Theory and Applications of Random Partition Processes

Harry Crane

Department of Statistics
Rutgers University
October 11, 2012

Introduction: Combinatorial stochastic processes

Random partitions

- population genetics
- ecology
- physical science
- clustering
- machine learning/statistics.

Fragmentation trees

- phylogenetics
- linguistics

Complex networks

- physics
- population biology
- epidemiology

Partitions

$[n]:=\{1, \ldots, n\}$ (set of labels)
A partition B of $[n]$ is

- a set of non-empty disjoint subsets (blocks) $b \subset[n]$ such that

$$
\bigcup_{b \in B} b=[n], \text { e.g. } B=124|35| 6 \equiv 35|6| 124 \equiv\{\{1,2,4\},\{3,5\},\{6\}\} ;
$$

- an equivalence relation $B:[n] \times[n] \rightarrow\{0,1\}$ with $B(i, j)=1 \Leftrightarrow i \sim_{B} j$;
- a symmetric Boolean matrix $\left(B_{i j}\right):=(B(i, j))$, e.g.

$$
\left(\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

For $B \in \mathcal{P}, \# B$ is number of blocks of B, e.g. $\# B=3$ above; For $b \in B, \# b$ is the number of elements of $b \subset \mathbb{N}$. e.g. $\#\{1,2,4\}=3$.

$\mathcal{P}_{[n]}$: set partitions of $[n]$

$\mathcal{P}_{[n]}$ denotes the set of partitions of $[n]$

$$
\begin{array}{llllll}
\mathcal{P}_{[1]}: & 1 & & & & \\
\mathcal{P}_{[2]}: & 12 & 1 \mid 2 & & & \\
\mathcal{P}_{[3]}: & 123 & 1 \mid 23 & 12 \mid 3 & 13 \mid 2 & 1|2| 3
\end{array}
$$

Action by permutation: $\sigma=(12)(3), \pi=13\left|2 \Longrightarrow \pi^{\sigma}=1\right| 23$.
Restriction maps: $\mathbf{D}_{m, n}: \mathcal{P}_{[n]} \rightarrow \mathcal{P}_{[m]}, \mathbf{D}_{m, n} B:=B_{[m]}(1 \leq m \leq n)$, e.g.

$$
D_{5,6}(1256|3| 4)=125|3| 4 .
$$

\mathcal{P}_{∞} is the collection $\left(\mathcal{P}_{[n]}, n \geq 1\right.$) together with deletion ($D_{m, n}, m \leq n$) and permutation maps, and all composite mappings, i.e. partitions of \mathbb{N}.

Exchangeable Feller Chains

$\Pi:=\left(\Pi_{m}, m \geq 0\right)$ is an exchangeable Feller chain on \mathcal{P}_{∞} if

- exchangeable: $\mathbf{D}_{n} \Pi={ }_{\mathcal{L}}\left(\mathbf{D}_{n} \Pi\right)^{\sigma}$ for all permutations $\sigma:[n] \rightarrow[n]$.
- Feller. $\mathbf{D}_{n} \Pi$ is a Markov chain for all $n \geq 1$;

For example,

$$
\{1|2| 34 \mapsto 134 \mid 2\}=\mathcal{L}\{14|2| 3 \mapsto 134 \mid 2\}=\mathcal{L}\{14|2| 3 \mapsto 124 \mid 3\} .
$$

Motivation: Mitochondrial DNA (mtDNA) sequences

mtDNA sequences for 9 species (snake, iguana, lizard, crocodile, bird, whale, cow, human, monkey)

1	snake	T	A	G	G	A	T	T	G	A	T	A	C	C	C
2	iguana	T	A	G	G	A	T	T	G	A	T	A	C	C	C
3	lizard	T	A	G	G	A	T	T	G	A	T	A	C	C	C
4	crocodile	T	A	G	G	A	T	T	G	A	T	A	C	C	C
5	bird	T	G	G	G	A	T	T	G	A	T	A	C	C	C
6	whale	T	G	G	G	A	T	T	G	A	T	A	C	C	C
7	cow	A	A	G	C	A	T	C	T	A	C	A	C	C	C
8	human	A	A	C	C	C	C	C	C	C	C	A	T	C	C
9	monkey	T	G	G	G	A	T	T	G	A	T	A	C	C	C

1234569|78 \rightarrow 123478|569 \rightarrow 12345679|8 $\rightarrow \cdots$
How to model this sequence of partitions?

