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Shopping MallsAirports Trade shows

Goal: Indoor localization applications

[http://www.flickr.com/photos/trixer/3795835074]
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Goal: Indoor/outdoor localization applications
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[Rainer Mautz, IPIN 2011]
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Goal: Indoor/outdoor localization applications
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Fingerprinting Tracking

Access Point

x     Fingerprint

Goal: Indoor localization using RF (WiFi) fingerprints
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Problem: Non-Gaussian distribution of WiFi RSSI values
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Introduction: Prior art in WiFi based localization

Common approach

• Step 1) (training phase)
Fingerprinting the RSSI and location

• Step 2) (test phase)
Tracking location based on RSSI

Algorithms

• Nearest neighbor matching
[Bahl & Padnamabhan, 2000]

• Kalman filtering

• Particle filtering
[Evennou et al, 2005]

• Model-free smoothing
[Chen et al, 2007]

• KL-divergence on Gaussians
[Milioris et al, 2010]

• Naïve Bayes
[Castro et al, 2001; Roos et al, 2002]

• KL-divergence + statistical test
[Bargh & de Groote, 2008]

Need to be able to 
compare multimodal distributions of RSSI

Major limitations

• Ignore the multimodal signal model in 
recorded RSSI values

• or lack an algorithm
for regressing the location based on RSSI

• Need frequent retraining / recalibration
Can resort to automated fingerprinting,
e.g., using an autonomous robot that 
records RSSI and associated location, 
every few nights 
[Palaniappan et al, IPIN 2011]
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Methods: Kullback-Leibler divergence

Two distributions of RSSI values S

• Fingerprint distribution q(S)

• Tracking distribution p(S)

We assume that RSSI are discrete values

• If p or q are unknown,
then KL(p||q) = infinite
(we set KL(p||q) = large value)

• Smooth the histogram of p and q
using small value ε
to avoid taking log(0) or divide by 0

[Kullback & Leibler, 1951]

associated with a location in the fingerprint database. Matching
is done by comparing distributions using the symmetrized
Kullback-Leibler divergence and by constructing probability
kernels that can be used either in a simple weighted regression
scheme. We found that this metric on fingerprints is robust to
various noise and RSSI distributions, and we provide means to
estimate the location using RSSI measurements during a short
time window. As an extension, we also propose an alternative
approach to fingerprinting, which records only the count of
successful connections to APs (rather than the RSSI levels)
over a small time interval, a method similar in principle to
AP coverage area estimates [9].

C. Prior Art in Probability-Based Indoor Localization
The first usage of a probabilistic approach to RSSI in indoor

localization was explained in [3], [16]. They proposed to
model the distribution of RSSI at each fingerprint location as
a histogram, and to use that prior in a Bayesian framework,
to compute the probability of having a specific histogram
of RSSI at a new location using Bayesian Networks [3] or
the Naive Bayes algorithm [16]. Paschalidis et al. [15] use
a Kullback-Leibler-based statistical framework for Wireless
Sensor Networks localization (consisting in null hypothesis
testing for each fingerprint). Bargh et al. [2] use the KL
divergence to find the (single) nearest neighbor in the space of
multinomial counts of Bluetooth dongles. Milioris et al. [11]
also use KL divergence, this time on RSSI from WiFi data,
but they assume that the RSSI from multiple APs is simply a
multivariate Gaussian, a hypothesis that is not always true, as
pointed out in Section I-A.

None of the previous methods considered probability ker-
nels with distance-like metrics between distributions. We do,
and show that such probabilistic kernels can be used for the
regression of the location, achieving up to 1m accuracy in
office environments.

II. METHODS

Our method can be summarized as follows: we sample the
distribution p of RSSI from all visible APs for a duration
⇥ (typically of a few seconds), and we compare it to the
distributions q in the fingerprint database, using the Kullback-
Leibler divergence (Section II-A) and the KL-divergence ker-
nel (Section II-B). In the database, each fingerprint is assciated
with a location. The location is estimated through kernel
regression (Section II-D). Our method naturally copes with
unknown RSSI (Section II-C), contains few hyperparameters,
and can be trivially extended to operate merely on histograms
of AP connection (i.e., binary) instead of full RSSI levels
(Section II-G). We justify sampling RSSI or AP during motion
of the mobile device in Section II-E.

A. Kullback-Leibler Divergence
In information theory, the Kullback-Leibler divergence KL

is a non-symmetric measure of the difference between two
probability distributions2 p and q. In the discrete case where

2We can also write KL(p||q) = H(p, q) � H(p), where H(p) is the
entropy of p and H(p, q) the cross-entropy due to using q instead of p.

the random variable S takes discrete values (e.g., integer-
valued RSSI or SNR from an access point), we have:
KL(p||q) =

�
s p(S = s) log (p(S = s)/q(S = s)). To avoid

taking logarithms of zero-valued bins, we smooth the distri-
bution by adding a small constant term (e.g., 10�6) and re-
normalizing the empirical distribution function.

The symmetrized Kullback-Leibler divergence D between
two distributions p and q can be simply defined3 as

D(p, q) = KL(p||q) + KL(q||p). (1)

Note that this metric does not satisfy the triangle inequality
and cannot be considered a distance measure [5].

In the case when the discrete random vector S =
{S1, . . . , SJ} is multivariate (e.g., when measuring RSSI
from multiple access points {1, . . . , J}), we can make the
assumption of local independence of each AP’s distribution4,
i.e., that p(S|{x, y}) =

⇥J
j=1 p(Sj |{x, y}) at specific location

{x, y}. Such a local independence assumption for multiple
APs was already made in [16]. Note that we now use the
shorthands p = p(S|{x, y}) to express the RSSI distribution
obtained during tracking and around position {x, y}, and
q⇥ = q(S|{x⇥, y⇥}) to express the RSSI distribution at the
fingerprint indexed by ↵.

Using the chain rule for relative entropy, one can prove
that the KL-divergence of a joint distribution of independent
variables is equal to the sum of the KL-divergences for each
variable’s distribution [5]. We therefore have, for any two
locations {x, y} and {x⇥, y⇥} and their associated multivariate
distributions p and q⇥, and for J access points:

D (p, q⇥) =
J⇤

j=1

D (p(Sj |{x, y}), q(Sj |{x⇥, y⇥})) (2)

B. KL-Divergence Kernel
The Kullback-Leibler divergence is used in [15] for localiza-

tion in a statistical framework: the RSSI of the mobile is com-
pared to several fingerprints through KL-based null hypothesis
testing. We propose to combine the KL-divergence with kernel
methods, as has already been done for other applications [12],
and to use kernel-based regression algorithms.

Briefly, a kernel function k(p, q) is a symmetric function
equal to one if p = q and decaying to zero as the dissimilarity
of the two inputs increases. Kernel methods such as Support
Vector Regression [13] often require the kernel matrix between
all training datapoints to be Positive Semi-Definite (PSD)5.
Following [12], and for a data-dependent range of values �, it

3Our notation D(p, q) for the symmetrized KL-divergence is not to be
confused with the asymmetric KL-divergence KL(p||q).

4We can indeed argue that the software most likely queries and receives
answers from the APs independently, and that the fluctuations in signal
propagation for various APs happen along somewhat different paths. There is
no fundamental reason why we could not work with joint distributions, but
the number of bins would grow exponentially with the number of APs, while
the independence assumption helps us carry out the computations efficiently.

5A real-valued symmetric matrix K ⇤ Rn⇥n is positive semi-definite if
for all vectors x ⇤ Rn, we have xT Kx ⇥ 0.

11
[Mirowski et al, IPIN 2011]
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Methods: Kullback-Leibler divergence

associated with a location in the fingerprint database. Matching
is done by comparing distributions using the symmetrized
Kullback-Leibler divergence and by constructing probability
kernels that can be used either in a simple weighted regression
scheme. We found that this metric on fingerprints is robust to
various noise and RSSI distributions, and we provide means to
estimate the location using RSSI measurements during a short
time window. As an extension, we also propose an alternative
approach to fingerprinting, which records only the count of
successful connections to APs (rather than the RSSI levels)
over a small time interval, a method similar in principle to
AP coverage area estimates [9].

