
Motivation System of Bivariate Equations Generalization.

Solvability of polynomial equations

over finite fields.

Neeraj Kayal

Institute for Advanced Study / DIMACS

October 4th, 2006



Motivation System of Bivariate Equations Generalization.

Outline

Motivation
Problem Statement
Solvability over finite fields
System of univariate equations.

System of Bivariate Equations
Bivariate Solvability
Algorithm Overview
Second Subproblem
First Subproblem

Generalization.
Outline of steps in generalization.
A conjecture.



Motivation System of Bivariate Equations Generalization.

The problem

• Solvability : Given a finite field Fq and a set of
polynomials

f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) ∈ Fq[x1, . . . , xn]

of total degree at most d , determine whether there exists a
point ā = (a1, . . . , an) ∈ Fn

q such that

f1(ā) = . . . = fm(ā) = 0?



Motivation System of Bivariate Equations Generalization.

Our results

• For any fixed n, Solvability can be decided
deterministically in polynomial time (poly(d ·m · log q)-time).

• Moreover, the parallel time complexity of the algorithm is
poly(log d · log m · log q).
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Handling inequations.

• A modified problem: Given a finite field Fq and a set of
polynomials

f1(x1, . . . , xn), . . . , fm(x1, . . . , xn), g(x1, . . . , xn) ∈ Fq[x1, . . . , xn]

of total degree at most d , determine whether exists a point
ā = (a1, . . . , an) ∈ Fn

q such that

f1(ā) = . . . = fm(ā) = 0 and g(ā) 6= 0.

• Trick (Rabinovich): Introduce a new variable t and
determine if there is a solution to

f1(ā) = . . . = fm(ā) = 0 and t · g(ā) = 1.
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Motivation

• After primality testing, Solvability was the only ”natural
decision problem” known to be in ZPP but not known to be
in P .
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A Note.

• Note: We seek the existence of a solution in the given finite
field Fq itself and not its algebraic closure Fq.

• For existence of solutions in the algebraic closure of Fq,
Hilbert Nullstellensatz implies a deterministic algorithm with
the above complexity bounds.
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Solvability over algebraically closed fields.

• Hilbert’s Nulstellensatz - Polynomials
f1(x̄), . . . , fm(x̄) ∈ F[x̄] have a common solution in the
algebraic closure F of F if and only if there exist polynomials
g1, . . . , gm ∈ F[x̄] such that

g1(x̄) · f1(x̄) + . . . + gm(x̄) · fm(x̄) = 1

.

• This implies that if the number of variables n is fixed then the
existence of a common solution can be determined in NC .
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Solvability over Q.

• Fermat’s Last Theorem. - For any n ≥ 3, the following
system has no solution over the field Q of rational numbers.

xn + yn = 1 , xy 6= 0

• Over Q, Solvability of a bivariate system is not even
known to be decidable.
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Solvability over Z.

• Solvability over Z (integers) is decidable for quadratic
bivariate polynomials.

• Adleman and Manders (1978) show that solubility of a
bivariate quadratic polynomial over natural numbers (N) is
NP-hard.
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Solvability over finite fields

• Problem: Given a finite field Fq and a set of polynomial
equations with Fq-coefficients, determine whether the system
has a common zero.

• (Easy) Solvability over finite fields is NP-complete.
Remains NP-complete even when the field size q is 2 and the
degree of each polynomial is bounded by 2.
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Previous work

• Previous Result: Huang and Wong (1996)
There is a randomized algorithm that decides the solvability of
a system of n-variate equations with time complexity
poly(dcn ·m · log q) and parallel-time complexity
poly(cn · log d · log m · log q).
Here, cn = 2O(n) is a constant that depends on n alone.
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Previous work

• Our Result:
There is a randomized deterministic algorithm that decides
the solvability of a system of n-variate equations with time
complexity poly(dcn ·m · log q) and parallel-time complexity
poly(cn · log d · log m · log q).
Here, cn = 2O(n) is a constant that depends on n alone.
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Univariate Equations.

• Fermat’s Little Theorem: Over a finite field Fq,

xq − x =
∏

α∈Fq

(x − α).

• This implies that a polynomial f (x) has a Fq-root if and only
if

gcd(f (x), xq − x) 6= 1.
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Univariate Equations - parallelization.

• More generally, univariate polynomials
f1(x), . . . , fm(x) ∈ Fq[x ] have a common root if and only if

gcd(f1(x), . . . , fm(x), xq − x) 6= 1.

