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Chapter 1

The Contributions of F.R. McMorris to Discrete Mathematics
and its Applications

George F. Estabrook, Terry A. McKee, Henry Martyn Mulder, Robert C. Powers,
Fred S. Roberts

In this chapter we discuss the contributions of F.R. McMorris to discrete mathe-
matics and its applications on the occasion of his retirement in 2008.

Introduction

End of August 2008 F.R. McMorris, Buck for his friends and colleagues, retired as
Dean of the College of Arts and Sciences at IIT, Illinois Institute of Technology,
Chicago. He also celebrated his 65-th birthday. To commemorate these events a
two-day conference was held early May 2008 at IIT. In addition this volume is writ-
ten in honor of his contributions to mathematics and its applications. The focus of
the volume is on areas to which he contributed most. The chapters show the broad-
ness of his interests and his influence on many co-authors and other mathematicians.
Here we survey his work. First some basic facts. At the moment of finishing this
volume Math. Reviews lists 2 books, the editorship of 3 conference proceedings,
and 108 published papers of Buck McMorris, and there are still many to come.
There are 53 co-authors listed, and again there are more to come. Of course, the
papers and co-authors listed in Math. Reviews are not all. The areas to which he
has contributed, by number of publications, are: Combinatorics; Group theory and
generalizations; Biology and other natural sciences; Game theory, economics, so-
cial and behavioral sciences; Operations research and mathematical programming;
Order, lattices and ordered algebraic structures; Statistics; Computer science. Be-
low we will highlight many of his contributions. Some characteristics of his way
of working are: an open mind, keen on fundamental mathematics with a relevance
for applications, always taking a broad view: try to formulate a ‘master plan’ that
may be a guide for creating many specific questions and open problems. What
seems to be equally important is that Buck has become a dear friend for many of
his co-authors. A fact that was fundamental for the success, mathematically and
socially, of the above mentioned celebration conference. Many of his co-authors
are mentioned below, some are contributors of this volume. Much to our regret,
because of the focus chosen, not all of his important co-authors are represented as
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author in this volume. Therefore we mention them here by number of their collabo-
rations with Buck McMorris, according to MathSciNet: C.S. Johnson Jr., Bill Day,
Frank Harary, Mike Jacobson, John Luedeman, Ewa Kubicka, Grzegorz Kubicki,
Jean-Pierre Barthélémy, Robert Brigham, Hans-Hermann Bock, Jerald Kabell, and
Chi Wang.

McMorris started his mathematical career in semi-groups. But even in his early
work we can already discern some of his future interests in discrete mathematics
and its applications: mathematical biology, intersection graphs, voting theory, con-
sensus theory. In the early eighties his focus shifted from semigroups to discrete
mathematics, with an emphasis on graph theory, while his early interests remained.
In the sections below we highlight these. Of course, not all of his publications can
be discussed. But the choices made provide a clear picture of his work and interests.

1.1. Mathematics of Evolutionary Biology

McMorris published 10 papers motivated by a concept from evolutionary systematic
biology called character compatibility. Seven were between 1975 and 1981, the early
days of his involvement with this concept: four of these included Estabrook as a
coauthor [16; 17; 18; 19], two were entirely his own [41; 42] and one more with
Zaslavsky [56]. McMorris et al. [55] addresses an abstract issue in graph theory
related to an unresolved question from character compatibility, and Day et al. [13]
apply McMorris’ potential compatibility test to look for randomness in about 100
published data sets. For his last publication on character compatibility [20], he
worked again with his original coauthor to examine the relationship between geologic
stratigraphic data and compatibility.