C. Prior Art in Probability-Based Indoor Localization
The first usage of a probabilistic approach to RSSI in indoor

localization was explained in [3], [16]. They proposed to
model the distribution of RSSI at each fingerprint location as
a histogram, and to use that prior in a Bayesian framework,
to compute the probability of having a specific histogram
of RSSI at a new location using Bayesian Networks [3] or
the Naive Bayes algorithm [16]. Paschalidis et al. [15] use
a Kullback-Leibler-based statistical framework for Wireless
Sensor Networks localization (consisting in null hypothesis
testing for each fingerprint). Bargh et al. [2] use the KL
divergence to find the (single) nearest neighbor in the space of
multinomial counts of Bluetooth dongles. Milioris et al. [11]
also use KL divergence, this time on RSSI from WiFi data,
but they assume that the RSSI from multiple APs is simply a
multivariate Gaussian, a hypothesis that is not always true, as
pointed out in Section I-A.

None of the previous methods considered probability ker-
nels with distance-like metrics between distributions. We do,
and show that such probabilistic kernels can be used for the
regression of the location, achieving up to 1m accuracy in
office environments.

II. METHODS

Our method can be summarized as follows: we sample the
distribution p of RSSI from all visible APs for a duration
⇥ (typically of a few seconds), and we compare it to the
distributions q in the fingerprint database, using the Kullback-
Leibler divergence (Section II-A) and the KL-divergence ker-
nel (Section II-B). In the database, each fingerprint is assciated
with a location. The location is estimated through kernel
regression (Section II-D). Our method naturally copes with
unknown RSSI (Section II-C), contains few hyperparameters,
and can be trivially extended to operate merely on histograms
of AP connection (i.e., binary) instead of full RSSI levels
(Section II-G). We justify sampling RSSI or AP during motion
of the mobile device in Section II-E.

A. Kullback-Leibler Divergence
In information theory, the Kullback-Leibler divergence KL

is a non-symmetric measure of the difference between two
probability distributions2 p and q. In the discrete case where

2We can also write KL(p||q) = H(p, q) � H(p), where H(p) is the
entropy of p and H(p, q) the cross-entropy due to using q instead of p.

the random variable S takes discrete values (e.g., integer-
valued RSSI or SNR from an access point), we have:
KL(p||q) =

�
s p(S = s) log (p(S = s)/q(S = s)). To avoid

taking logarithms of zero-valued bins, we smooth the distri-
bution by adding a small constant term (e.g., 10�6) and re-
normalizing the empirical distribution function.

The symmetrized Kullback-Leibler divergence D between
two distributions p and q can be simply defined3 as

D(p, q) = KL(p||q) + KL(q||p). (1)

Note that this metric does not satisfy the triangle inequality
and cannot be considered a distance measure [5].

In the case when the discrete random vector S =
{S1, . . . , SJ} is multivariate (e.g., when measuring RSSI
from multiple access points {1, . . . , J}), we can make the
assumption of local independence of each AP’s distribution4,
i.e., that p(S|{x, y}) =

⇥J
j=1 p(Sj |{x, y}) at specific location

{x, y}. Such a local independence assumption for multiple
APs was already made in [16]. Note that we now use the
shorthands p = p(S|{x, y}) to express the RSSI distribution
obtained during tracking and around position {x, y}, and
q⇥ = q(S|{x⇥, y⇥}) to express the RSSI distribution at the
fingerprint indexed by ↵.

Using the chain rule for relative entropy, one can prove
that the KL-divergence of a joint distribution of independent
variables is equal to the sum of the KL-divergences for each
variable’s distribution [5]. We therefore have, for any two
locations {x, y} and {x⇥, y⇥} and their associated multivariate
distributions p and q⇥, and for J access points:

D (p, q⇥) =
J⇤

j=1

D (p(Sj |{x, y}), q(Sj |{x⇥, y⇥})) (2)

B. KL-Divergence Kernel
The Kullback-Leibler divergence is used in [15] for localiza-

tion in a statistical framework: the RSSI of the mobile is com-
pared to several fingerprints through KL-based null hypothesis
testing. We propose to combine the KL-divergence with kernel
methods, as has already been done for other applications [12],
and to use kernel-based regression algorithms.

Briefly, a kernel function k(p, q) is a symmetric function
equal to one if p = q and decaying to zero as the dissimilarity
of the two inputs increases. Kernel methods such as Support
Vector Regression [13] often require the kernel matrix between
all training datapoints to be Positive Semi-Definite (PSD)5.
Following [12], and for a data-dependent range of values �, it

3Our notation D(p, q) for the symmetrized KL-divergence is not to be
confused with the asymmetric KL-divergence KL(p||q).

4We can indeed argue that the software most likely queries and receives
answers from the APs independently, and that the fluctuations in signal
propagation for various APs happen along somewhat different paths. There is
no fundamental reason why we could not work with joint distributions, but
the number of bins would grow exponentially with the number of APs, while
the independence assumption helps us carry out the computations efficiently.

5A real-valued symmetric matrix K ⇤ Rn⇥n is positive semi-definite if
for all vectors x ⇤ Rn, we have xT Kx ⇥ 0.

Two distributions of RSSI values S

• Fingerprint distribution q(S)

• Tracking distribution p(S)

We assume that RSSI are discrete values

• Values expressed in dBm,
e.g., values from -90dBm to 0dBm

• Alternatively, SNR (Signal-to-Noise Ratio),
e.g., values from 0dB to 90dB
(may need rescaling at tracking time)

• Bins of size 1dB, 2dB, 5dB?

[Kullback & Leibler, 1951]

associated with a location in the fingerprint database. Matching
is done by comparing distributions using the symmetrized
Kullback-Leibler divergence and by constructing probability
kernels that can be used either in a simple weighted regression
scheme. We found that this metric on fingerprints is robust to
various noise and RSSI distributions, and we provide means to
estimate the location using RSSI measurements during a short
time window. As an extension, we also propose an alternative
approach to fingerprinting, which records only the count of
successful connections to APs (rather than the RSSI levels)
over a small time interval, a method similar in principle to
AP coverage area estimates [9].

C. Prior Art in Probability-Based Indoor Localization
The first usage of a probabilistic approach to RSSI in indoor

localization was explained in [3], [16]. They proposed to
model the distribution of RSSI at each fingerprint location as
a histogram, and to use that prior in a Bayesian framework,
to compute the probability of having a specific histogram
of RSSI at a new location using Bayesian Networks [3] or
the Naive Bayes algorithm [16]. Paschalidis et al. [15] use
a Kullback-Leibler-based statistical framework for Wireless
Sensor Networks localization (consisting in null hypothesis
testing for each fingerprint). Bargh et al. [2] use the KL
divergence to find the (single) nearest neighbor in the space of
multinomial counts of Bluetooth dongles. Milioris et al. [11]
also use KL divergence, this time on RSSI from WiFi data,
but they assume that the RSSI from multiple APs is simply a
multivariate Gaussian, a hypothesis that is not always true, as
pointed out in Section I-A.

None of the previous methods considered probability ker-
nels with distance-like metrics between distributions. We do,
and show that such probabilistic kernels can be used for the
regression of the location, achieving up to 1m accuracy in
office environments.

II. METHODS

Our method can be summarized as follows: we sample the
distribution p of RSSI from all visible APs for a duration
⇥ (typically of a few seconds), and we compare it to the
distributions q in the fingerprint database, using the Kullback-
Leibler divergence (Section II-A) and the KL-divergence ker-
nel (Section II-B). In the database, each fingerprint is assciated
with a location. The location is estimated through kernel
regression (Section II-D). Our method naturally copes with
unknown RSSI (Section II-C), contains few hyperparameters,
and can be trivially extended to operate merely on histograms
of AP connection (i.e., binary) instead of full RSSI levels
(Section II-G). We justify sampling RSSI or AP during motion
of the mobile device in Section II-E.

A. Kullback-Leibler Divergence
In information theory, the Kullback-Leibler divergence KL

is a non-symmetric measure of the difference between two
probability distributions2 p and q. In the discrete case where

2We can also write KL(p||q) = H(p, q) � H(p), where H(p) is the
entropy of p and H(p, q) the cross-entropy due to using q instead of p.

the random variable S takes discrete values (e.g., integer-
valued RSSI or SNR from an access point), we have:
KL(p||q) =

�
s p(S = s) log (p(S = s)/q(S = s)). To avoid

taking logarithms of zero-valued bins, we smooth the distri-
bution by adding a small constant term (e.g., 10�6) and re-
normalizing the empirical distribution function.