• Parallelization:

1. Divide the input polynomials into two equal sets and compute
gcd of each set recursively in parallel.

2. For computing gcd of two polynomials, use efficient algorithms
for linear algebra.



Motivation System of Bivariate Equations Generalization.

Univariate Equations - parallelization.

• More generally, univariate polynomials
f1(x), . . . , fm(x) ∈ Fq[x ] have a common root if and only if

gcd(f1(x), . . . , fm(x), xq − x) 6= 1.

• Parallelization:

1. Divide the input polynomials into two equal sets and compute
gcd of each set recursively in parallel.

2. For computing gcd of two polynomials, use efficient algorithms
for linear algebra.



Motivation System of Bivariate Equations Generalization.

Univariate Equations - parallelization.

• More generally, univariate polynomials
f1(x), . . . , fm(x) ∈ Fq[x ] have a common root if and only if

gcd(f1(x), . . . , fm(x), xq − x) 6= 1.

• Parallelization:

1. Divide the input polynomials into two equal sets and compute
gcd of each set recursively in parallel.

2. For computing gcd of two polynomials, use efficient algorithms
for linear algebra.



Motivation System of Bivariate Equations Generalization.

Univariate Equations - parallelization.

• More generally, univariate polynomials
f1(x), . . . , fm(x) ∈ Fq[x ] have a common root if and only if

gcd(f1(x), . . . , fm(x), xq − x) 6= 1.

• Parallelization:

1. Divide the input polynomials into two equal sets and compute
gcd of each set recursively in parallel.

2. For computing gcd of two polynomials, use efficient algorithms
for linear algebra.



Motivation System of Bivariate Equations Generalization.

Outline

Motivation
Problem Statement
Solvability over finite fields
System of univariate equations.

System of Bivariate Equations
Bivariate Solvability
Algorithm Overview
Second Subproblem
First Subproblem

Generalization.
Outline of steps in generalization.
A conjecture.



Motivation System of Bivariate Equations Generalization.

Algorithm: Input and Output

• Input. A finite field Fq and polynomials

f1(x , y), f2(x , y), · · · , fm(x , y) ∈ Fq[x , y ]

.

• Question. Is there a solution to the system

f1(x , y) = f2(x , y) = · · · = fm(x , y) = 0?
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Weil Theorem: intuition

• Question: Given a bivariate polynomial f (x , y)Fq[x , y ], how
many Fq-roots does it have?

• (Easy exercise): For a randomly chosen monic polynomial
g(x) ∈ Fq[x ] of degree d , the expected number of Fq-roots is
1.

• Conjecture: Any bivariate polynomial f (x , y) ∈ Fq[x , y ] has
about q solutions.
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Some counterexamples.

• Consider f (x , y) = (x + y)(x − y) ∈ Fq[x , y ]. It has about 2q
roots.

• Suppose
√
−1 /∈ Fq. Consider

f (x , y) = x2 + y2 ∈ Fq[x , y ].

• Note that

f (x , y) = (x +
√
−1y)(x −

√
−1y)

so that f (x , y) has exactly one Fq-solution, the point (0, 0).
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Absolute Irreducibility.

• Notice that in both these counterexamples f (x , y) admitted a
factorization - either over Fq itself or over its algebraic closure.

• Definition: f (x , y) ∈ Fq[x , y ] is absolutely irreducible if it is
irreducible over the algebraic closure of Fq.

• Example: f (x , y) = y2 − (x3 + 1) ∈ F5[x , y ] is absolutely
irreducible.

• Example: f (x , y) = y2 + x2 ∈ F3[x , y ] is irreducible but not
absolutely irreducible since f (x , y) = (y +

√
−1x)(y −

√
−1x)

over F3(
√
−1)
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The Main Ingredient: Weil Theorem

• Theorem [Weil et al]. If f (x , y) ∈ Fq[x , y ] is an absolutely
irreducible bivariate polynomial, then the equation f (x , y) = 0
has q ± O(d2√q)) solutions.

• There is also a converse to this.
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The converse to Weil’s theorem.

• Assume that f (x , y) is Fq-irreducible.

• Fact - If f (x , y) ∈ Fq[x , y ] is Fq-irreducible but not
absolutely irreducible then any Fq-point on the curve
f (x , y) = 0 is a repeated point (point with multiplicity more
than one) of the curve f (x , y) = 0.

