Stream Characterization from Content

Allen Gorin

Human Language Technology Research U.S. DoD, Fort Meade MD a.gorin@ieee.org

Collaborators

Carey Priebe (JHU) John Grothendieck (BBN)

Nash Borges

John Conroy

Glen Coppersmith

Rich Cox

Mike Decerbo

Dave Marchette

Alan McCree

Youngser Park

Alison Stevens

Jerry Wright

Outline

- Motivation
- HLT Research Issues
- Joint model of content in context
- Experiments on speech using Switchboard
- Experiments on text using Enron

Environmental Awareness

Environmental Awareness:

Focus of Attention plus Peripheral 'Vision'

Coping with Information Overload

Analytic Questions

- Is the information environment stable?
 - describe environment
 - lossy compression
- Did something change?
 –Where? What?

Outline

- Motivation
- HLT Research Issues
- Joint model of content in context
- Experiments on speech using Switchboard
- Experiments on text using Enron

HLT Research Issues

• Focus on stream statistics

- Rather than on individual documents
- E.g. Language Characterization (McCree)
- Classifier output is *biased* and noisy (Grothendieck)
- Piece-wise stationary segments (Wright)

Content has associated meta-data

- Better living through *content in context*
- Theory, simulations and experiments
- with Priebe, Grothendieck, et al

Experimental Corpora

• Enron corpus of emails

- 500K emails over 189 weeks from DoJ/CMU
- 184 communicants
- 32 topics as defined by LDC
- Switchboard corpus of spoken dialogs
 - 2500 topical dialogs
 - between pairs of 500 speakers
 - speaker demographics

Outline

- Motivation
- HLT Research Issues
- Joint model of content in context
- Experiments on speech using Switchboard
- Experiments on text using Enron

Joint model of content in context

• Consider a set of *communication events*

 $M = \{z_i = (u_i, v_i, t_i, x_i)\} \in \mathcal{M} \text{with}$

- An event in *M* is z_i ∈ V x V x R₊ x Ξ
 representing (to, from, time, content)
- A time window defines a graph with contentattributed edges
- Attribution functions h_V and h_E to further color vertices and edges

Examples from Enron Corpus

(high-dimensional and heterogeneous features)

Date	Time	Sender	Receiver	Sender's Rank	Торіс	
2001-01-02	04:15:00	steven.k	jeff.d	Vice President	(1) California Analysis	
2001-02-09	13:49:09	louise.k	andy.z	President	(9) Daily Business	
2001-02-16	21:06:00	drew.f	jeff.d	Vice President	(5) California Enron	
2001-02-26	22:30:00	james.s	john.l	Vice President	(14) Energy Newsfeed	
2001-03-01	07:54:00	diana.s	kate.s	Trader	(5) California Enron	
2001-04-06	05:15:00	mike.g	john.l	Manager	(7) Newsfeed California	
2001-04-16	06:12:00	richard.s	steven.k	Vice President	(9) Daily Business	
2001-05-11	16:02:00	andy.z	john.l	Vice President	(11) Enron Online	
2001-06-27	17:44:24	SS	geoff.s	Vice President	(9) Daily Business	
2001-09-05	14:36:53	geoff.s	louise.k	Director	(12) Enrononline Daily	
2001-09-15	20:51:20	mp	louise.k	Vice President	(12) Enrononline Daily	
2001-10-04	14:19:16	john.l	louise.k	CEO	(11) Enron Online	
2001-10-05	18:49:05	jk	richard.s	Vice President	(9) Daily Business	
2001-10-08	17:50:19	shelley.c	darrell.s	Vice President	(1) California Analysis	

SwitchBoard Communications Graph

Joint Model of Content and Context via Attributed Graphs

• Edge attributes

- Content-derived meta-data (a.k.a. *meta-content*)
- E.g. topic id, ASR, turn-taking behavior

• Vertex attributes

- External meta-data about speaker
- E.g. demographics such as age, gender, education, ...
- Graph-derived meta-data
- E.g. vertex degree ~ willingness to communicate

Outline

- Motivation
- HLT Research Issues
- Joint model of content in context
- Experiments on speech using Switchboard
- Experiments on text using Enron

Joint Model of Content and Context

- Random Attributed Graph
 - Provides a joint model of content and context
- In Switchboard
 - Content is an attribute of an edge (dialog)
 - Consider turn-taking behavior in the dialog
 - Context is an attribute of the vertices (speakers)
 - Consider <u>age</u>, education, gender of speakers
- Joint model enables inference of
 - Unobserved demographic distribution
 - From *observed* turn-taking behavior

Models of Turn-Taking Behavior

- Turn-taking behavior has predictive power
 - for speaker ID (Jones)
 - for speaker traits in meeting room data (Lakowski)
 - for social roles and networks (Pentland)
- Joint model of vertex, edge attributes and graph
 - social correlates of turn-taking behavior
 - Grothendieck and Borges
 - experiment to exploit joint distribution
 - observed meta-content (turn-taking)
 - *estimate unseen* demographic distributions

Turn-taking Behavior Model derived from SAD

Side 1: S ₁ (t)	I		A	I			Α
Side 2: S ₂ (t)	Α			A			
Dialog State: S(t)	IA	11	AI	AA	IA	11	AI

A = activeI = inactive

Semi-Markov Model of Turn-Taking Behavior

Latent Classes of Turn-Taking Behavior

- Train turn-taking model from Switchboard corpus
- First-order partition via *divisive clustering*
 - E.g., <u>Style 0</u> has more and longer II (both silent)
 - E.g., <u>Style 1</u> has more and longer AA (both active)
- Classify each dialog as style 0 or 1
 - Edge attribute (meta-content)
- Classify each speaker as having style 0 or 1
 - Vertex attribute induced from edge attributes