The symmetrized Kullback-Leibler divergence D between
two distributions p and q can be simply defined3 as

D(p, q) = KL(p||q) + KL(q||p). (1)

Note that this metric does not satisfy the triangle inequality
and cannot be considered a distance measure [5].

In the case when the discrete random vector S =
{S1, . . . , SJ} is multivariate (e.g., when measuring RSSI
from multiple access points {1, . . . , J}), we can make the
assumption of local independence of each AP’s distribution4,
i.e., that p(S|{x, y}) =

⇥J
j=1 p(Sj |{x, y}) at specific location

{x, y}. Such a local independence assumption for multiple
APs was already made in [16]. Note that we now use the
shorthands p = p(S|{x, y}) to express the RSSI distribution
obtained during tracking and around position {x, y}, and
q⇥ = q(S|{x⇥, y⇥}) to express the RSSI distribution at the
fingerprint indexed by ↵.

Using the chain rule for relative entropy, one can prove
that the KL-divergence of a joint distribution of independent
variables is equal to the sum of the KL-divergences for each
variable’s distribution [5]. We therefore have, for any two
locations {x, y} and {x⇥, y⇥} and their associated multivariate
distributions p and q⇥, and for J access points:

D (p, q⇥) =
J⇤

j=1

D (p(Sj |{x, y}), q(Sj |{x⇥, y⇥})) (2)

B. KL-Divergence Kernel
The Kullback-Leibler divergence is used in [15] for localiza-

tion in a statistical framework: the RSSI of the mobile is com-
pared to several fingerprints through KL-based null hypothesis
testing. We propose to combine the KL-divergence with kernel
methods, as has already been done for other applications [12],
and to use kernel-based regression algorithms.

Briefly, a kernel function k(p, q) is a symmetric function
equal to one if p = q and decaying to zero as the dissimilarity
of the two inputs increases. Kernel methods such as Support
Vector Regression [13] often require the kernel matrix between
all training datapoints to be Positive Semi-Definite (PSD)5.
Following [12], and for a data-dependent range of values �, it

3Our notation D(p, q) for the symmetrized KL-divergence is not to be
confused with the asymmetric KL-divergence KL(p||q).

4We can indeed argue that the software most likely queries and receives
answers from the APs independently, and that the fluctuations in signal
propagation for various APs happen along somewhat different paths. There is
no fundamental reason why we could not work with joint distributions, but
the number of bins would grow exponentially with the number of APs, while
the independence assumption helps us carry out the computations efficiently.

5A real-valued symmetric matrix K ⇤ Rn⇥n is positive semi-definite if
for all vectors x ⇤ Rn, we have xT Kx ⇥ 0.

Symmetrized version of Kullback-Leibler divergence:

12
[Mirowski et al, IPIN 2011]
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Methods: Kullback-Leibler divergence, multiple APs

Two distributions of RSSI values S

• Fingerprint distribution q(S)

• Tracking distribution p(S)

Multivariate signal S

• J different Access Points (APs)

• Conditional independence assumption 
between APs given the location l 

• Sweep under the rug signal interference

associated with a location in the fingerprint database. Matching
is done by comparing distributions using the symmetrized
Kullback-Leibler divergence and by constructing probability
kernels that can be used either in a simple weighted regression
scheme. We found that this metric on fingerprints is robust to
various noise and RSSI distributions, and we provide means to
estimate the location using RSSI measurements during a short
time window. As an extension, we also propose an alternative
approach to fingerprinting, which records only the count of
successful connections to APs (rather than the RSSI levels)
over a small time interval, a method similar in principle to
AP coverage area estimates [9].

C. Prior Art in Probability-Based Indoor Localization
The first usage of a probabilistic approach to RSSI in indoor

localization was explained in [3], [16]. They proposed to
model the distribution of RSSI at each fingerprint location as
a histogram, and to use that prior in a Bayesian framework,
to compute the probability of having a specific histogram
of RSSI at a new location using Bayesian Networks [3] or
the Naive Bayes algorithm [16]. Paschalidis et al. [15] use
a Kullback-Leibler-based statistical framework for Wireless
Sensor Networks localization (consisting in null hypothesis
testing for each fingerprint). Bargh et al. [2] use the KL
divergence to find the (single) nearest neighbor in the space of
multinomial counts of Bluetooth dongles. Milioris et al. [11]
also use KL divergence, this time on RSSI from WiFi data,
but they assume that the RSSI from multiple APs is simply a
multivariate Gaussian, a hypothesis that is not always true, as
pointed out in Section I-A.

None of the previous methods considered probability ker-
nels with distance-like metrics between distributions. We do,
and show that such probabilistic kernels can be used for the
regression of the location, achieving up to 1m accuracy in
office environments.

II. METHODS

Our method can be summarized as follows: we sample the
distribution p of RSSI from all visible APs for a duration
⇥ (typically of a few seconds), and we compare it to the
distributions q in the fingerprint database, using the Kullback-
Leibler divergence (Section II-A) and the KL-divergence ker-
nel (Section II-B). In the database, each fingerprint is assciated
with a location. The location is estimated through kernel
regression (Section II-D). Our method naturally copes with
unknown RSSI (Section II-C), contains few hyperparameters,
and can be trivially extended to operate merely on histograms
of AP connection (i.e., binary) instead of full RSSI levels
(Section II-G). We justify sampling RSSI or AP during motion
of the mobile device in Section II-E.

A. Kullback-Leibler Divergence
In information theory, the Kullback-Leibler divergence KL

is a non-symmetric measure of the difference between two
probability distributions2 p and q. In the discrete case where

2We can also write KL(p||q) = H(p, q) � H(p), where H(p) is the
entropy of p and H(p, q) the cross-entropy due to using q instead of p.

the random variable S takes discrete values (e.g., integer-
valued RSSI or SNR from an access point), we have:
KL(p||q) =

�
s p(S = s) log (p(S = s)/q(S = s)). To avoid

taking logarithms of zero-valued bins, we smooth the distri-
bution by adding a small constant term (e.g., 10�6) and re-
normalizing the empirical distribution function.

The symmetrized Kullback-Leibler divergence D between
two distributions p and q can be simply defined3 as

D(p, q) = KL(p||q) + KL(q||p). (1)

Note that this metric does not satisfy the triangle inequality
and cannot be considered a distance measure [5].

In the case when the discrete random vector S =
{S1, . . . , SJ} is multivariate (e.g., when measuring RSSI
from multiple access points {1, . . . , J}), we can make the
assumption of local independence of each AP’s distribution4,
i.e., that p(S|{x, y}) =

⇥J
j=1 p(Sj |{x, y}) at specific location

{x, y}. Such a local independence assumption for multiple
APs was already made in [16]. Note that we now use the
shorthands p = p(S|{x, y}) to express the RSSI distribution
obtained during tracking and around position {x, y}, and
q⇥ = q(S|{x⇥, y⇥}) to express the RSSI distribution at the
fingerprint indexed by ↵.

Using the chain rule for relative entropy, one can prove
that the KL-divergence of a joint distribution of independent
variables is equal to the sum of the KL-divergences for each
variable’s distribution [5]. We therefore have, for any two
locations {x, y} and {x⇥, y⇥} and their associated multivariate
distributions p and q⇥, and for J access points:

D (p, q⇥) =
J⇤

j=1

D (p(Sj |{x, y}), q(Sj |{x⇥, y⇥})) (2)

B. KL-Divergence Kernel
The Kullback-Leibler divergence is used in [15] for localiza-

tion in a statistical framework: the RSSI of the mobile is com-
pared to several fingerprints through KL-based null hypothesis
testing. We propose to combine the KL-divergence with kernel
methods, as has already been done for other applications [12],
and to use kernel-based regression algorithms.

