DIMACS - RUTGERS EXPERIMENTAL MATHEMATICS SEMINAR

Sponsored by the Rutgers University Department of Mathematics and the
Center for Discrete Mathematics and Theoretical Computer Science (DIMACS)

Co-organizers:
Drew Sills, Rutgers University, asills {at} math [dot] rutgers [dot] edu
Doron Zeilberger, Rutgers University, zeilberg {at} math [dot] rutgers [dot] edu

Title: On Monochromatic Van der Waerden Triples

Speaker: Aaron Robertson, Colgate University

Date: Thursday, February 15, 2007 5:00pm

Location: Hill Center, Room 705, Rutgers University, Busch Campus, Piscataway, NJ


Abstract:

We show that the minimum number of monochromatic 3-term arithmetic progressions that any 2-coloring of [1,n] can have is between 0.0511 n^2 (1+o(1)) and 0.0534 n^2(1+o(1)). This disproves the conjectured answer of 0.0625 n^2 (1+o(1)) as well as a more general conjecture.