Interactive Model Learning from High-Dimensional Data: A Visual Analytics Approach

Klaus Mueller

Computer Science Lab for Visual Analytics and Imaging (VAI) Stony Brook University

Visual Analytics

Mueller, et al. IEEE CG&A, 2011

Visual Communication

Obviously, the better a communicator the computer is, the better the learnt model

- computer communicates its current model via visualizations
- analyst critiques it via visual interactions
- computer learns a better model
- and so on...

Visual Communication

Obviously, the better a communicator the computer is, the better the learnt model

- computer communicates its current model via visualizations
- analyst critiques it via visual interactions
- computer learns a better model
- and so on...

- A key question is thus:
 - can computers master the art of communication?

Visual Communication

Obviously, the better a communicator the computer is, the better the learnt model

- computer communicates its current model via visualizations
- analyst critiques it via visual interactions
- computer learns a better model
- and so on...

- A key question is thus:
 - can computers master the art of communication?

Good visual design and interaction is important

Mueller, et al. IEEE CG&A, 2011

Visual Model Sculpting

Some motivating quotes from Michelangelo:

- I saw the angel in the marble and carved until I set him free.
- Every block of stone has a statue inside it and it is the task of the sculptor to discover it.
- The marble not yet carved can hold the form of every thought the greatest artist has.

Visual Model Sculpting

Some motivating quotes from Michelangelo:

I saw the angel in the marble and carved until I set him free.

Every block of stone has a statue inside it and it is the task of the sculptor to discover it.

The marble not yet carved can hold the form of every thought the greatest artist has.

Exchange 'angel' or 'statue' by 'model' and you can be the Michelangelo of Visual Analytics ©

Center for Visual Computin

Differences

Michelangelo's 'data' were 3-D blocks of marble

• ours are N-D blocks of bytes

Michelangelo's tools were chisels, etc.

• ours are mouse, multi-touch devices, etc

Michelangelo would say things like this:

• "It is well with me only when I have a chisel in my hand."

High-D Visualization

Problems

- comprehensive high-D visualizations can be very confusing
- need to make high-D visualization user friendly and intuitive

High-D Visualization

Problems

- comprehensive high-D visualizations can be very confusing
- need to make high-D visualization user friendly and intuitive
- Key elements towards these goals
 - interactive: allow users to playfully sculpt the knowledge
 - communicative: let the data tell their story
 - illustrative: abstract away irrelevant detail
 - grounded: maintain a reference to native data space

High-D Visualization

Problems

- comprehensive high-D visualizations can be very confusing
- need to make high-D visualization user friendly and intuitive
- Key elements towards these goals
 - interactive: allow users to playfully sculpt the knowledge
 - communicative: let the data tell their story
 - illustrative: abstract away irrelevant detail
 - grounded: maintain a reference to native data space
- Four (somewhat) complementary paradigms
 - spectral plots \rightarrow see high-D hierarchies
 - *dynamic* scatterplots → see high-D shapes
 - parallel coordinates \rightarrow see high-D cause + effect
 - space embeddings \rightarrow see high-D relationships

Spectral Plots (SpectrumMiner)

shown: 7076 particles of 450-D mass spectra acquired with single particle mass spectrometer (SPLAT)

reducing the effect of sodium (set weight = 0.1)

reducing the effect of sodium (set weight = 0.1)

3D PCA view

Garg, Nam, Ramakrishnan, Mueller, IEEE VAST 2008

reducing the effect of sodium (set weight = 0.1)

3D PCA view

reducing the effect of sodium (set weight = 0.1)

3D PCA view

show dimension interactions in neighborhood map

Nam, Zelenyuk, Imre, Mueller, IEEE VAST 2007

show dimension interactions in neighborhood map

before merge

after merge

Support Vector Machine (SVM) Model encodes this knowledge

show dimension interactions in neighborhood map

before merge

after merge

Scatterplots

Familiar for the display of bi-variate relationships

Scatterplots

Familiar for the display of bi-variate relationships

Multivariate relationships arranged in scatterplot matrices

not overly intuitive to perceive multivariate relationships

Interaction to help 'see' N-D

• user interface is key \rightarrow N-D NavigatorTM

Interaction to help 'see' N-D

• user interface is key \rightarrow N-D NavigatorTM

Motion parallax beats stereo for 3D shape perception

- the same is true for N-D shape perception
- help perception by illustrative motion blur

Interaction to help 'see' N-D

• user interface is key \rightarrow N-D NavigatorTM

Motion parallax beats stereo for 3D shape perception

- the same is true for N-D shape perception
- help perception by illustrative motion blur

Elemental component is the polygonal touchpad

- allows navigation of projection plane in N-D space
- get axis vectors using generalized barycentric interpolation

Garg, Nam, Ramakrishnan, Mueller, IEEE VAST 2008

Application: Cluster Analysis

Step 1:

dimension reduction using subspace clustering

Step 2:

- visit each subspace
- initialize projective view using projection pursuit
- set up touchpad

Step 3:

• lift-off...