Briefly, a kernel function k(p, q) is a symmetric function
equal to one if p = q and decaying to zero as the dissimilarity
of the two inputs increases. Kernel methods such as Support
Vector Regression [13] often require the kernel matrix between
all training datapoints to be Positive Semi-Definite (PSD)5.
Following [12], and for a data-dependent range of values �, it

3Our notation D(p, q) for the symmetrized KL-divergence is not to be
confused with the asymmetric KL-divergence KL(p||q).

4We can indeed argue that the software most likely queries and receives
answers from the APs independently, and that the fluctuations in signal
propagation for various APs happen along somewhat different paths. There is
no fundamental reason why we could not work with joint distributions, but
the number of bins would grow exponentially with the number of APs, while
the independence assumption helps us carry out the computations efficiently.

5A real-valued symmetric matrix K ⇤ Rn⇥n is positive semi-definite if
for all vectors x ⇤ Rn, we have xT Kx ⇥ 0.

associated with a location in the fingerprint database. Matching
is done by comparing distributions using the symmetrized
Kullback-Leibler divergence and by constructing probability
kernels that can be used either in a simple weighted regression
scheme. We found that this metric on fingerprints is robust to
various noise and RSSI distributions, and we provide means to
estimate the location using RSSI measurements during a short
time window. As an extension, we also propose an alternative
approach to fingerprinting, which records only the count of
successful connections to APs (rather than the RSSI levels)
over a small time interval, a method similar in principle to
AP coverage area estimates [9].

C. Prior Art in Probability-Based Indoor Localization
The first usage of a probabilistic approach to RSSI in indoor

localization was explained in [3], [16]. They proposed to
model the distribution of RSSI at each fingerprint location as
a histogram, and to use that prior in a Bayesian framework,
to compute the probability of having a specific histogram
of RSSI at a new location using Bayesian Networks [3] or
the Naive Bayes algorithm [16]. Paschalidis et al. [15] use
a Kullback-Leibler-based statistical framework for Wireless
Sensor Networks localization (consisting in null hypothesis
testing for each fingerprint). Bargh et al. [2] use the KL
divergence to find the (single) nearest neighbor in the space of
multinomial counts of Bluetooth dongles. Milioris et al. [11]
also use KL divergence, this time on RSSI from WiFi data,
but they assume that the RSSI from multiple APs is simply a
multivariate Gaussian, a hypothesis that is not always true, as
pointed out in Section I-A.

None of the previous methods considered probability ker-
nels with distance-like metrics between distributions. We do,
and show that such probabilistic kernels can be used for the
regression of the location, achieving up to 1m accuracy in
office environments.

II. METHODS

Our method can be summarized as follows: we sample the
distribution p of RSSI from all visible APs for a duration
⇥ (typically of a few seconds), and we compare it to the
distributions q in the fingerprint database, using the Kullback-
Leibler divergence (Section II-A) and the KL-divergence ker-
nel (Section II-B). In the database, each fingerprint is assciated
with a location. The location is estimated through kernel
regression (Section II-D). Our method naturally copes with
unknown RSSI (Section II-C), contains few hyperparameters,
and can be trivially extended to operate merely on histograms
of AP connection (i.e., binary) instead of full RSSI levels
(Section II-G). We justify sampling RSSI or AP during motion
of the mobile device in Section II-E.

A. Kullback-Leibler Divergence
In information theory, the Kullback-Leibler divergence KL

is a non-symmetric measure of the difference between two
probability distributions2 p and q. In the discrete case where

2We can also write KL(p||q) = H(p, q) � H(p), where H(p) is the
entropy of p and H(p, q) the cross-entropy due to using q instead of p.

the random variable S takes discrete values (e.g., integer-
valued RSSI or SNR from an access point), we have:
KL(p||q) =

�
s p(S = s) log (p(S = s)/q(S = s)). To avoid

taking logarithms of zero-valued bins, we smooth the distri-
bution by adding a small constant term (e.g., 10�6) and re-
normalizing the empirical distribution function.

The symmetrized Kullback-Leibler divergence D between
two distributions p and q can be simply defined3 as

D(p, q) = KL(p||q) + KL(q||p). (1)

Note that this metric does not satisfy the triangle inequality
and cannot be considered a distance measure [5].

In the case when the discrete random vector S =
{S1, . . . , SJ} is multivariate (e.g., when measuring RSSI
from multiple access points {1, . . . , J}), we can make the
assumption of local independence of each AP’s distribution4,
i.e., that p(S|{x, y}) =

⇥J
j=1 p(Sj |{x, y}) at specific location

{x, y}. Such a local independence assumption for multiple
APs was already made in [16]. Note that we now use the
shorthands p = p(S|{x, y}) to express the RSSI distribution
obtained during tracking and around position {x, y}, and
q⇥ = q(S|{x⇥, y⇥}) to express the RSSI distribution at the
fingerprint indexed by ↵.

Using the chain rule for relative entropy, one can prove
that the KL-divergence of a joint distribution of independent
variables is equal to the sum of the KL-divergences for each
variable’s distribution [5]. We therefore have, for any two
locations {x, y} and {x⇥, y⇥} and their associated multivariate
distributions p and q⇥, and for J access points:

D (p, q⇥) =
J⇤

j=1

D (p(Sj |{x, y}), q(Sj |{x⇥, y⇥})) (2)

B. KL-Divergence Kernel
The Kullback-Leibler divergence is used in [15] for localiza-

tion in a statistical framework: the RSSI of the mobile is com-
pared to several fingerprints through KL-based null hypothesis
testing. We propose to combine the KL-divergence with kernel
methods, as has already been done for other applications [12],
and to use kernel-based regression algorithms.

Briefly, a kernel function k(p, q) is a symmetric function
equal to one if p = q and decaying to zero as the dissimilarity
of the two inputs increases. Kernel methods such as Support
Vector Regression [13] often require the kernel matrix between
all training datapoints to be Positive Semi-Definite (PSD)5.
Following [12], and for a data-dependent range of values �, it

3Our notation D(p, q) for the symmetrized KL-divergence is not to be
confused with the asymmetric KL-divergence KL(p||q).

4We can indeed argue that the software most likely queries and receives
answers from the APs independently, and that the fluctuations in signal
propagation for various APs happen along somewhat different paths. There is
no fundamental reason why we could not work with joint distributions, but
the number of bins would grow exponentially with the number of APs, while
the independence assumption helps us carry out the computations efficiently.

5A real-valued symmetric matrix K ⇤ Rn⇥n is positive semi-definite if
for all vectors x ⇤ Rn, we have xT Kx ⇥ 0.

For a location l of coordinates {xl, yl}
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Methods: Kullback-Leibler divergence kernels

Two distributions of RSSI values S

• Fingerprint distribution q(S)

• Tracking distribution p(S)

Fingerprint distributions q at different locations
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Methods: Kullback-Leibler divergence kernels

Two distributions of RSSI values S

• Fingerprint distribution q(S)

• Tracking distribution p(S)

is possible to define such PSD kernels by exponentiating the
symmetrized KL-divergence:

k (p, q⇧) = e
��

⇤J

j=1
D(p(Sj |{x,y}),q(Sj |{xl,yl})) (3)

Several other kernels have been suggested for multinomial
probability distributions, such as the Bhattacharyya affinity
kernel [8]. Such a Bhattacharyya kernel for multinomial dis-
tributions (e.g., counts of integer-valued RSSI from an AP)
has a simple form. Its only limitation is its lack of obvious
extension to joint distributions over several multinomials; we
would however encounter that situation when sampling RSSIs
from multiple APs. By contrast, we just showed that the
Kullback-Leibler divergence can be easily computed for joint
distributions of multiple independent multinomials.

C. Handling Missing Data
When the signal fingerprint at location {x, y} does not

sample any RSSI from a specific AP j, the obvious choice
is to set that distribution to p(Sj = �⇤|{x, y}) = 1. We can
approximate this by putting all the mass on the first bin of the
histogram (typically the bin below the limit of detection).

When an AP is “unknown” both to the current sample p
and to training fingerprint q⇧, then D(p(Sj), q⇧(Sj)) = 0, i.e.,
we ignore the j-th AP in the kernel regression. However, if
that AP is sampled by p and by a fingerprint q⇧ but not by
another fingerprint qm, then the KL-divergence for that AP is
smaller between p and q⇧ than it is between p and qm, giving
more kernel weight to the fingerprint � who “knows” that AP.

