DIMACS Theoretical Computer Science Seminar

Title: Algorithmic Information, Plane Kakeya Sets, and Conditional Dimension

Speaker: Neil Lutz, Rutgers University

Date: Wednesday, March 9, 2016 11:00am-12:00pm

Location: CoRE Bldg, Room 301, Rutgers University, Busch Campus, Piscataway, NJ


We formulate the conditional Kolmogorov complexity of x given y at precision r, where x and y are points in Euclidean spaces and r is a natural number. We demonstrate the utility of this notion in two ways.

1. We prove a point-to-set principle that enables one to use the (relativized, constructive) dimension of a single point in a set E in a Euclidean space to establish a lower bound on the (classical) Hausdorff dimension of E. We then use this principle, together with conditional Kolmogorov complexity in Euclidean spaces, to give a new proof of the known, two-dimensional case of the Kakeya conjecture. This theorem of geometric measure theory, proved by Davies in 1971, says that every plane set containing a unit line segment in every direction has Hausdorff dimension 2.

2. We use conditional Kolmogorov complexity in Euclidean spaces to develop the lower and upper conditional dimensions dim(x|y ) and Dim(x|y) of x given y, where x and y are points in Euclidean spaces. Intuitively these are the lower and upper asymptotic algorithmic information densities of x conditioned on the information in y. We prove that these conditional dimensions are robust and that they have the correct information-theoretic relationships with the well studied dimensions dim(x) and Dim(x) and mutual dimensions mdim(x:y) and Mdim(x:y).

Joint work with Jack Lutz.

See: http://www.cs.rutgers.edu/~allender/theory-spring16.html