To understand the relevance of McMorris’ contributions to character compat-
ibility analysis, it is useful to understand some of the concepts of evolutionary
systematic biology. This subfield of biology seeks to estimate the tree of ancestor-
descendant relationships among species, consequent of their evolution, and then
use these evolutionary relationships to recognize higher taxa (groups of species in
genera, families, etc). In the late 19th century, systematic biologists realized that
similarities and differences with respect to a basis for comparison among a group
of related species under study could be the basis for an hypothesis about the rela-
tionships among species and the ancestors from which they evolved, their so-called
ancestor relation. Such hypotheses are expressed as characters, which group species
together into the same character state if they are considered to be the same with
respect to a basis for comparison, and then arrange these character states into a
character state tree to indicate where speciation events associated with the observed
changes are hypothesized to have occurred. By mid 20th century, some natural sci-
entists also realized that some pairs of such hypotheses based on different bases for
comparison could be logically incompatible, i.e., they could not both be true. At
that time, scientists began to develop tests for, and ways to resolve, incompatibili-
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ties to estimate the ancestor relation from these hypotheses. Wilson (1965) [66] is
among the earliest published works to present an explicit test for the compatibility
of (two state) characters. Estabrook (2008) [21] provides an in-depth discussion
of biological concepts of character state change, and the nature of compatibilities
and incompatibilities among characters that arise from them. Estabrook (this vol-
ume) provides explicit explanations of McMorris’ contributions motivated by this
concept. Here I will summarize briefly what I consider to be his most significant
contributions.

McMorris recognized a bi-unique correspondence between character state trees
for a collection of related species and trees of subsets (ordered by inclusion) of that
collection, which enabled a simple test for compatibility that identified the states
involved with contradictions when the test failed. He realized that character state
trees themselves enjoy a lower semi lattice order under the relation ”is a refinement
of”, and described a simple test to recognize when a pair of character state trees
were in that relation. Qualitative taxonomic characters are characters with their
character states, but no explicitly hypothesized character state tree. Two qualitative
taxonomic characters are potentially compatible if there exists character state trees
for each that are compatible with each other. Estabrook had conjectured a simple
test for potential compatibility, see [16; 6], which McMorris proved to be correct.
Potential compatibility raises an unresolved issue: Several qualitative taxonomic
characters can be pairwise potentially compatible but in some cases character state
trees for each do not exist so that they remain pairwise compatible as character
state trees. Simple criteria to recognize such cases have not yet been discovered.
This is related to chordal graphs [24; 55]. McMorris’ last publication addresses
stratigraphic compatibility [20] and raises questions related to functional graphs.
For an in-depth treatment of the papers discussed here, the reader is referred to
Estabrook (this volume).

1.2. Contributions to Intersection Graph Theory

As in many parts of discrete mathematics, McMorris introduced or popularized
significant new ideas in intersection graph theory, sometimes with a conference talk
proclaiming a “master plan” for developing the idea. Six of these contributions
are described below, with further discussion of each available in the 1999 SIAM
monograph Topics in Intersection Graph Theory [40].

Upper bound graphs [40, §4.4]. The 1982 McMorris & Zaslavsky paper [57]
combines McMorris’s interests in partially ordered sets and graph representations.
The upper bound graph G of a partial ordering (P,<) has vertex set P , with dis-
tinct vertices adjacent in G if and only if the corresponding elements of P have a
common upper bound in P . Reference [57] characterizes upper bound graphs by
the existence complete subgraphs Q1, . . . , Qk that cover E(G) such that, for each
j ≤ k, there exists a vertex vj in G where vj ∈ Qj but vj 6∈ Qi for i 6= j; more-
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over, each Qi can be assumed to be an inclusion-maximal complete subgraph of G.
This characterization has spawned many related results, often coupled to applicable
topics such as competition graphs.

Bipartite intersection graphs [40, §7.2]. The 1982 Harary, Kabell & Mc-
Morris paper [26] generalizes classical intersection graphs, and interval graphs in
particular. A bipartite intersection graph G has V (G) partitioned into sets X and
Y, with each x ∈ X and y ∈ Y assigned sets Sx and Ty such that vertices x and y

are adjacent in G if and only if Sx ∩ Ty 6= ∅; furthermore, G is a bipartite interval
graph if each Sx and Ty is an interval of the real line. Others have subsequently in-
troduced concepts of directed intersection and interval graphs that are structurally
interconnected with their bipartite counterparts.

p-Intersection graphs [40, §6.1]. The 1991 Jacobson, McMorris & Scheiner-
man paper [33] generalizes standard (1-)intersection graphs, significantly generaliz-
ing traditional intersection graph theory. The p-intersection graph G of a multiset
{S1, . . . , Sk} of subsets of an underlying finite set X has vertices v1, . . . , vk, with
distinct vertices vi and vj adjacent in G if and only if |Si ∩ Sj | ≥ p. In particu-
lar, this extends the well-studied (but notoriously hard) concept of the intersection
number of a graph—the minimum cardinality of X such that G is an intersection
graph of subsets of X—to p-intersection numbers.