• Fact - A point (a, b) on the curve f (x , y) = 0 is a repeated
point on this curve if and only if it is a common solution to
the equations

f (x , y) = 0 , (
∂f

∂x
)(x , y) = 0
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Algorithm Outline (One equation).

• Input. A finite field Fq and a polynomial f (x , y) of degree d .

• If q is small (≤ d4) use brute force.

• Preprocessing - Make f (x , y) monic with respect to x and
f (x , 0) square-free.

• If f (x , y) has an absolutely irreducible factor then output
SOLUTION EXISTS,

• else if f (x , y) and ∂f
∂x have a common root in Fq × Fq then

output SOLUTION EXISTS,

• else output NO SOLUTION.
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Algorithm Outline (General case).

• Input. Polynomials f1(x , y), f2(x , y), · · · , fm(x , y) ∈ Fq[x , y ].

• If m = 1 use algorithm above.

• Compute h(x , y)
def
= gcd(f1(x , y), f2(x , y))

• Recursively determine if there is a solution to the system
h(x , y) = f3(x , y) = · · · = fm(x , y) = 0. If yes output
SOLUTION EXISTS.

• Determine if there is an Fq-solution to the system

f1
h

=
f2
h

= f3 = · · · = fm = 0

Note. Now f1
h and f2

h are coprime.
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Some questions.

• First subproblem. Determine whether f (x , y) has any
absolutely irreducible factor?

• Second subproblem. Given polynomials

f1(x , y), f2(x , y), · · · , fm(x , y)

with f1(x , y) and f2(x , y) coprime, determine if the system has
a solution in Fq × Fq.



Motivation System of Bivariate Equations Generalization.

Some questions.

• First subproblem. Determine whether f (x , y) has any
absolutely irreducible factor?

• Second subproblem. Given polynomials

f1(x , y), f2(x , y), · · · , fm(x , y)

with f1(x , y) and f2(x , y) coprime, determine if the system has
a solution in Fq × Fq.



Motivation System of Bivariate Equations Generalization.

Outline

Motivation
Problem Statement
Solvability over finite fields
System of univariate equations.

System of Bivariate Equations
Bivariate Solvability
Algorithm Overview
Second Subproblem
First Subproblem

Generalization.
Outline of steps in generalization.
A conjecture.



Motivation System of Bivariate Equations Generalization.

Resultants
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f2(x , y). Then a is a root of
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• If gcd(f1(ai , y), f2(ai , y), yq − y) 6= 1 output SOLUTION
EXISTS.

• Else output NO SOLUTION.
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• Main Idea. Work over R, pretending that z is a Fq-root of
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Motivation System of Bivariate Equations Generalization.

If we could factor (univariate) polynomials.

• First subproblem. Determine whether f (x , y) has any
absolutely irreducible factor?

• If we can factor univariate polynomials deterministically then
we can also factor a bivariate polynomial f (x , y) into its
Fq-irreducible factors by a procedure known as Hensel Lifting.

• For an Fq-irreducible factor fi (x , y) of f (x , y) there is a
deterministic polynomial-time algorithm for testing its
absolute irreducibility (Kaltofen, 85).
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Factoring f (x , y) - Hensel Lifting.

• A reduction algorithm: There is a deterministic algorithm
(Hensel Lifting) that given a root of f (x , 0), lifts this root to
compute a factor of f (x , y).

• Hensel Lifting requires a root of f (x , 0) to work but we do not
have a root.

• Idea: Manufacture an artificial root of f (x , 0) and work with
that!
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• Let ρ(z) = f (z , 0). Let R
def
= Fq[z ]/〈ρ(z)〉.

• Main Idea. Do Hensel Lifting over the ring R, pretending
that (x − z) is an irreducible factor of f (x , 0) and if all goes
well obtain a artificial factor f̃ of f .

• Main Idea (Part II). If something goes wrong, use that to
factor the ring R and thereby the polynomial f (x , y).
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Factoring f (x , y) - Main Idea.

• The Structure of R. R is a direct sum of component field,
each field corresponding to one particular irreducible
polynomial of f (x , 0).