$\mathcal{P}_{[\infty]: k}, k$-colorings of \mathbb{N} and partition matrices

$\mathcal{P}_{[\infty]: k}$: partitions with at most k blocks
$\mathcal{L}_{[n]: k}: k$-colorings of [n] (labeled partitions)

- $x \in \mathcal{L}_{[n]: k}: x=x^{1} x^{2} \cdots x^{n}$, e.g. $x=12112 \Rightarrow(134,25)$.
- Write a k-coloring as a set-valued vector $L=\left(L_{1}, \ldots, L_{k}\right)$.
- Natural map $\mathcal{B}_{n}: \mathcal{L}_{[n]: k} \rightarrow \mathcal{P}_{[n]: k}$ by removing colors

$$
(34,1,256) \longrightarrow_{\mathcal{B}_{6}} 1|256| 34 .
$$

- DNA example: with A, C, G, T as 1, 2, 3, 4: $x=$ TTTTTTAAT $\Rightarrow(78, \emptyset, \emptyset, 1234569) \longrightarrow_{\mathcal{B}_{9}} 1234659 \mid 78$.
$\mathcal{M}_{[n]: k}: k \times k$ partition matrices

$$
\left(\begin{array}{ccc}
234 & 1456 & 2 \\
15 & \emptyset & 146 \\
6 & 23 & 35
\end{array}\right)\left(\begin{array}{c}
34 \\
1 \\
256
\end{array}\right)=\left(\begin{array}{c}
1234 \\
6 \\
5
\end{array}\right)
$$

In general,

$$
\left(\begin{array}{cccc}
M_{11} & M_{12} & \cdots & M_{1 k} \\
M_{21} & M_{22} & \cdots & M_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
M_{k 1} & M_{k 2} & \cdots & M_{k k}
\end{array}\right)\left(\begin{array}{c}
L_{1} \\
L_{2} \\
\vdots \\
L_{k}
\end{array}\right)=\left(\begin{array}{c}
\bigcup_{j=1}^{k}\left(M_{1 j} \cap L_{j}\right) \\
\bigcup_{j=1}^{k}\left(M_{2 j} \cap L_{j}\right) \\
\vdots \\
\bigcup_{j=1}^{k}\left(M_{k j} \cap L_{j}\right)
\end{array}\right)
$$

Constructing Markov chains on $\mathcal{L}_{[\infty]: k}$

Let:

- Λ_{0} be an exchangeable initial state
- χ be a probability measure on $\mathcal{M}_{[\infty]: k}$
- M_{1}, M_{2}, \ldots be i.i.d. random partition matrices with distribution χ (independent of Λ_{0}).

For each $m \geq 1$, put

$$
\Lambda_{m}:=M_{m} \Lambda_{m-1}^{T}=M_{m} M_{m-1} \cdots M_{1} \Lambda_{0}^{T}
$$

$\Lambda:=\left(\Lambda_{m}, m \geq 0\right)$ is a Markov chain on k-colorings of \mathbb{N}.

Example, $\quad \Lambda_{0}=(1345,26) ; \quad M_{1}=\left(\begin{array}{cc}2345 & 256 \\ 16 & 134\end{array}\right) ; \quad M_{2}=\left(\begin{array}{cc}1345 & 24 \\ 26 & 1356\end{array}\right)$.

$$
\Lambda_{0}=
$$

$$
\Lambda_{1}=\quad M_{1} \Lambda_{0}^{T} \quad=\left(\begin{array}{cc}
2345 & 256 \\
16 & 134
\end{array}\right)\binom{1345}{26}=(23456,1)
$$

$$
\Lambda_{2}=M_{2} \Lambda_{1}^{T}=M_{2} M_{1} \Lambda_{0}^{T}=\left(\begin{array}{cc}
1345 & 24 \\
26 & 1356
\end{array}\right)\binom{23456}{1}=(345,126)
$$

