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Environmental Awareness

Focus of Attention

Peripheral glances
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Environmental Awareness:

-

Focus of Attention plus Peripheral ‘Vision

Lower resolution
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Coping with Information Overload
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Analytic Questions

e |s the information environment stable?

— describe environment

— lossy compression

* Did something change?
—Where? What?



Outline

Motivation

HLT Research Issues

Joint model of content in context
Experiments on speech using Switchboard
Experiments on text using Enron



HLT Research Issues

* Focus on stream statistics
— Rather than on individual documents
— E.g. Language Characterization (McCree)
— Classifier output is biased and noisy (Grothendieck)
— Piece-wise stationary segments (Wright)
* Content has associated meta-data
— Better living through content in context
— Theory, simulations and experiments
— with Priebe, Grothendieck, et al



Experimental Corpora

* Enron corpus of emails
— 500K emails over 189 weeks from DoJ/CMU
— 184 communicants
— 32 topics as defined by LDC

* Switchboard corpus of spoken dialogs

— 2500 topical dialogs
— between pairs of 500 speakers
— speaker demographics
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Joint model of content in context

Consider a set of communication events
M= {z.=(u,v,t ,x)} € Mwith

Aneventin Misz,e Vx VxR, x E

— representing (to, from, time, content)

A time window defines a graph with content-
attributed edges

Attribution functions &, and & to further
color vertices and edges



(high-dimensional and heterogeneous features)

Examples from Enron Corpus

Date Time Sender Receiver Sender’s Rank Topic

2001-01-02 04:15:00 steven.k jeff.d Vice President (1) California Analysis
2001-02-09 13:49:09 louise.k andy.z President (9) Daily Business
2001-02-16 21:06:00 drew.f jeff.d Vice President (5) California Enron
2001-02-26 22:30:00 james.s john.l Vice President (14) Energy Newsfeed
2001-03-01 07:54:00 diana.s kate.s Trader (5) California Enron
2001-04-06 05:15:00 mike.g john.l Manager (7) Newsfeed California
2001-04-16 06:12:00 richard.s steven.k Vice President (9) Daily Business
2001-05-11 16:02:00 andy.z john.l Vice President (11) Enron Online
2001-06-27 17:44:24 5..S geoff.s Vice President (9) Daily Business
2001-09-05 14:36:53 geoff.s louise.k Director (12) Enrononline Daily
2001-09-15 20:51:20 m..p louise.k Vice President (12) Enrononline Daily
2001-10-04 14:19:16 john.l louise.k CEO (11) Enron Online
2001-10-05 18:49:05 j..k richard.s Vice President (9) Daily Business
2001-10-08 17:50:19 shelley.c darrell.s Vice President (1) California Analysis



SwitchBoard Communications Graph

Initiate only Recelve only

Initiate and Recelive

Vertex ~ speakers
Edges ~ dialogs
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Joint Model of Content and Context
via Attributed Graphs

* Edge attributes
— Content-derived meta-data (a.k.a. meta-content)
— E.g. topic id, ASR, turn-taking behavior

* Vertex attributes

— External meta-data about speaker

— E.g. demographics such as age, gender, education, ...

— Graph-derived meta-data
— E.g. vertex degree ~ willingness to communicate
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Joint Model of Content and Context
 Random Attributed Graph

— Provides a joint model of content and context

e |n Switchboard

— Content is an attribute of an edge (dialog)
— Consider turn-taking behavior in the dialog

— Context is an attribute of the vertices (speakers)
— Consider age, education, gender of speakers

e Joint model enables inference of
— Unobserved demographic distribution
— From observed turn-taking behavior

5/3/2010 SCC for DIMACS
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Models of Turn-Taking Behavior

* Turn-taking behavior has predictive power
— for speaker ID (Jones)
— for speaker traits in meeting room data ( Lakowski )
— for social roles and networks (Pentland)

e Joint model of vertex, edge attributes and graph
— social correlates of turn-taking behavior
— Grothendieck and Borges
— experiment to exploit joint distribution
— observed meta-content (turn-taking)
— estimate unseen demographic distributions



Turn-taking Behavior Model

derived from SAD
Side 1: S, (t) | A |
Side 2: S,(t) A | A
Dialog State:
S{t) IA | Al AA 1A
A = active

| = Inactive




Semi-Markov Model
of Turn-Taking Behavior
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Latent Classes of
Turn-Taking Behavior

Train turn-taking model from Switchboard corpus

First-order partition via divisive clustering
— E.g., Style 0 has more and longer Il (both silent)
— E.g., Style 1 has more and longer AA (both active)

Classify each dialog as style O or 1

e Edge attribute (meta-content)