Tolerance intersection graphs [40, §6.3]. The 1991 papers by Jacobson,
McMorris & Mulder [32] and Jacobson, McMorris & Scheinerman [33] introduce this
very general concept. The φ-tolerance intersection graph G of a family {S1, . . . , Sk}
of subsets of an underlying finite set X has each subset of S assigned a measure
µ(S), has each Si assigned a tolerance ti, and has a binary function φ(x, y) that
is often min{x, y}, with distinct vertices vi and vj adjacent in G if and only if
µ(Si ∩ Sj) ≥ φ(ti, tj). Tolerance intersection graphs generalize both p-intersection
graphs and the previously-studied “tolerance graphs,” which can now be described
as interval graphs with µ the length of an interval and φ(x, y) = min{x, y}.

Sphere-of-influence graphs [40, §7.11]. The 1993 Harary, Jacobson, Lipman
& McMorris paper [25] promotes ideas that were motivated by pattern recognition
and computer vision problems. Suppose X is any finite set of points in the plane
and each x ∈ X is associated with the open disc centered at x with radius equal to
the minimum distance from x to the other points of X . A sphere-of-influence graph
G has vertices that correspond to such open discs, with distinct vertices adjacent
in G if and only if the corresponding open discs have nonempty intersection. One
basic question from [25] is which complete graphs are sphere-of-influence graphs—
K8 is; K9 is conjectured to be; K12 is not. Closed sphere-of-influence graphs and
φ-tolerance sphere-of-influence graphs have also been studied.
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Probe interval graphs [40, §3.4.1] The 1998 McMorris, Wang & Zhang paper
[54] developed tools that were directly motivated by work in physical mapping of
DNA. A graph G is a probe interval graph if V (G) contains a subset P and each
vertex corresponds to an interval of the real line, with distinct vertices adjacent
in G if and only if at least one of them is in P and their corresponding intervals
have nonempty intersection. Reference [54] contributes structural information about
probe interval graphs and has led to considerable recent work in this active research
area.

1.3. Competition Graphs and their Generalizations

Buck McMorris has made some very interesting contributions to the study of compe-
tition graphs and the related phylogeny graphs. These topics combine his interests
in graph theory with his interests in biology. This work was done in collaboration
with Roberts (3 papers) and others.

1.3.1. Competition Graph Definitions and Applications

The study of competition graphs has given rise to a very large literature, some of
which is surveyed in the articles [34; 37; 63]. Suppose D = (V,A) is a digraph. Its
competition graph C(D) is the graph G = (V,E) with the same vertex set and an
edge {x, y} in E for x 6= y if and only if there is a vertex a in V so that arcs (x, a)
and (y, a) are in D. Competition graphs were introduced by Cohen [9] in connection
with a problem of ecology. The vertices of D represent species in an ecosystem and
there is an arc from u to v if u preys on v. We call such a digraph a food web.
There is an edge between species x and y in C(D) if and only if x and y have a
common prey a in D, i.e., if and only if x and y compete for a. In the literature
of competition graphs, it is very common to study the special case where D is an
acyclic digraph without loops, as is commonly the case for food webs.

A variant of the competition graph idea is called the phylogeny graph because
it was motivated by a problem in phylogenetic tree reconstruction. We say that
G is the phylogeny graph P (D) of D = (V,A) if G = (V,E) and there is an edge
between x 6= y in E if and only if either (x, a) and (y, a) are in A for some a in
V , or (x, y) is in A or (y, x) is in A. If D is a digraph without loops and D′ is the
corresponding digraph with a loop added to each vertex, then it is easy to see that
the phylogeny graph of D is the competition graph of D′. This observation was
first made by Buck McMorris in a personal communication to Roberts. Roberts and
Sheng [64] introduced the term phylogeny graph because of a possible connection
of this concept to the problem of phylogenetic tree reconstruction. It is appropriate
that Buck should have played a role in this notion of phylogeny graph because
of his longstanding interest and many contributions to the theory and practice of
phylogenetic tree reconstruction.