Homogeneous Cut-and-Paste chains

Theorem (C. 2012)

Every exchangeable Feller chain \wedge on $\mathcal{L}_{[\infty]: k}$ can be constructed from an i.i.d. sequence M_{1}, M_{2}, \ldots so that

$$
\Lambda_{m}=M_{m} M_{m-1} \cdots M_{1} \Lambda_{0}, \quad m \geq 1
$$

Corollary (C. 2012)

Every exchangeable Feller chain Π on $\mathcal{P}_{[\infty]: k}$ can be obtained as the projection $\mathcal{B}_{\infty}(\Lambda)$, where Λ is an exchangeable Feller chain on $\mathcal{L}_{[\infty]: k}$.

Matrix permanents

Recall: we can regard a partition B as a symmetric Boolean matrix $\left(B_{i j}\right):=(B(i, j))$, e.g.

$$
\left(\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)=124|35| 6
$$

For an $n \times n$ matrix X, the α-permanent of X is given by

$$
\operatorname{per}_{\alpha} X:=\sum_{\sigma \in \operatorname{Sym}_{n}} \alpha^{\# \sigma} \prod_{j=1}^{n} X_{j \sigma(j)} .
$$

Hard to compute, but for a partition B, we have

$$
\operatorname{per}_{\alpha} B=\prod_{b \in B} \alpha^{\uparrow \# b} .
$$

Moreover, there is the identity

$$
\operatorname{per}_{\alpha} X=\sum_{B \in \mathcal{P}_{[0]: k}} \frac{k!}{(k-\# B)!} \operatorname{per}_{\alpha / k}(X \cdot B),
$$

$X \cdot B$ is the Hadamard product.

Permanental partition process (C. 2012)

For X a non-negative $n \times n$ matrix with positive diagonal entries and $\alpha>0$, we have a general class of partition-valued Markovian transition probabilities on $\mathcal{P}_{[n]: k}$:

$$
P_{n}\left(B, B^{\prime}\right)=\frac{k!}{\left(k-\# B^{\prime}\right)!} \frac{\operatorname{per}_{\alpha / k}\left(X \cdot B \cdot B^{\prime}\right)}{\operatorname{per}_{\alpha}(X \cdot B)}, \quad B, B^{\prime} \in \mathcal{P}_{[n]: k}
$$

- Gives a parametric statistical model for dependent sequences of partitions.
- In cases of interest, X is a discrete parameter \Longrightarrow hard to estimate.

Example: Phylogenetic inference

unknown tree	$t=1$	2	3	4	5	6	7	\ldots
a	A	G	C	C	T	A	G	\ldots
b	A	T	G	G	C	A	G	\ldots
C	C	T	G	C	T	T	G	\ldots
d	C	G	C	C	C	T	G	\ldots
e	C	G	C	G	C	T	G	\ldots
f	C	G	G	G	T	A	G	\ldots

Use permanental partition transition probabilities with X as a rooted tree matrix in likelihood-based inference of the unknown tree.
Given sequence $B=\left(B_{1}, B_{2}, \ldots, B_{m}\right)$, obtain a likelihood

$$
\mathcal{L}(X, \alpha ; B)=\frac{k^{\downarrow \# B} \operatorname{per}_{\alpha}(X \cdot B)}{\operatorname{per}_{k \alpha} X} \prod_{j=1}^{m-1} \frac{k^{\downarrow \# B_{j+1}} \operatorname{per}_{\alpha / k}\left(X \cdot B_{j} \cdot B_{j+1}\right)}{\operatorname{per}_{\alpha}\left(X \cdot B_{j}\right)}
$$

How to (approximately) optimize with respect to X (restricted to the space of rooted trees)?

References

- C. (2011). A consistent Markov partition process generated from the paintbox process. J. Appl. Prob. 43, 778-791.
- C. (2012). Homogeneous cut-and-paste processes. Submitted.
- C. (2012). Exchangeable and non-exchangeable Feller partition processes. Submitted.
- C. (2012). The permanental partition process. Manuscript.
- C. and Lalley, S.P. (2012). Convergence rates of Markov chains on spaces of partitions. Submitted.