Enriching vertex attributes with edge meta-content and graph meta-data

- **X** = external metadata on speaker v
- **Y** = conversation turn-taking style
- **T(Y)** = turn-taking style of speaker v
- **#V** = number of conversations including speaker v

Experimental Evaluation

- E.g., overall ratio of male:female is 1:1 — speakers with *TT style 0 have ratio 2:1*
- Have joint distribution of content and context
 - exploit *observed content* (turn-taking behavior)
 - to estimate unobserved context (demographic mix)
- *Experiment*: create speaker sets with mixture proportion v of style 0, for v in [0,1]
- Result: across all mixtures v of styles,
 - predict proportions of age, education, gender, ...
 - yields RMS error ~ 0.1

Classic Problems in DSP

- Estimate characteristic parameters
 —Oppenheim (1975)
- To detect a signal in background noise
 –Van Trees (1968)
- Motivates initial focus on change/anomaly detection

Better Living through Content in Context

- *Information Exploitation* = statistical inference
- <u>Better</u> = more powerful statistical test
 - <u>for</u> change/anomaly detection
- Some results to date
 - Theorem that joint <u>can</u> be more powerful
 - Simulation experiments
 - Proof-of-concept experiment on Enron Corpus

Outline

- Motivation
- HLT Research Issues
- Joint model of content in context
- Experiments on speech using Switchboard
- Experiments on text using Enron

Time Series of Attributed Graphs

Generated from observations of some random attributed graph?

Change detection in a time series of Graphs

Homogeneous

Anomalous Chatter Group

Random Attributed Graphs

- Let's work through an example with a very simple model of content and context
- Existence of an edge between two vertices is IID Bernoulli with probability p
- Content topic (on each edge) is IID Bernoulli with probability **θ**
- Change detection via testing candidate anomaly (alternative) versus history (null)

Null Hypothesis (noise): an attributed Erdos-Renyi Graph

Random Graph ERC(N, p, Θ)

N = # vertices in the graph

p = probability of an edge

Each edge labeled

- with topic 0 or 1
- with Θ = probability of topic 1

Alternative Hypothesis (noise + signal): an ERC subgraph with different parameters

Random Graph

K(N,p, Θ, M, q, Θ')

N = # vertices in whole graph

p = prob(edge) in kidney

 Θ = topic parameter in kidney

M = # vertices in egg

q = prob(edge) in egg

 Θ' = topic parameter in egg

Theorem

A statistical test based on fusion of externals and content *can* be more powerful than a test based on externals alone or content alone. (Grothendieck and Priebe)

Proof by Construction

- T_G = # of graph edges
- T_c = # of graph edges attributed with topic 1
- $T = 0.5 T_G + 0.5 T_C$
- Test for change from homogeneous null graph:
 - Power of test based upon T_G is β_G
 - Power of test based upon T_{C} is β_{C}
 - Power of test based upon T is β
- For tests with false alarm rate $\alpha = 0.05$,
 - gray-scale plot of power difference $\Delta = \beta \max(\beta_G, \beta_C)$

Power Difference: $\Delta = \beta - \max(\beta_c, \beta_G)$

 $\Delta(\Theta', q)$ depends on the 1.0 parameters of the anomalous chatter group 0.0 p = 0.50.0 $\Theta = 0.5$ Θ' 2.0 q = subgraph connectivity Θ' = subgraph topic 0.6 Grayscale = Δ (Θ ', q) 9.9 0.6 0.7 0.8 0.9 0.5

q

1.0

*

Detecting 'Signal' in Empirical 'Noise'

Enron Experiment

- Select a stationary region of test statistics for Enron
- Estimate empirical null G_N(t) from that region
- Add 'signal' via model G_s(t) which injects egg
- Similar experimental results on power difference!

Conclusions

- Better living through *content in context*
 - modeled via random attributed graphs
- Better = more powerful statistical inference
- Joint model of content and context can be more powerful for many inference tasks
- *Theorem* for change/anomaly detection
- *Proof of Concept Experiments*
 - Inference of demographics from turn-taking behavior
 - Change/Anomaly detection
 - On Switchboard and Enron corpora

Acknowledgements

Charles Wayne for

- insights into communication graphs

- Deb Roy for
 - insights into content in context
- Sandy Pentland for

- insights into social networks and communications

Some References

- Random Attributed Graphs for Statistical Inference from Content and Context, Gorin, Priebe and Grothendieck, Proc. ICASSP 2010.
- Statistical Inference on Random Graphs: Fusion of Graph Features and Content, Grothendieck, Priebe, and Gorin, Computational Statistics and Data Analysis (2010)
- Statistical Inference on random attributed Graphs: Fusion of Graph Features and Content: An Experiment on Timeseries of Enron Graphs, Priebe et al, Computational Statistics and Data Analysis (2010).
- Social Correlates of Turn-taking Behavior, Grothendieck, Gorin, and Borges, [ICASSP 2009], [full paper submitted]
- Towards Link Characterization from Content: Recovering Distributions from Classifier Output, Grothendieck and Gorin, IEEE Transactions on Speech and Audio, May 2008
- **CoCITe Coordinating Changes in Text,** Wright and Grothendieck, to appear, IEEE Trans. on Knowledge and Data Engineering

5/3/2010