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Introduction: Combinatorial stochastic processes

Random partitions
population genetics
ecology
physical science
clustering
machine learning/statistics.

Fragmentation trees
phylogenetics
linguistics

Complex networks
physics
population biology
epidemiology
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Partitions

[n] := {1, . . . ,n} (set of labels)

A partition B of [n] is
a set of non-empty disjoint subsets (blocks) b ⊂ [n] such that⋃

b∈B b = [n], e.g. B = 124|35|6 ≡ 35|6|124 ≡ {{1,2,4}, {3,5}, {6}};
an equivalence relation B : [n]× [n]→ {0,1} with B(i , j) = 1⇔ i ∼B j ;
a symmetric Boolean matrix (Bij) := (B(i , j)), e.g.

1 1 0 1 0 0
1 1 0 1 0 0
0 0 1 0 1 0
1 1 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

 .

For B ∈ P, #B is number of blocks of B, e.g. #B = 3 above;
For b ∈ B, #b is the number of elements of b ⊂ N. e.g. #{1,2,4} = 3.
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P[n]: set partitions of [n]

P[n] denotes the set of partitions of [n]

P[1] : 1
P[2] : 12 1|2
P[3] : 123 1|23 12|3 13|2 1|2|3

Action by permutation: σ = (12)(3), π = 13|2 =⇒ πσ = 1|23.
Restriction maps: Dm,n : P[n] → P[m], Dm,nB := B|[m] (1 ≤ m ≤ n), e.g.

D5,6(1256|3|4) = 125|3|4.

P∞ is the collection (P[n], n ≥ 1) together with deletion (Dm,n,m ≤ n) and permutation
maps, and all composite mappings, i.e. partitions of N.

P[n]P[n−1] P[n+1]

µn−1 µn µn+1

Dn−1,n Dn,n+1

Sn+1Sn−1 Sn
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Exchangeable Feller Chains

Π := (Πm,m ≥ 0) is an exchangeable Feller chain on P∞ if

exchangeable: Dn Π =L(Dn Π)σ for all permutations σ : [n]→ [n].

Feller: Dn Π is a Markov chain for all n ≥ 1;

For example,

{1|2|34 7→ 134|2}=L{14|2|3 7→ 134|2}=L{14|2|3 7→ 124|3}.

1|2|34 7→


134|2 1/9
13|24 w.p. 1/18
13|2|4 1/18

14|2|3 7→


134|2 1/9
13|24 w.p. 1/18
13|2|4 1/18


1|2|3 7→ 13|2 w.p. 1

9 + 1
18 + 1

18 = 2
9 .

1|2|3 7→ 13|2 w.p. 1
9 + 1

18 + 1
18 = 2

9 .
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Motivation: Mitochondrial DNA (mtDNA) sequences

mtDNA sequences for 9 species (snake, iguana, lizard, crocodile, bird, whale,
cow, human, monkey)

1 snake T A G G A T T G A T A C C C
2 iguana T A G G A T T G A T A C C C
3 lizard T A G G A T T G A T A C C C
4 crocodile T A G G A T T G A T A C C C
5 bird T G G G A T T G A T A C C C
6 whale T G G G A T T G A T A C C C
7 cow A A G C A T C T A C A C C C
8 human A A C C C C C C C C A T C C
9 monkey T G G G A T T G A T A C C C

1234569|78→ 123478|569→ 12345679|8→ · · ·
How to model this sequence of partitions?
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P[∞]:k , k -colorings of N and partition matrices

P[∞]:k : partitions with at most k blocks
L[n]:k : k -colorings of [n] (labeled partitions)

x ∈ L[n]:k : x = x1x2 · · · xn, e.g. x = 12112⇒ (134, 25).
Write a k -coloring as a set-valued vector L = (L1, . . . , Lk ).
Natural map Bn : L[n]:k → P[n]:k by removing colors

(34, 1, 256) −→B6 1|256|34.