The notion of competition graph also arises in a variety of other non-biological
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contexts. (See [61].) Suppose the vertex set of D can be divided into two classes, A

and B, and all arcs are from vertices of A to vertices of B. (We do not assume that
A and B are disjoint.) Then we sometimes seek the restriction of the competition
graph to the set A. This idea arises for instance in communications where A is a
set of transmitters, B is a set of receivers, and there is an arc from u in A to v in
B if a message sent at u can be received at v. We then note that x and y in A

interfere if signals sent at x and y can be received at the same place, i.e., if and only
if x and y are adjacent in the competition graph (restricted to A). The problem of
channel assignment in communications can be looked at as the problem of coloring
the interference graph.

The idea also arises in coding. Suppose A is a transmission alphabet, B is
a receiving alphabet, and there is an arc from u in A to v in B if when symbol
u is sent, symbol v can be received. Then symbols x and y in the transmission
alphabet are confusable if they can be received as the same letter, i.e., if and only
if x and y are adjacent in the competition graph (restricted to A). We often seek
a minimum set of mutually non-confusable symbols in a transmission alphabet –
this is the problem of finding a maximum independent set in the competition graph
(restricted to A).

Competition graphs arise in scheduling in situations where we have conflicting
requests. Suppose that A is the set of users of a facility and B the set of facilities,
and an arc from u in A to v in B means that user u wishes to use facility v.
Then users x and y conflict if they both wish to use the same facility. In another
scheduling application, A is a set of users of a fixed facility and B the set of times
that facility might be used, and an arc from u in A to v in B means that user u

wishes to use the facility at time v. Users x and y conflict if they both wish to
use the facility at the same time. The competition graph is sometimes called the
conflict graph.

Competition graphs arise in studies of the structure of models of complex sys-
tems arising in modeling of energy and economic systems. In such models, we often
use matrices and set up linear programs. Let A be the set of rows of a matrix M and
B the set of columns, and take an arc from u to v if the u, v entry of M is nonzero.
Then in a corresponding linear program, the constraints corresponding to rows x

and y involve a common variable with nonzero coefficients if and only if x and y

are adjacent in the competition graph. In the literature, the competition graph is
called the row graph of matrix M . The row graph is useful in understanding the
structure of linear programs.

1.3.2. Competition Numbers and Phylogeny Numbers

As noted earlier, Buck McMorris has made extensive contributions to the theory and
applications of interval graphs. Interval graphs have played a central role at the
interface between mathematics and biology, and the connection between interval
graphs and competition graphs has been a primary force in leading to the great
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interest in competition graphs. In ecology, a species’ normal healthy environment is
characterized by allowable ranges of different important factors such as temperature,
humidity, pH, etc. If there are p factors and each is taken to be a dimension in
Euclidean p-space, then if the ranges on the different factors are independent (a
simplifying assumption), the species can be represented by a box in p-space. This
box is called the species’ ecological niche. An old ecological principle says that two
species compete if and only if their ecological niches overlap. (That is why the
competition graph is sometimes called the niche overlap graph.) Cohen [9; 10; 11]
asked if, given an independent notion of competition, we could assign each species in
an ecosystem to an ecological niche in such a way that competition between species
corresponds to overlap of niches. In particular, he started with a food web or digraph
with an arc from u to v if u preys on v, defined the corresponding competition graph,
and asked if the competition graph could be represented as the intersection graph of
boxes in p-space. More specifically, he asked for the smallest such p, which is known
as the boxicity of the competition graph. Cohen [9] made the remarkable observation
that in a large number of examples of food webs, the boxicity of the competition
graph always turned out to be 1, i.e., that the competition graph was always an
interval graph. In other words, only one ecological dimension sufficed to account for
competition. The interpretation of this dimension was (and is) unclear. Although
later examples were found by Cohen and others to show that not every competition
graph had boxicity 1, Cohen’s original observation and the continued preponderance
of examples with boxicity 1 led to a large literature devoted to attempts to explain
the observation and to study the properties of competition graphs.

