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Extended grid

» Like a grid but we add diagonal edges.
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Island

An island is a set of points in the extended grid which induces a
connected subgraph.
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Island adjacency

Two islands i, are adjacent if there is a pair of points
P € i, @ € j, that are adjacent in the extended grid.
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Faithful representation

» A faithful representation of a graph G by islands is a set 7 of
vertex disjoint islands in the extended grid, such that the
adjacency graph of islands of Z is isomorphic to G.
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Motivation

» Motivation for this structure came from adiabatic quantum
computation (AQC) where vertices of islands are qubits and
edges are couplers.
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» The set of graphs which have faithful representations by
islands will be denoted ISLAND.



ISLANDS

» The set of graphs which have faithful representations by
islands will be denoted ISLAND.

» An island with at most k vertices will be called a k-island.



ISLANDS

» The set of graphs which have faithful representations by
islands will be denoted ISLAND.

» An island with at most k vertices will be called a k-island.

» The set of graphs which have faithful representations by
k-islands will be denoted k-ISLAND
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String graphs

» STRING graphs are intersection graphs of curves in plane.

» STRING graphs have been introduced independently by
Benzer(1959) and Sinden(1966).

» Ehrlich, Even and Tarjan (1976) showed computing the
chromatic number of string graphs to be NP-hard.

» Kratochvil (1991) showed string graph recognition to be
NP-hard.

» In that time it was not even known if this problem is
decidable!!!
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String graphs continued

» There are STRING graphs which need exponential number of
crossings, it was proven by Kratochvil and MatouZek (1991).

» The naive method to show that the recognition of STRING
graphs is in NP is not working.

» Pach,Janos and Schaefer, Stefankovi¢ independently proved in
2002 that recognition of STRING graphs is decidable.

> Schaefer,Sedgwick and Stefankovi¢ (2003) proved that
recognizing of STRING graphs is NP-complete.
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» STRING graphs are ISLAND graphs.

» There exist graphs which require exponential number of grid
points.

» The recognition of ISLAND graphs is NP-complete.
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» The complexity of recognition of k-ISLAND graph.
» We show that k-ISLAND is NP-complete for k < 3 and k > 5.
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Our approach

» We use different method for the cases k < 3 and kK > 5

» For cases k = 1,2 we made reduction from NAE-3-SAT and
use so called "logic engine”.

» For cases k > 5 we use reduction from
PLANAR-3-CONNECTED-(3,4)-SAT.
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Logic engine

» The logic engine was designed by Eades and Whitesides.

» Very intuitive model of a standard reduction from the problem
NAE-SAT
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Theorem
The problem 1-ISLAND is NP-complete.

Theorem
The problem 2-ISLAND is NP-complete.



How to prove it

For "logic engine” construction are important to produce:
> rigid element (frames, shafts)

> flexible element (rod)



Case k =1

> rigid element




Case k =2

> rigid element

a

> flexible element

a
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Example k =1
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Example k =

X1 VXV —\X3) A (=X V Xz—\X4) V(=Xo VX3V Xy

X false
X> false
X3 true
Xy true
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PLANAR-3-CONNECTED-(3,4)-SAT

» A variant of satisfiability problem.
» Input formula has exactly 3 distinct literals in each clause.
» Each variable occurs in at most 4 clauses

» Incidence graph of formula is vertex-3-connected and planar.
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Kratochvil. It can be used to show that STRING graphs are
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Reduction for large islands

» PLANAR-3-CONNECTED-(3,4)-SAT was introduced by by
Kratochvil. It can be used to show that STRING graphs are
NP-hard.

» We will use the same reduction for recognition of large islands.
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Idea of the proof

> For given ¢ formula produce a graph Hy with following
properties:
» If ¢ is satisfiable then H; € 6—ISLAND.
» If ¢ is not satisfiable then Hy ¢ STRING = ISLAND.
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The first step of construction

> We fix rectilinear drawing of incidence graph of ¢.
» Clauses and variables are located in points of planar grid.

» Edges piece-wise linear and following the grid lines.
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are replaced by disjoint rectangles
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The first step of construction continued

» Consider a refinement of grid so that the variable and clause
are replaced by disjoint rectangles

» Edges replaced by pair of parallel paths.
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Representations of the variable gadget
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Representations of the clause gadget
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The end

Thank you for your attention