Classify each speaker as having style O or 1

* Vertex attribute induced from edge attributes



5/3/2010

Enriching vertex attributes with
edge meta-content and graph meta-data

SCC for DIMACS

- X = external meta-
data on speaker v

* Y = conversation
turn-taking style

* T(Y) = turn-taking
style of speaker v

* #V = number of

conversations
including speaker v
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Experimental Evaluation

E.g., overall ratio of male:female is 1:1
— speakers with TT style O have ratio 2:1

Have joint distribution of content and context
— exploit observed content (turn-taking behavior)
— to estimate unobserved context (demographic mix)

Experiment: create speaker sets with mixture
proportion v of style O, for vin [0,1]

Result: across all mixtures v of styles,

— predict proportions of age, education, gender, ...
— yields RMS error ~ 0.1



Classic Problems in DSP

e Estimate characteristic parameters
—Oppenheim (1975)

* To detect a signal in background noise
—Van Trees (1968)

* Motivates initial focus on change/anomaly
detection

5/3/2010 SCC for DIMACS
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Better Living through Content in Context

e Information Exploitation = statistical inference

» Better = more powerful statistical test

— for change/anomaly detection

 Some results to date
— Theorem that joint can be more powerful
— Simulation experiments

— Proof-of-concept experiment on Enron Corpus
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Time Series of Attributed Graphs

Externals =F Content =¢

Date M , 30 Oct 2000 23 48 00
From I .fleming @enron.com
]

, 9Jan 2002 2:00:35

9J 2002 16:04:33
dule @clayfarmer.com

e, 2 Sep 2001 1 3946
enneth. Iay@e .com
n.kedwaii@en om

AR AR A

Time

Generated from observations of some random attributed graph?
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@
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Change detection
in a time series of Graphs

= b t=r—1 = - = 4 A7

R, Wimpemg)

Homogeneous Anomalous Chatter Group
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Detecting ‘Signal’ in ‘Noise’
- models and theory

Gy(t) —— .@ 4444444 > Gg(t) + Gy(t)

G is a probability distribution
over attributed graphs

Gs(t)
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Random Attributed Graphs

e Let’s work through an example with a very
simple model of content and context

* Existence of an edge between two vertices is
IID Bernoulli with probability p

* Content topic (on each edge) is IID Bernoulli
with probability ©

 Change detection via testing candidate
anomaly (alternative) versus history (null)
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Null Hypothesis (noise):
an attributed Erdos-Renyi Graph

Random Graph ERC(N, p, ©)
N = # vertices in the graph
p = probability of an edge
Each edge labeled
- with topic O or 1
- with © = probability of topic 1

5/332Q000 SCC for DIMACS

32



Alternative Hypothesis (noise + signal):
an ERC subgraph with different parameters

Random Graph
K(N,p,O,M, g, ©’)

N = # vertices in whole graph

p = prob(edge) in kidney

© = topic parameter in kidney

M = # vertices in egg

g = prob(edge) in egg

©’ = topic parameter in egg

5/332Q000 SCC for DIMACS
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Theorem

A statistical test based on fusion of externals
and content can be more powerful than a test

based on externals alone or content alone.

(Grothendieck and Priebe)
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Proof by Construction

T = # of graph edges

T. = # of graph edges attributed with topic 1
T=05T;+0.5T,

Test for change from homogeneous null graph:

— Power of test based upon T is B,

— Power of test based upon T, is B,

— Power of test based upon Tis 3

For tests with false alarm rate a = 0.05,

— gray-scale plot of power difference A = B-max(Bg,Bc)



Power Difference: A = —max(B., Bg)

A(©®’, q) depends on the
parameters of the
anomalous chatter group -

1.0

p=0.5
© =0.5 ©

g = subgraph connectivity

0.8

nr

©’ = subgraph topic

0.6

Grayscale = A (O, Q)

0.5
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Detecting ‘Signal’
in Empirical ‘Noise’

Gy (1) @

Enron
Data

Gg(t)
Model

SCC for DIMACS

> Gg(t) + Gy(t)
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Enron Experiment

e Select a stationary region of test statistics for Enron

Estimate empirical null G\(t) from that region

Add ‘signal’ via model Gg(t) which injects egg
e Similar experimental results on power difference!

051015

051015

5/3/2010 SCC for DIMACS
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Conclusions

Better living through content in context
— modeled via random attributed graphs
Better = more powerful statistical inference

Joint model of content and context can be more powerful for
many inference tasks

Theorem for change/anomaly detection

Proof of Concept Experiments
— Inference of demographics from turn-taking behavior
— Change/Anomaly detection

— On Switchboard and Enron corpora
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