• If ρ(z) =
∏

i ρi (z) then R =
⊕

i Fq[z ]/〈ρi (z)〉
• Suppose f (x , y) = f1(x , y)f2(x , y). Then each component

Fq[z ]/〈ρi (z)〉 of R corresponds to either the factor f1(x , y) or
to the factor f2(x , y) depending on whether ρi (z) divides
f1(z , 0) or f2(z , 0).
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Distinct degree factorization

• Distinct degree factorization . Gao, Kaltofen, Lauder
(2004)

• Assume f (x , y) = f1(x , y)f2(x , y) and
deg(f1) = 2 , deg(f2) = 3.

• Question. What will be the degree of the artificial factor
f̃ (x , y)? Will it be 2 or 3?

• Ans. Neither. Hensel lifting will fail and we can factor f (x , y)!
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Factorization

• Now assume f (x , y) = f1(x , y)f2(x , y) and both factors have
the same degree 4. But f1 splits completely over Fq itself
whereas f2 splits completely only over Fq2 .

• Lemma. If α ∈ F̄q is an actual root of f1(x , 0) but not of
f2(x , 0) then Hensel Lifting over Fq(α) using α will yield an
absolutely irreducible factor of f1(x , y).

• Question. What will be the degree of the artificial-factor
f̃ (x , y) - 4 or 2?

• Ans. Neither. Hensel lifting will fail and we can factor f (x , y)!
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Summary for this section.

• There is a deterministic polynomial-time algorithm for the
following problem -

• Bivariate Solvability : Given a finite field Fq and a set of
polynomials

f1(x , y), f2(x , y), · · · , fm(x , y) ∈ Fq[x , y ]

determine whether exists a point (a, b) ∈ Fq × Fq such that

f1(a, b) = f2(a, b) = · · · = fm(a, b) = 0
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Parallelization.

• Divide the given set of polynomials {f1, . . . , fm} into two sets
{f1, . . . , fm/2} and {fm/2+1, . . . , fm} and recursively in parallel
”compute the common solutions” of each of these sets.

• ”Combine the common solutions” to obtain the common
solutions for the given system of equations.

• Use fast parallel algorithms for linear algebra.

• This gives a poly(log d · log m · log q)-time parallel algorithm
for bivariate solvability.
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The algorithm for general n.

• There is a deterministic reduction of Solvability to the
problem of determining if one `-variate polynomial (` ≤ n)
over Fq has a solution or not.

• We will now briefly mention some ideas in this reduction.
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Basic Algebraic Geometry - I.

• Let X ⊂ Fn
q be the set of all common zeroes of the system of

polynomial equations

f1(x̄) = . . . = fm(x̄) = 0.

• We next define a ring RX which will capture the algebraic set
X. The structure of RX shall correspond to the structure of X.

• The ring RX is defined as

RX
def
= Fq[x1, . . . , xn]/〈f1, . . . , fm〉.
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Basic Algebraic Geometry - II.

• Homomorphisms from RX to Fq correspond to Fq-rational
points in X.

• A point ā = (a1, . . . , an) ∈ Fn
q is an Fq-rational point in X if

and only if the map

φ : RX 7→ Fq, φ : xi 7→ ai ∀1 ≤ i ≤ n

is a homomorphism.



Motivation System of Bivariate Equations Generalization.

Basic Algebraic Geometry - II.

• Homomorphisms from RX to Fq correspond to Fq-rational
points in X.
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Basic Algebraic Geometry - III.

• Let R fr
X be the ring of fractions of RX.

• Theorem: For X satisfying some mild conditions, R fr
X is

isomorphic to a ring of the form

R fr
Y = Fq(y1, . . . , y`)/〈g(y1, . . . , yl)〉.

• The reduction from m equations to 1 equation then consists
of computing such an equivalent ring R fr

Y .
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Summary.

• Combining a deterministic version of this reduction algorithm
with a suitable generalization of Weil’s theorem, we get:

• Theorem: There is a deterministic algorithm for the
Solvability problem whose running time is bounded by a
polynomial in (dcn ·m log q), where cn = 2O(n) is a constant
that depends on n alone.
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Polynomial Factorization

• Suppose f (x , y) ∈ Fq[x , y ] where f (x , y) = f1(x , y)f2(x , y)
and the two factors f1(x , y) and f2(x , y) are not isomorphic.

• Conjecture. There is a deterministic polynomial-time
algorithm that given f (x , y), recovers the factors f1(x , y) and
f2(x , y).

• If this conjecture is true, then polynomial factorization itself
can be done in deterministic polynomial time!
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Thank You!

Questions?
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