DNA example: with A, C, G, T as 1, 2, 3, 4:
x = TTTTTTAAT ⇒ (78, ∅, ∅, 1234569) −→B9 1234659|78.

M[n]:k : k × k partition matrices234 1456 2
15 ∅ 146
6 23 35

 34
1

256

 =

1234
6
5

 .

In general, 
M11 M12 · · · M1k

M21 M22 · · · M2k
...

...
. . .

...
Mk1 Mk2 · · · Mkk




L1

L2
...

Lk

 =


⋃k

j=1(M1j ∩ Lj )⋃k
j=1(M2j ∩ Lj )

...⋃k
j=1(Mkj ∩ Lj )

 .
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Constructing Markov chains on L[∞]:k

Let:
Λ0 be an exchangeable initial state
χ be a probability measure onM[∞]:k

M1,M2, . . . be i.i.d. random partition matrices with distribution χ (independent of
Λ0).

For each m ≥ 1, put
Λm := MmΛT

m−1 = MmMm−1 · · ·M1ΛT
0 .

Λ := (Λm,m ≥ 0) is a Markov chain on k -colorings of N.

Example, Λ0 = (1345, 26); M1 =

(
2345 256

16 134

)
; M2 =

(
1345 24

26 1356

)
.

Λ0 = (1345, 26)

Λ1 = M1ΛT
0 =

(
2345 256

16 134

)(
1345

26

)
= (23456, 1)

Λ2 = M2ΛT
1 = M2M1ΛT

0 =

(
1345 24

26 1356

)(
23456

1

)
= (345, 126)

...
...

...
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Homogeneous Cut-and-Paste chains

Theorem (C. 2012)
Every exchangeable Feller chain Λ on L[∞]:k can be constructed from an i.i.d.
sequence M1,M2, . . . so that

Λm = MmMm−1 · · ·M1Λ0, m ≥ 1.

Corollary (C. 2012)
Every exchangeable Feller chain Π on P[∞]:k can be obtained as the projection B∞(Λ),
where Λ is an exchangeable Feller chain on L[∞]:k .
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Matrix permanents

Recall: we can regard a partition B as a symmetric Boolean matrix (Bij ) := (B(i, j)),
e.g. 

1 1 0 1 0 0
1 1 0 1 0 0
0 0 1 0 1 0
1 1 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

 = 124|35|6.

For an n × n matrix X , the α-permanent of X is given by

perα X :=
∑

σ∈Symn

α#σ
n∏

j=1

Xjσ(j).

Hard to compute, but for a partition B, we have

perα B =
∏
b∈B

α↑#b.

Moreover, there is the identity

perα X =
∑

B∈P[n]:k

k !

(k −#B)!
perα/k (X · B),

X · B is the Hadamard product.
Harry Crane (Rutgers University) Theory and Applications of Random Partitions October 11, 2012 10 / 13



Permanental partition process (C. 2012)

For X a non-negative n × n matrix with positive diagonal entries and α > 0, we have a
general class of partition-valued Markovian transition probabilities on P[n]:k :

Pn(B,B′) =
k !

(k −#B′)!

perα/k (X · B · B′)
perα(X · B)

, B,B′ ∈ P[n]:k .

Gives a parametric statistical model for dependent sequences of partitions.

In cases of interest, X is a discrete parameter =⇒ hard to estimate.

abc(1) def(1)

bc(1) de(1)
f(2)

d(1) e(1)b(1) c(1)
a(2)

abcdef(1)
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Example: Phylogenetic inference

MRCA

unknown tree

Use permanental partition transition probabilities with X as a rooted tree matrix in
likelihood-based inference of the unknown tree.
Given sequence B = (B1,B2, . . . ,Bm), obtain a likelihood

L(X , α; B) =
k↓#B perα(X · B)

perkα X

m−1∏
j=1

k↓#Bj+1 perα/k (X · Bj · Bj+1)

perα(X · Bj )

How to (approximately) optimize with respect to X (restricted to the space of rooted
trees)?
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