Video

TripAdvisor N-D

Initial view

All packets have source port 80.

Garg, Nam, Ramakrishnan, Mueller, VAST 2008

Random Coloring

Zooming

Moving the Y Axis between Src_IP and Time dimension

Same Color: Same Src_IP and Dest_IP

To overcome the overlap, twist the Xaxis a bit.

Separate different packet groups.

What are we looking for?

- Patterns for Webpage loading
- Exchanged packets between same Src IP and Dest IP in a short time period

Select interesting packets

Highlight them

Confirm that selected packets are spreading over time

 Twist the view to separate overlapped packets

Locating Interesting Patterns -Full View

Learn the Model

Use Inductive Logic Programming (Prolog) to formulate initial model (rule):

webpage_load(X) : same_src_ips(X),same_dest_ips(X),same_src_port(X,80),
timeframe_upper(X,10).

Classify other data points with this rule and visualize

Marking negative examples yields updated/refined rule:

```
webpage_load(X) :-
 same_src_ips(X),same_dest_ips(X),same_src_port(X,80),
 timeframe_upper(X,10),length(X,L),greaterthan(L,8).
```

Garg, Nam, Ramakrishnan, Mueller, VAST 2008

Parallel Coordinates

a car as a 7-dimensional data point

Illustrative Parallel Coordinates

Traditional parallel coordinates plot

Illustrative Parallel Coordinates

Illustrative parallel coordinates plot

Technique 1: Edge Bundling

Reduced clutter by replace poly-lines with poly-curves (color indicates cluster membership):

McDonnell, Mueller, Computer Graphics Forum. 2008

Edge Bundling (cont.)

The user can change the tension to control the amount of clutter reduction

Examples of low and medium tension, respectively:

Technique 2: Cluster Rendering

In traditional PC, clusters are often rendered as heavy line segments on top of the dataset

- in IPC we render the clusters as polygonal meshes
- helps to show the ranges of each cluster along axes

Technique 3: Opacity Hints

Allows context to be preserved

Important clusters can be made more opaque

Technique 4: Branched Clusters

To illustrate the distribution of the data long each axis, it is possible to split the clusters

Branches provide an alternative to the display of histograms for visualizing data distributions

Branched Clusters (cont.)

A parameter allows one to tune the visualization and change the minimum branch thickness

Technique 5: Per-Cluster Histograms

Histograms are typically used in parallel coordinate plots to show distributions along individual axes

We introduce the idea of using histograms on a percluster basis to reveal distribution

One More Flavor ...

Lots of unstructured data on the web

We need to add structure to:

- make it machine readable
- reason with it

Humans can easily segment:

- references into author, title, etc.
- images into objects
- videos into scenes

Machine Learning Approaches

Supervised learning

- requires large amounts of user-tagged data
- further, data is *dynamic*
 - we might need to supplement the tagged data

Automatic learning [Raina 2007]

Highly time intensive

Semi-Automatic Visual Learning

Keep the user in the learning loop, but:

• allow interaction with data as a whole

Use clustering methods to visually group similar objects

helps the user mark an entire set as one category

In absence of feature vectors for a given data set

- identify important features
- allow user to adjust relative weights
- → *Visual* Active Learning

A Good Feature Vector Is Key

Given a good feature vector:

- similar points will be close-by in feature vector space
- If tokens in a dataset don't have an explicit feature vector create one based on:
 - structure
 - context
 - location
 - semantics

Semantics can also simplify the problem

• e.g. in an address dataset, all numbers of the same length are interchangeable

Hidden Markov Model (HMM)

Statistical model used for data segmentation

Contains

• Set of (hidden) states $\ensuremath{\mathrm{S}}$

Hidden Markov Model (HMM)

Statistical model used for data segmentation

Contains

- Set of states S
- Set of observations W

Hidden Markov Model (HMM)

Statistical model used for data segmentation

Contains

- Set of states S
- Set of observations W
- Transition model: $P(s_t | s_t-1)$

Hidden Markov Model (HMM)

Statistical model used for data segmentation

Contains

- Set of states S
- Set of observations W
- Transition model: $P(s_t | s_t)$
- Emission model: P(w | s)

HMM

Baum-Welch algorithm learns the model given:

- transition probabilities
- emission probabilities
- set of observations

Requires hand tagged data

Gets infeasible with data size

Our solution:

- cluster the data based on feature vectors
- tag coherent data groups as a whole
- tag ambiguous data one by one

HMM: Text Segmentation

Viterbi algorithm

returns most probable sequence of states

<COMPANY, STREET, CITY, STATE, PHONE>

Input:

 The Grand America Hotel 555 South Main Street Salt Lake City UT (800)621-4505

Output:

The Grand America Hotel, 555 South Main Street, Salt Lake City, UT, (800)621-4505

Preprocessing – Windowing Approach

Window 1	Window 2	Window 3	Window 4	Window 5
1 Hour Auto	Glass Inc 403	West St	New York	NY (212)
4 Star Auto	Sound & Sec	Inc 2481 Central	Park Ave Yonkers	NY (914)
1 Hour Photo	& Copy Center	2140a White	Plains Rd Bronx	NY (718)
Westfield Agency	Inc 105	E Main	St Westfield	NY (716)
AC	P 65-09	Brook Av	Deer Park	NY (516)
AAM	CAR	303 W 96th	St New York	NY (212)

Windowing Approach

Window 1	Window 2	Window 3	Window 4	Window 5
1 Hour Auto	Glass Inc 403	West St	New York	NY (212)
4 Star Auto	Sound & Sec	Inc 2481 Central	Park Ave Yonkers	NY (914)
1 Hour Photo	& Copy Center	2140a White	Plains Rd Bronx	NY (718)
Westfield Agency	Inc 105	E Main	St Westfield	NY (716)
AC	P 65-09	Brook Av	Deer Park	NY (516)
AAM	CAR	303 W 96th	St New York	NY (212)
2	0	0	0	0

Feature Vectors in a Text Dataset

Structure

• What type of characters does the token contain

` Wo	ord t le	las Ho tter dig	as l git sy	las mbol	Has caps	All caps	Len	gth er		
Word	Neigh- bors	Has letter	Has digit	Has symb	s ł pol c	las aps	All caps	Length 1-3	Length 4-6	Length 7+
Liberty	Av. Avenue 1344 A-1	1 1 0 1	0 0 1 1	1 0 0 1	1 1 0 1))))	1 0 0 1	0 1 1 0	0 0 0 0
Final F-vec		3	2	2	3	(C	2	2	0

Distance matrix

Given feature vectors, calculate all pairs of distances

$$sim(x,y) = \sum_{i=1}^{\infty} \frac{w_i}{\sum_i w_i} * sim_i(x,y)$$

User modifiable

Token Visualization: Random Layout

Token Visualization: Distance Based Layout

Token Visualization: User Assigned Categories

Token Visualization: Disambiguation

Window 1	Window 2	Window 3	Window 4	Window 5
Corte Salon	1019 U	St NW 2 nd	Fl Washington	DC 20001
Glover Park	Hardware 2251	Wisconsin Ave	NW Washington	DC 20007
Laura Bee	Designs 6418	20th Ave	NW Seattle	Washington 98107
Bob's Quality	Meats 4861	Rainier Avenue	S Seattle	Washington 98118

Token Visualization: Disambiguation

Results: Address Data Set

Segmenting an address dataset of NY businesses

Initial Layout

Bruce

Layout After Tweaking Feature Vector Weights

Zooming In

Layout After Clustering Using Markov Cluster Algorithm

Cluster Naming Using Inner Core

Cluster Editing

If the clusters don't lend themselves to categories

• re-cluster using a different *refinement* level

The user can modify the clusters as follows:

- merge clusters
- split clusters
- create a new cluster using nodes from multiple clusters
- name the clusters

Cluster Editing

Cluster Editing

Debugging

Show entries with ambiguously labeled tokens

This involves tokens that:

- belong to multiple categories
- occur on border of 2 categories

The visualization steps through the entry showing the class assigned to each token

Current Work

Application to Health Analytics

• decision support for emergency room physicians

Current Work

Application to Health Analytics

decision support for emergency room physicians

Thanks

Support from NSF, NIH, DOE, BNL, PNL, CEWIT

Collaborators:

- Dr. Alla Zelenyuk, Dr. Dan Imre (formerly BNL, now PNL)
- Dr. IV Ramakrishan (Stony Brook University)
- Dr. Kevin McDonnell (Dowling College)

MS/PhD Students

 Peter Imrich, Yiping Han, Julia EunJu Nam, Supriya Garg, Hyunjung Lee, Zhiyuan Zhang

More information at http://www.cs.sunysb.edu/~mueller