An alternative approach is to consider that when one distri-
bution is defined but not the other, then the two distributions
are infinitely different (i.e., their KL-divergence should be
equal to infinity). Instead of using infinite values, we use a
large constant that is equal to the maximum KL-divergence
that can be obtained for that number of bins and for that
smoothing coefficient, multiplied by a factor. In most cases,
we use a factor of 1 (again, obtaining similar numerical results
as by setting p(Sj = �⇤|{x, y}) = 1), and we use factors
bigger than 1 (e.g., 4) only when the area covered by the
fingerprints is very large, resulting in many APs not being
“heard” in different parts of the map. Specifically, we used
this approach with the large dataset of the public space in
Section III-D.

Finally, when it appears that an AP is down and is never
sampled, it can be simply removed from the sum in the kernel
function exponent (Eq. 3).

D. KL-Divergence Kernel Regression
Using the KL-divergence kernel function k and a set of

known training datapoints
�
q{xl,yl}

⇥
, we perform Weighted

Kernel Regression [14] to obtain an estimate of the location
using p, the sampled distribution of RSSI:

(x̄, ȳ) =
⇤

⇧(x⇧, y⇧)k(p, q⇧)⇤
⇧ k(p, q⇧)

(4)

We propose to do this regression using only the K nearest
neighbors (in the KL-divergence sense), instead of the full set
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Fig. 2. Possible trajectory (red line) traversing three adjacent fingerprints
located at {xa, ya}, {xb, yb} and {xc, yc} at times t, t + �

2 and t + � .

of known training datapoints, i.e., to keep the K fingerprints
{q⇧} that maximize k (p, q⇧). Our method amounts to nearest
neighbor matching in the case when K = 1. Note that the
choice of the K neighbors depends on the test datapoint p,
and that the kernel function still needs to be evaluated for all
known fingerprints. We optimize hyperparameters � and K
on the training dataset (i.e., on the fingerprints), for instance
using leave-one-out cross-validation.

Kernels provide a simple way to interpolate the location
estimates between fingerprint locations; some earlier methods
such as [4] were using more ad-hoc Delaunay triangulation of
mean values of RSSI distributions. As an obvious extension,
we could consider performing Support Vector Regression to
restrict the number of support vectors (fingerprints).

E. Evaluating the Distribution During Motion Tracking

In realistic scenarios, the distribution p for which one
wishes to estimate the location is going to be sampled during
motion, as the mobile moves through areas with different
RSSI distributions. The crucial assumption that we make for
estimating the location is that the PDFs continuously change
for neighboring points6. In other words, for two close positions
{xa, ya} and {xb, yb}:

q(S|⇥{xa, ya} + (1� ⇥){xb, yb}) ⇥ ⇥qa + (1� ⇥)qb (5)

There is a trade-off between the number of RSSI samples
necessary to get a good approximation of p (i.e., the time
required ⇤ and the distance travelled), and the error introduced
by sampling from neighboring locations. The latter can be
controlled by knowing how adjacent fingerprints are spaced,
how frequently APs are queried, and having a prior idea on the
speed of motion can however help. For instance, in some of our
experiments, we used a time window with ⇤ = 8s, while the
motion speed was 0.5m/s, adjacent training fingerprints were
spaced every 2-2.5m, and APs were probed at 5Hz: this means
that our sampling windows covered roughly 2 to 3 training
fingerprints and up to 40 RSSI samples, as illustrated on Fig. 2.

6We plan on verifying that assumption quantitatively for specific datasets.

Kernel function

• Symmetric function k(p, q) 
measuring the similarity of p and q

• k(p, q) = 1 when p = q

• k(p, q) decays to 0 rapidly
as p becomes distinct from q

• Positive symmetric definite

Probabilistic kernel

• KL-divergence kernels
[Moreno et al, 2002]

• Alternative: Bhattacharyya kernel
[Jebara et al, 2004]

To cross-validate (e.g., leave-one-out) on training data
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Methods: KL-divergence kernel regression

Two distributions of RSSI values S

• Fingerprint distribution q(S)

• Tracking distribution p(S)

Weighted Kernel Regression (WKR)
[Nadaraya, 1964]

• Simplest non-parametric regression

• Can define a neighborhood of size N,
based on kernel similarity

• Alternative: Support Vector Regression
[Smola & Scholkopf, 2004]

is possible to define such PSD kernels by exponentiating the
symmetrized KL-divergence:

k (p, q⇧) = e
��

⇤J

j=1
D(p(Sj |{x,y}),q(Sj |{xl,yl})) (3)

Several other kernels have been suggested for multinomial
probability distributions, such as the Bhattacharyya affinity
kernel [8]. Such a Bhattacharyya kernel for multinomial dis-
tributions (e.g., counts of integer-valued RSSI from an AP)
has a simple form. Its only limitation is its lack of obvious
extension to joint distributions over several multinomials; we
would however encounter that situation when sampling RSSIs
from multiple APs. By contrast, we just showed that the
Kullback-Leibler divergence can be easily computed for joint
distributions of multiple independent multinomials.

C. Handling Missing Data
When the signal fingerprint at location {x, y} does not

sample any RSSI from a specific AP j, the obvious choice
is to set that distribution to p(Sj = �⇤|{x, y}) = 1. We can
approximate this by putting all the mass on the first bin of the
histogram (typically the bin below the limit of detection).

When an AP is “unknown” both to the current sample p
and to training fingerprint q⇧, then D(p(Sj), q⇧(Sj)) = 0, i.e.,
we ignore the j-th AP in the kernel regression. However, if
that AP is sampled by p and by a fingerprint q⇧ but not by
another fingerprint qm, then the KL-divergence for that AP is
smaller between p and q⇧ than it is between p and qm, giving
more kernel weight to the fingerprint � who “knows” that AP.

An alternative approach is to consider that when one distri-
bution is defined but not the other, then the two distributions
are infinitely different (i.e., their KL-divergence should be
equal to infinity). Instead of using infinite values, we use a
large constant that is equal to the maximum KL-divergence
that can be obtained for that number of bins and for that
smoothing coefficient, multiplied by a factor. In most cases,
we use a factor of 1 (again, obtaining similar numerical results
as by setting p(Sj = �⇤|{x, y}) = 1), and we use factors
bigger than 1 (e.g., 4) only when the area covered by the
fingerprints is very large, resulting in many APs not being
“heard” in different parts of the map. Specifically, we used
this approach with the large dataset of the public space in
Section III-D.

Finally, when it appears that an AP is down and is never
sampled, it can be simply removed from the sum in the kernel
function exponent (Eq. 3).

D. KL-Divergence Kernel Regression
Using the KL-divergence kernel function k and a set of

known training datapoints
�
q{xl,yl}

⇥
, we perform Weighted

Kernel Regression [14] to obtain an estimate of the location
using p, the sampled distribution of RSSI:

(x̄, ȳ) =
⇤

⇧(x⇧, y⇧)k(p, q⇧)⇤
⇧ k(p, q⇧)

(4)

We propose to do this regression using only the K nearest
neighbors (in the KL-divergence sense), instead of the full set
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Fig. 2. Possible trajectory (red line) traversing three adjacent fingerprints
located at {xa, ya}, {xb, yb} and {xc, yc} at times t, t + �

2 and t + � .

of known training datapoints, i.e., to keep the K fingerprints
{q⇧} that maximize k (p, q⇧). Our method amounts to nearest
neighbor matching in the case when K = 1. Note that the
choice of the K neighbors depends on the test datapoint p,
and that the kernel function still needs to be evaluated for all
known fingerprints. We optimize hyperparameters � and K
on the training dataset (i.e., on the fingerprints), for instance
using leave-one-out cross-validation.

Kernels provide a simple way to interpolate the location
estimates between fingerprint locations; some earlier methods
such as [4] were using more ad-hoc Delaunay triangulation of
mean values of RSSI distributions. As an obvious extension,
we could consider performing Support Vector Regression to
restrict the number of support vectors (fingerprints).

