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Problem Definition

Transfer Learning

Two or more learning problems that are related to one another
such that learning about one gives information about the others.

Example 1

Use data from pancreatic cancer to help predict liver cancer.

Example 2

Use drug trial information on a particular group (male) to learn to
predict a drugs effect on a different group (female).

Example 3

Transfer knowledge on locating battleships in satellite images to
locating aircraft carriers.
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Outline

1 Learning Model.
2 Transfer (Multitask) Learning
3 Shifting Concepts.
4 Relevant Subset.
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Inductive Learning Model

Notation

Assume I have a fixed but unknown distribution P(X ,Y ) where X
is the set of examples and Y is the set of labels. Assume that H is
a set of hypothesis that map X to Y .

Problem

Input A set of m independent samples from P(X ,Y ).

Output A function ĥ ∈ H that has low error on P(X ,Y ).

Bound ∀h ∈ H err(h) ≤ err(h) + ε(m, δ,H) where δ is the
probability of failure. For example,
ε = O (VC (H)/m + ln (1/δ) /m)

[Vapnick and Chervonenkis 1968]
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Structural Risk Minimization

Notation

Partition H into H = H1 ∪H2 ∪ . . . and give a non-negative weight
µi to each element of the partition such that

∑∞
i=1 µi = 1.

Problem

Input A set of m independent samples from P(X ,Y ).

Output A function ĥ ∈ H that has low error on P(X ,Y ).

Bound ∀i ∈ N ∀h ∈ Hi err(h) ≤ err(h) + ε(m, δ,Hi , µi )
where δ is the probability of failure.

[Vapnick and Chervonenkis 1974]
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Transfer Learning

One possible model of transfer learning is a customizable form a
structural risk minimization.

The old hypotheses is the center of H1, and the complexity of
learning grows the further a hypothesis is from the center.
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Multitask Learning

Assume P1 to Pk are k different learning problems where each
problem has mi training instances.

How do we use instances to do well on all k problems?
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Tracking Changing Concepts

On-line learning problem

Hyperplane concept that is allowed to change.

Let C = u1, u2, . . . , uk be a sequence of k hyperplane
weight vectors.

Assume that m1 labeled instances are generated according to
the classifier predict 1 iff u1 · x ≥ 1, that m2 instances are
generated according to u2 · x ≥ 1, . . ..

We can bound the number of mistakes as a function of the
distances between the weight vectors.
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Shifting hyperplanes with Winnow

Let λ ≥ maxt∈{1,...,T} ‖Xt‖1.
Let ζ = mint∈{1,...,T}, i∈{1,··· ,n}{xi ,t | xi ,t > 0}.
Let H(C ) =

∑n
i=1(uki +

∑k−1
j=1 max(0, uji − uj+1

i )).

H(C ) ≤
∑k−1

j=0 ||uj − uj+1||1.
Let νt = max[0,∆− yt(uC(t) · xt − 1)].

Let N =
∑T

t=1 νt

Theorem

For instances generated by a concept sequence C, if α = 1 + ∆
and ε = σ = ∆

50λ then the number of mistakes is less than

(2.05 + ∆)

 ζH(C )

∆(1 + ∆)
+

ln
(

50λ
∆ζ

)
H(C )

∆2
+

N

∆(1 + ∆)

 .
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Sequences of Concepts

We can relate changing concepts to multitask learning by
considering all possible sequences of concepts.

sequences

Let T be the number of possible sequences of concepts.

T = k!
0! + k!

1! + · · · k!
(k−1)! ≤ ek!

Increases the number of mistakes by at most O(k ln k).

As long as k is small ek! is computationally tractable.

Easy to parallelize.

Can consider only subset of sequences.
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Multitask Bounds

sequences

We need to convert algorithm from on-line to batch.

Can use voting, averaging, etc.

Bound is for average accuracy over all concepts.

Can use any p-norm changing concept bound.

Bound depends on the existence of a good sequence.

Error bound will depend total number of mistakes divided by
the total number of instances.

Winnow example where C contains all k problems

O

(
ln (n)H(C )

∆2
∑k

i=1 mi

+
N

∆(1 + ∆)
∑k

i=1 mi

+
k ln (k)∑k

i=1 mi

+

√
ln (1/δ)∑k

i=1 mi

)
.
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Transfer Learning

Algorithms such as Winnow depend on the KL-divergence. This
can give improved performance over the the 1-norm for Transfer
Learning problems.

Subset bound

Let A and B correspond to a partition of the attributes into
two pieces.

Assume |A| = r and |B| = n − r where r << n.

Assume instances have label 1 iff
∑

i∈A uixi +
∑

i∈B uixi ≥ 1.

The number of mistakes made by Subspace Winnow is
roughly at most

2

(∑
i∈A ui ln (2r) +

∑
i∈B ui ln (2n)

∆2

)
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Conclusion

On-line adversarial learning algorithms are an effective tool for
building batch learning algorithms.

Advantages

Adversary corresponds to a worst case sequence.

Extremely cheap.

Strong theoretical results.

Standard techniques exist to convert to batch as final stage.

Learning Problems

Transfer learning.

Active learning.

Multiclass extensions.
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