44 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

[9] G. Carpaneto and P. Toth. Some new branching and bounding cri-
teria for the asymmetric traveling salesman problem. Management

Science, 26:736-743, 1980.

[10] J. Cirasella, D.S. Johnson, L.A. McGeoch, and W. Zhang. The
asymmetric traveling salesman problem: Algorithms, instance gener-
ators, and tests. In A.L. Buchsbaum and J. Snoeyink, editors, Algo-
rithm Engineering and Ezperimentation, Third International Work-
shop, ALENEX 2001, Lecture Notes in Computer Science 2153,
pages 32-59. Springer-Verlag, Berlin, 2001.

[11] A. Frieze, G. Galbiati, and F. Maffioli. On the worst-case perfor-
mance of some algorithms for the asymmetric traveling salesman
problem. Networks, 12:23-39, 1982.

[12] F. Glover. Finding a best traveling salesman 4-opt move in the
same time as a best 2-opt move. J. Heuristics, 2(2):169-179, 1996.

[13] F. Glover, G. Gutin, A. Yeo, and A. Zverovich. Construction heuris-
tics and domination analysis for the asymmetric TSP. European J.
Oper. Res., 129:555-568, 2001.

[14] G. Gutin and A. Zverovich. Evaluation of the Contract-or-Patch
Heuristic for the Asymmetric TSP. Submitted.

[15] M. Held and R.M. Karp. The traveling salesman problem and min-
imal spanning trees. Operations Research, 18:1138-1162, 1970.

[16] M. Held and R.M. Karp. The Traveling Salesman Problem and
Minimum Spanning Trees: Part I1. Mathematical Programming, 1:6—
25, 1971.

[17] K. Helsgaun. An effective implementation of the Lin-Kernighan
traveling salesman heuristic. Furopean Journal of Operations Re-
search, 12:106-130, 2000. Source code currently available from the
author’s http://www.dat .ruc.dk/~keld/.

[18] D. S. Johnson, J. L. Bentley, L. A. McGeoch, and E. E. Rothberg.
Near-optimal solutions to very large traveling salesman problems.
Monograph, in preparation, 2003.

[19] D.S. Johnson, L.A. McGeoch, F. Glover, and C. Rego. Website for
the DIMACS Implemenation Challenge on the Traveling Salesman
Problem: http://www.research.att.com/~dsj/chtsp/.

[20] P. C. Kanellakis and C. H. Papadimitriou. Local search for the
asymmetric traveling salesman problem. Oper. Res., 28(5):1066—
1099, 1980.

[21] R.M. Karp and J.M. Steele. Probabilistic analysis of heuristics. In
A H.G. Rinnooy Kan E.L. Lawler, J.K. Lenstra and D.B. Shmoys,

REFERENCES 45

editors, The Traveling Salesman Problem: A Guided Tour of Com-
binatorial Optimization. Wiley, Chichester, 1985.

[22] S. Kataoka and S. Morito. Selection of relaxation problems for a
class of asymmetric traveling salesman problem instances. J. Oper.
Res. Soc. of Japan, 34:233-249, 1991.

[23] D.E. Knuth. The Art of Computer Programming, Volume 2:
Seminumerical Algorithms (2nd Edition). Addison-Wesley, Read-
ing, MA, 1981.

[24] S. Lin and B.W. Kernighan. An effective heuristic algorithm for

the traveling salesman problem. Operations Research, 21:972-989,
1973.

[25] O. Martin, S.W. Otto, and E.W. Felten. Large-step Markov chains
for the TSP incorporating local search heuristics. Operations Re-
search Letters, 11:219-224, 1992.

[26] D.L. Miller and J.F. Pekny. Exact solution of large asymmetric
traveling salesman problems. Science, 251:754-761, 1991.

[27] B. M. Moret, D. A. Bader, and T. Warnow. High-performance algo-
rithmic engineering for computational phylogenetics. In Proc. 2001
Int’l Conf. Computational Science (ICCS 2001), San Francisco. Lec-
ture Notes in Computer Science 2073-2074, Springer Verlag, 2001.

[28] B. M. Moret, S. Wyman, D. A. Bader, T. Warnow, and M. Yan.
A new implementation and detailed study of breakpoint analysis.
In Proc. 6th Pacific Symp. on Biocomputing (PSB 2001), Hawaii,
pages 583-594. World Scientific Pub., 2001.

[29] G. Reinelt. TSPLIB — a traveling salesman problem li-
brary. ORSA Journal on Computing, 3:376-384, 1991.
http://www.iwr.uni-heidelberg.de/groups/comopt/software/
TSPLIB95/.

[30] B.W. Repetto. Upper and Lower Bounding Procedures for the
Asymmetric Traveling Salesman Problem. PhD thesis, Graduate
School of Industrial Administration, Carnegie-Mellon University,

1994.

[31] W. Zhang. Truncated branch-and-bound: A case study on the asym-
metric TSP. In Proc. of AAAI 1993 Spring Symposium on Al and
NP-Hard Problems, pages 160-166, Stanford, CA, 1993.

[32] W. Zhang. Depth-first branch-and-bound versus local search: A
case study. In Proc. 17th National Conf. on Artificial Intelligence
(AAAI-2000), pages 930-935, Austin, TX, 2000.