E. Evaluating the Distribution During Motion Tracking

In realistic scenarios, the distribution p for which one
wishes to estimate the location is going to be sampled during
motion, as the mobile moves through areas with different
RSSI distributions. The crucial assumption that we make for
estimating the location is that the PDFs continuously change
for neighboring points6. In other words, for two close positions
{xa, ya} and {xb, yb}:

q(S|⇥{xa, ya} + (1� ⇥){xb, yb}) ⇥ ⇥qa + (1� ⇥)qb (5)

There is a trade-off between the number of RSSI samples
necessary to get a good approximation of p (i.e., the time
required ⇤ and the distance travelled), and the error introduced
by sampling from neighboring locations. The latter can be
controlled by knowing how adjacent fingerprints are spaced,
how frequently APs are queried, and having a prior idea on the
speed of motion can however help. For instance, in some of our
experiments, we used a time window with ⇤ = 8s, while the
motion speed was 0.5m/s, adjacent training fingerprints were
spaced every 2-2.5m, and APs were probed at 5Hz: this means
that our sampling windows covered roughly 2 to 3 training
fingerprints and up to 40 RSSI samples, as illustrated on Fig. 2.

6We plan on verifying that assumption quantitatively for specific datasets.

Fingerprint database

• Fingerprint distribution q(S)

• Fingerprint location {xl, yl}

To cross-validate

(e.g., leave-one-out)

on training data
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associated with a location in the fingerprint database. Matching
is done by comparing distributions using the symmetrized
Kullback-Leibler divergence and by constructing probability
kernels that can be used either in a simple weighted regression
scheme. We found that this metric on fingerprints is robust to
various noise and RSSI distributions, and we provide means to
estimate the location using RSSI measurements during a short
time window. As an extension, we also propose an alternative
approach to fingerprinting, which records only the count of
successful connections to APs (rather than the RSSI levels)
over a small time interval, a method similar in principle to
AP coverage area estimates [9].

C. Prior Art in Probability-Based Indoor Localization
The first usage of a probabilistic approach to RSSI in indoor

localization was explained in [3], [16]. They proposed to
model the distribution of RSSI at each fingerprint location as
a histogram, and to use that prior in a Bayesian framework,
to compute the probability of having a specific histogram
of RSSI at a new location using Bayesian Networks [3] or
the Naive Bayes algorithm [16]. Paschalidis et al. [15] use
a Kullback-Leibler-based statistical framework for Wireless
Sensor Networks localization (consisting in null hypothesis
testing for each fingerprint). Bargh et al. [2] use the KL
divergence to find the (single) nearest neighbor in the space of
multinomial counts of Bluetooth dongles. Milioris et al. [11]
also use KL divergence, this time on RSSI from WiFi data,
but they assume that the RSSI from multiple APs is simply a
multivariate Gaussian, a hypothesis that is not always true, as
pointed out in Section I-A.

None of the previous methods considered probability ker-
nels with distance-like metrics between distributions. We do,
and show that such probabilistic kernels can be used for the
regression of the location, achieving up to 1m accuracy in
office environments.

II. METHODS

Our method can be summarized as follows: we sample the
distribution p of RSSI from all visible APs for a duration
⇥ (typically of a few seconds), and we compare it to the
distributions q in the fingerprint database, using the Kullback-
Leibler divergence (Section II-A) and the KL-divergence ker-
nel (Section II-B). In the database, each fingerprint is assciated
with a location. The location is estimated through kernel
regression (Section II-D). Our method naturally copes with
unknown RSSI (Section II-C), contains few hyperparameters,
and can be trivially extended to operate merely on histograms
of AP connection (i.e., binary) instead of full RSSI levels
(Section II-G). We justify sampling RSSI or AP during motion
of the mobile device in Section II-E.

A. Kullback-Leibler Divergence
In information theory, the Kullback-Leibler divergence KL

is a non-symmetric measure of the difference between two
probability distributions2 p and q. In the discrete case where

2We can also write KL(p||q) = H(p, q) � H(p), where H(p) is the
entropy of p and H(p, q) the cross-entropy due to using q instead of p.

the random variable S takes discrete values (e.g., integer-
valued RSSI or SNR from an access point), we have:
KL(p||q) =

�
s p(S = s) log (p(S = s)/q(S = s)). To avoid

taking logarithms of zero-valued bins, we smooth the distri-
bution by adding a small constant term (e.g., 10�6) and re-
normalizing the empirical distribution function.

The symmetrized Kullback-Leibler divergence D between
two distributions p and q can be simply defined3 as

D(p, q) = KL(p||q) + KL(q||p). (1)

Note that this metric does not satisfy the triangle inequality
and cannot be considered a distance measure [5].

In the case when the discrete random vector S =
{S1, . . . , SJ} is multivariate (e.g., when measuring RSSI
from multiple access points {1, . . . , J}), we can make the
assumption of local independence of each AP’s distribution4,
i.e., that p(S|{x, y}) =

⇥J
j=1 p(Sj |{x, y}) at specific location

{x, y}. Such a local independence assumption for multiple
APs was already made in [16]. Note that we now use the
shorthands p = p(S|{x, y}) to express the RSSI distribution
obtained during tracking and around position {x, y}, and
q⇥ = q(S|{x⇥, y⇥}) to express the RSSI distribution at the
fingerprint indexed by ↵.

Using the chain rule for relative entropy, one can prove
that the KL-divergence of a joint distribution of independent
variables is equal to the sum of the KL-divergences for each
variable’s distribution [5]. We therefore have, for any two
locations {x, y} and {x⇥, y⇥} and their associated multivariate
distributions p and q⇥, and for J access points:

D (p, q⇥) =
J⇤

j=1

D (p(Sj |{x, y}), q(Sj |{x⇥, y⇥})) (2)

B. KL-Divergence Kernel
The Kullback-Leibler divergence is used in [15] for localiza-

tion in a statistical framework: the RSSI of the mobile is com-
pared to several fingerprints through KL-based null hypothesis
testing. We propose to combine the KL-divergence with kernel
methods, as has already been done for other applications [12],
and to use kernel-based regression algorithms.

Briefly, a kernel function k(p, q) is a symmetric function
equal to one if p = q and decaying to zero as the dissimilarity
of the two inputs increases. Kernel methods such as Support
Vector Regression [13] often require the kernel matrix between
all training datapoints to be Positive Semi-Definite (PSD)5.
Following [12], and for a data-dependent range of values �, it

3Our notation D(p, q) for the symmetrized KL-divergence is not to be
confused with the asymmetric KL-divergence KL(p||q).

4We can indeed argue that the software most likely queries and receives
answers from the APs independently, and that the fluctuations in signal
propagation for various APs happen along somewhat different paths. There is
no fundamental reason why we could not work with joint distributions, but
the number of bins would grow exponentially with the number of APs, while
the independence assumption helps us carry out the computations efficiently.

5A real-valued symmetric matrix K ⇤ Rn⇥n is positive semi-definite if
for all vectors x ⇤ Rn, we have xT Kx ⇥ 0.

Two distributions of 
Access Point connections S for J APs
i.e., how many times we could connect
to each of the access point j
during sampling window of length τ 

• Fingerprint distribution q(S)

• Tracking distribution p(S)

• Ignore the RSSI values
[Koski et al, 2010]
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is possible to define such PSD kernels by exponentiating the
symmetrized KL-divergence:

k (p, q⇧) = e
��

⇤J

j=1
D(p(Sj |{x,y}),q(Sj |{xl,yl})) (3)

Several other kernels have been suggested for multinomial
probability distributions, such as the Bhattacharyya affinity
kernel [8]. Such a Bhattacharyya kernel for multinomial dis-
tributions (e.g., counts of integer-valued RSSI from an AP)
has a simple form. Its only limitation is its lack of obvious
extension to joint distributions over several multinomials; we
would however encounter that situation when sampling RSSIs
from multiple APs. By contrast, we just showed that the
Kullback-Leibler divergence can be easily computed for joint
distributions of multiple independent multinomials.

C. Handling Missing Data
When the signal fingerprint at location {x, y} does not

sample any RSSI from a specific AP j, the obvious choice
is to set that distribution to p(Sj = �⇤|{x, y}) = 1. We can
approximate this by putting all the mass on the first bin of the
histogram (typically the bin below the limit of detection).

When an AP is “unknown” both to the current sample p
and to training fingerprint q⇧, then D(p(Sj), q⇧(Sj)) = 0, i.e.,
we ignore the j-th AP in the kernel regression. However, if
that AP is sampled by p and by a fingerprint q⇧ but not by
another fingerprint qm, then the KL-divergence for that AP is
smaller between p and q⇧ than it is between p and qm, giving
more kernel weight to the fingerprint � who “knows” that AP.

An alternative approach is to consider that when one distri-
bution is defined but not the other, then the two distributions
are infinitely different (i.e., their KL-divergence should be
equal to infinity). Instead of using infinite values, we use a
large constant that is equal to the maximum KL-divergence
that can be obtained for that number of bins and for that
smoothing coefficient, multiplied by a factor. In most cases,
we use a factor of 1 (again, obtaining similar numerical results
as by setting p(Sj = �⇤|{x, y}) = 1), and we use factors
bigger than 1 (e.g., 4) only when the area covered by the
fingerprints is very large, resulting in many APs not being
“heard” in different parts of the map. Specifically, we used
this approach with the large dataset of the public space in
Section III-D.

Finally, when it appears that an AP is down and is never
sampled, it can be simply removed from the sum in the kernel
function exponent (Eq. 3).

D. KL-Divergence Kernel Regression
Using the KL-divergence kernel function k and a set of

known training datapoints
�
q{xl,yl}

⇥
, we perform Weighted

Kernel Regression [14] to obtain an estimate of the location
using p, the sampled distribution of RSSI:

(x̄, ȳ) =
⇤

⇧(x⇧, y⇧)k(p, q⇧)⇤
⇧ k(p, q⇧)

(4)

We propose to do this regression using only the K nearest
neighbors (in the KL-divergence sense), instead of the full set

t +
�

4

t +
3�

4 �

⇤
t + �
xc

yc

⇥

⌅�

⇤
t + �

2
xb

yb

⇥

⌅
�

⇤
t

xa

ya

⇥

⌅

qa

qb

qc

Fig. 2. Possible trajectory (red line) traversing three adjacent fingerprints
located at {xa, ya}, {xb, yb} and {xc, yc} at times t, t + �

2 and t + � .

of known training datapoints, i.e., to keep the K fingerprints
{q⇧} that maximize k (p, q⇧). Our method amounts to nearest
neighbor matching in the case when K = 1. Note that the
choice of the K neighbors depends on the test datapoint p,
and that the kernel function still needs to be evaluated for all
known fingerprints. We optimize hyperparameters � and K
on the training dataset (i.e., on the fingerprints), for instance
using leave-one-out cross-validation.

Kernels provide a simple way to interpolate the location
estimates between fingerprint locations; some earlier methods
such as [4] were using more ad-hoc Delaunay triangulation of
mean values of RSSI distributions. As an obvious extension,
we could consider performing Support Vector Regression to
restrict the number of support vectors (fingerprints).

E. Evaluating the Distribution During Motion Tracking

In realistic scenarios, the distribution p for which one
wishes to estimate the location is going to be sampled during
motion, as the mobile moves through areas with different
RSSI distributions. The crucial assumption that we make for
estimating the location is that the PDFs continuously change
for neighboring points6. In other words, for two close positions
{xa, ya} and {xb, yb}:

q(S|⇥{xa, ya} + (1� ⇥){xb, yb}) ⇥ ⇥qa + (1� ⇥)qb (5)

There is a trade-off between the number of RSSI samples
necessary to get a good approximation of p (i.e., the time
required ⇤ and the distance travelled), and the error introduced
by sampling from neighboring locations. The latter can be
controlled by knowing how adjacent fingerprints are spaced,
how frequently APs are queried, and having a prior idea on the
speed of motion can however help. For instance, in some of our
experiments, we used a time window with ⇤ = 8s, while the
motion speed was 0.5m/s, adjacent training fingerprints were
spaced every 2-2.5m, and APs were probed at 5Hz: this means
that our sampling windows covered roughly 2 to 3 training
fingerprints and up to 40 RSSI samples, as illustrated on Fig. 2.

6We plan on verifying that assumption quantitatively for specific datasets.

qa

qb

Assume “linear” variation 
of RSSI distribution q(S)

• In small neighborhoods

• Local similarity of 
physical phenomena
behind variations in RSSI

Cross-validated or 
chosen ad-hoc, 
(based on motion 
model prior)

Trade-off when collecting RSSI
during tracking:

• More samples
(longer sampling window τ)

• Finer spatial resolution
of fingerprints
due to local signal variations
(shorter sampling window τ)

18
[Mirowski et al, IPIN 2011; Mirowski et al, submitted]
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Results: 2D office space with dense fingerprinting
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Figure 5: The true path (light gray line along corri-
dors), location estimates based on the moving average
(dotted line), and smoothed, tracking estimates (solid
line). The filled circles denote the start of the path; the
open circles denote the end of the path. (Axes are the
same as in Figure 2.)

would be expected, Gaussian weights are not much
better than uniform weights if k is small, but their im-
portance increases with k. There is about a 5% re-
duction in the average median error for k = 200 and
Gaussian weights. Note that the difference between
using k = 1 and k = 5 is negligible, with or without
weights.

VI. Tracking Experiments

We will analyze the performance of our tracking algo-
rithm for the path data (RSS measurements and loca-
tions) in [9] using the training maps from Section V.B,
but first we must evaluate whether the training maps
are appropriate for the tracking data. The tracking
data were collected days after the training data, and
the signal strength map might have changed in the in-
terim. In fact, comparing the mean observed RSS in
the tracking experiments with the mean observed RSS
in the training data shows that adjusting the RSS mea-
surements for APs 1,2,3, and 4 by 1 dB, 1.5 dB, 1.5 dB

..

0 10 20 30 40

40
30

20
10

0

Figure 6: Estimated path using a moving average with
a span of 8 (dotted) followed by loess with a span of
40 (solid line); the true path is the light gray line shad-
owed by the estimated path which goes into one room
off the corridor. (Axes are the same as in Figure 2.)

and 1 dB respectively corrects for the average drift in
the mean. More generally, drift in calibration could be
evaluated using data routinely collected from known
locations, as proposed in [17].
Figure 5 shows the results of applying our tracking

algorithm to the path data reported in [9] with k = 100
nearest neighbors and a moving average of m = 8
past and current measurements. The 0.1, 0.5, and
0.9 error quantiles over the map are 0.3, 1.3 and 2.5
m respectively for the moving average estimates; the
values after smoothing are 0.5, 1.4 and 2.6 m. Thus,
smoothing in this case does not reduce errors, but the
smooth path has fewer wall crossings and unrealistic
jumps. In comparison, [9] reports a median error of
2.0 m for the Kalman filter and 1.6 m for the Voronoi
filter that avoids wall crossing. That is, our tracking
method reduces the median error of the Kalman fil-
ter by about 30% and the median error of the much
more complicated Voronoi filter by about 14% in this
example.
Finally, we construct simulated paths by fixing the

locations along an actual path and simulating RSS

Mobile Computing and Communications Review, Volume 11, Number 3 55

KL divergence kernel regression
using 3 nearest-neighbors

Model free tracking [Chen et al, 2007]

Results with 4 APs
set-up for the experiment

Data from France Telecom
[Evennou et al, 2005]

Technique median @90%
Kalman filter [Evennou et al, 2005] 2.0m -
Voronoi particle filter [Evennou et al, 2005] 1.6m -
Model-free tracking [Chen et al, 2007] 1.3m 2.5m
KL-divergence, 1 NN 1.25m 3.18m
KL-divergence, 3 NN WKR 1.06m 2.34m

no smoothing!
no motion model!

smoothing 
over time
and space

21
[Mirowski et al, IPIN 2011]
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Results: 2D office space with dense fingerprinting

Results with 4 (set-up)
+ 18 (ad-hoc) APs visible
during the experiment

Data from France Telecom
[Evennou et al, 2005]

Technique median @90%
KL-divergence, with RSSI, 1 NN 1.16m 2.84m
KL-divergence, with RSSI, 6 NN WKR 0.96m 1.88m
KL-divergence, no RSSI, 1NN 1.94m 4.95m
KL-divergence, no RSSI, 27 NN WKR 1.90m 4.31m
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KL divergence kernel regression
using 27 nearest-neighbors,
no RSSI (only AP presence)

no smoothing!
no motion model!

−10 0 10 20 30 40

−5

0

5

10

15

20

25

30

35

40

Position (m)

FT1: expKL RSSI, kernel !=0.0141707, 8.0s window, 1dB bins, 6 NN, 22 APs
median error 0.95m (0.35@10%, 1.87@90%)
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Student Version of MATLAB

no smoothing!
no motion model!

KL divergence kernel regression
using 6 nearest-neighbors,
using RSSI

[Mirowski et al, IPIN 2011]
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Results: Effects of fingerprint and tracking parameters
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Most important factors:

• Spatial density of fingerprints 

• Number of fingerprint samples N
(but no improvement beyond 20)

• Number of tracking samples n
(or sampling window duration τ)
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[Mirowski et al, IPIN 2011; Mirowski et al, submitted]
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Results: Fingerprinting “on the fly” while walking
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expKL AP only, kernel α=0.7562, 8.0s window, 55 NN, 130 APs
median error 4.00m (1.00@10%, 7.55@90%)

 

 
True path
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Student Version of MATLAB

Walk along 300m corridor

Observed 130 ad-hoc APs

Defined 55 fingerprints

Used only AP presence
(no RSSI)

Tracking results
(one week later)

median: 4m
error at 90%: 7.6m
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Results: Open-space localization in an auditorium
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Set 6 APs in an auditoriumOpen space (auditorium) median @90%
KL-divergence, with RSSI, 4 NN WKR 4.7m 10.2m
KL-div. on Gaussians, with RSSI, 4 NN WKR 4.9m 8.2m
Random prediction 9m 15m

Narrow corridor median @90%
KL-divergence, with RSSI, 3 NN WKR 1m 2m
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Results: Sparse fingerprints in a complex public space
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Lower floor

Lower floor Upper floor

Upper floor

Tracking signal
recorded on lower floor
(3 days later)

Tracking signal
recorded on upper floor
(3 days later)

Predictions on the lower floor median @90% floor
KL-div., no RSSI, 31 NN WKR 10.3m 24.3m 89%
KL-div., RSSI, 8 NN WKR 8.2m 16.9m 96.2%
KL-div. Gauss, RSSI, 8 NN WKR 6.7m 14.8m 96%

Predictions on the lower floor median @90% floor
KL-div., no RSSI, 31 NN WKR 9.1m 17m 92.6%
KL-div., RSSI, 8 NN WKR 9m 17.1m 83.8%
KL-div. Gauss, RSSI, 8 NN WKR 8m 13.4m 84.4%
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We fingerprinted 500+ 
different MAC addresses 
(“APs”) that were available

[Mirowski et al, IPIN 2011; Mirowski et al, submitted]
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Automated fingerprinting: Motivation for a robot

31

 Indoor mapping robot capabilities
• Automated collection of RF signal 
• Autonomous navigation through

narrow corridors and open spaces
• Equipped with multitude of sensors

Advantages
• Commercial-off-the-shelf hardware

and free source software for easy replication
• Very long run-time
• Supports sensing payload up to 100 kg

 Applications
• Empirical test bed for novel methodologies
• Systematic evaluation of in-building

mobile communication networks
• Surveillance applications

[Palaniappan, Mirowski et al, IPIN 2011]
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Simultaneous
Localization
and Mapping

Autonomous
navigation

(or manual control)

RF signal
acquisition

RGB-D video 
acquisition

2D
trajectory Timestamps

3D model
building

Timestamps RF
measurements

RF fingerprint 
signal map

Automated fingerprinting: Process flow

32
[Palaniappan, Mirowski et al, IPIN 2011]
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Automated fingerprinting: Using a mapping robot

33

Kinect RGBD sensor

Motherboard

Wireless router

Sonar

Motor 
controller

Optical 
encoder

[Palaniappan, Mirowski et al, IPIN 2011]
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Hardware

• Electric Wheel Chair base

• Microsoft Kinect for building 3D 
database

• VIA Mini-ITX motherboard 1.66 GHz and 
4 GB RAM

• Linksys WiFi Router

• Sonar and Kinect for obstacle avoidance 

• Microcontrollers 

• Optical encoder for dead reckoning

• DC-DC convertors 

Software 

• Debian Linux O/S

• C, C++ for control and navigation

Specs

• Two 12V 32 Ah rechargeable batteries 
for 4 hours runtime

• Platform supports up to 100 kg of test 
and measurement equipment

• Multiple USB, RS232, RS422 ports for 
additional sensors and hardware

• 50 GB HDD for data storage

Robot: WiFi-mapping Robot

34
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• Full VGA resolution depth map acquired via 
infrared structured light

• Overlapping RGB video
(needs calibration and rectification)

• OpenKinect/OpenNI software library

Robot: Using the Kinect sensor for 3D vision

35
[Palaniappan, Mirowski et al, IPIN 2011]
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Robot: Simultaneous Localization and Mapping (SLAM)

36

tinySLAM (real time)
[Steux & El Hamzaoui, ICARCV 2010]

• Not probabilistic, approximate but fast

• Inputs:

• Wheel encoder odometry

• Rotation guess (from controls)

• 2D “laser range” from Kinect

• We use it to compute the rotation angles

DP-SLAM (offline)
[Eliazar & Parr, IJCAI 2003; Eliazar & Parr, ICRA 2004]

• Particle-filter based

• Inputs:

• Wheel encoder odometry

• Rotation angles from tinySLAM

• 2D “laser range” from Kinect

General SLAM principles
[Thrun et al, Probabilistic Robotics 2003]

• Integrate:

• Input from (wheel) odometry

• Motion model

• Predict the position and map (state)

• State vector contains position and map 

• Observe sensors (e.g., laser range)

• Update the state using observations
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state
(position,
map)

depth sensors
(laser range
or Kinect)

Update

Predict

[Mirowski et al, TePRA 2012]
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Robot: Simultaneous Localization and Mapping (SLAM)

37

Current limitations of SLAM [Steux & El Hamzaoui, 2010; Eliazar & Parr, 2003, 2004]

• Kinect sensor covers only 60 deg (laser ranges typically cover 180 deg)

• Kinect depth sensor works until 5.5m: problem in open spaces

• Slow processing speed of embedded hardware
(e.g., no GPU-based computing abilities)

• Most SLAM processing needs to be done offline

• Research in progress on loop closures

Example of SLAM reconstruction
in building Bell Labs MH-2 (3rd floor)

printers

MH-2B

MH-2C

[Mirowski et al, TePRA 2012]
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Robot: Simultaneous Localization and Mapping (SLAM)

38

Trajectory from 
wheel odometry

Trajectory from 
particle filtering

SLAM 
[Eliazar & Parr, 2003, 2004]

Trajectory 
optimized using 

absolute-position 
landmarks

(self-describing
QR codes) 

[Grisetti et al, 2007, 2010]

Optimized 
trajectory

superimposed on 
building blue prints

[Mirowski et al, TePRA 2012]
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Automated fingerprinting: a corridor at Bell Labs
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Cluster the path keypoints
of the robot
using K-Means algorithm
with constraints on
inter-fingerprint distance

• Fingerprints collected on the fly as 
the robot moves
• Robot speed: 0.23m/s
• Each fingerprint spans 2m of 

spatial extent
• 22 distinct MAC addresses (~ APs) 

at unknown locations
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Tracking accuracy:
median: 3 m
error at 90%: 6 m
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The signal recorded along
a simple (linear) trajectory
is extremely noisy

Automated fingerprinting: a corridor at Bell Labs
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[Mirowski et al, TePRA 2012]
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Automated RF Mapping: Using a self-localizing robot

41
[Palaniappan, Mirowski et al, IPIN 2011; Mirowski et al, TePRA 2012]

September 6, 2012

Hannover: Automated choice of fingerprints from path

4

Real-time Monte Carlo 
Localization

on an existing blueprint map,
along with path planning 
and collision avoidance

Simultaneous Localization and Mapping (SLAM) 
for map building from start (without blueprints),

trajectory registration using self-describing QR codes
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