In attempting to explain the observation that most real world food webs have
competition graphs that are interval graphs, Roberts [62] asked whether this was
just a property of the construction, i.e., whether most acyclic digraphs have com-
petition graphs that are interval graphs. He noted that if G is any graph, then G

plus sufficiently many isolated vertices is a competition graph of an acyclic digraph.
Roberts then defined the competition number k(G) of a graph G as the smallest
r so that G plus r isolated vertices is a competition graph of an acyclic digraph.
Thus, any algorithm for recognizing competition graphs of acyclic digraphs will also
compute the competition number, and conversely.

1.3.3. p-Competition Graphs

A large number of variations of the notion of competition graph have given rise
to interesting problems and questions. To define one such variation, suppose D =
(V,A) is a digraph. The p-competition graph of D has vertex set V and an edge
between x and y in V if there are distinct vertices a1, a2, ..., ap in V so that (x, ai)
and (y, ai) are arcs in D for i = 1, 2, ..., p. In terms of the ecological motivation,
x and y compete if and only if they have at least p common prey. This idea was
studied by Buck McMorris and collaborators in a series of three papers: [30; 35;
36]. A variety of results analogous to those about ordinary competition graphs
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are known. Paper [36] by McMorris and coauthors gave necessary and sufficient
conditions for a graph with n vertices to be the p-competition graph of some acyclic
digraph.

It also provides similar results for arbitrary digraphs (loops allowed) and arbi-
trary digraphs (loops not allowed). Graph-theoretically, the most interesting results
arise if one studies p-competition graphs of arbitrary digraphs. So far, most of the
interesting results are about the case p = 2. Paper [36] showed that every triangu-
lated graph is a 2-competition graph of an arbitrary digraph. So is every unicyclic
graph except the 4-cycle.

The question of what complete bipartite graphs K(m,x) are 2-competition
graphs of arbitrary digraphs leads to some very interesting (and difficult) com-
binatorial questions. In paper [30], McMorris and colleagues showed that K(2, x)
is a 2-competition graph of an arbitrary digraph if and only if x = 1 or x ≥ 9 and
that K(3, x) is not a 2-competition graph of an arbitrary digraph if x = 3, 4, 5,
7, 8, 11. Then, Jacobson [31] showed that K(3, x) is a 2-competition graph of an
arbitrary digraph for x ≥ 38. The situation for K(3, 6) and K(3, 37) remains open,
to our knowledge.

Also of interest is a concept analogous to competition number. The
p−competition number kp(G) is the smallest r so that G together with r isolated
vertices is a p-competition graph of some acyclic digraph. McMorris and his col-
leagues [35] showed that this is well-defined. In this same paper, they showed the
surprising result that for every m, there is a graph G with kp(G) ≤ k(G)−m.

1.3.4. Tolerance Competition Graphs

As noted above in Section 1.2, the 1991 papers by Jacobson, McMorris and
Mulder [32] and Jacobson, McMorris and Scheinerman [33] introduced a very
general concept called a φ-tolerance intersection graph. An analogous notion
for competition graphs was introduced by Brigham, McMorris, and Vitray [7;
8]. Let φ be a symmetric function assigning to each ordered pair of natural numbers
another natural number. We say that G = (V,E) is a φ-tolerance competition graph
if there is a directed graph D = (V,A) and an assignment of a nonnegative integer
ti to each vertex vi in V such that, for i 6= j,

{vi, vj} ∈ E(G) ↔ |{a : (vi, a) ∈ A} ∩ {a : (vj , a) ∈ A}| ≥ φ(ti, tj).

A 2-φ-tolerance competition graph is a φ-tolerance competition graph in which all
the ti are selected from a 2-element set. Characterizations of such graphs, and
relationships between them, are presented for φ equal to the minimum, maximum,
and sum functions, with emphasis on the situation in which the 2-element set is
{0, q}.
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1.4. Location Functions on Graphs

As mentioned in Section 1.2 Buck McMorris used the idea of a “master plan” to
generate all kinds of interesting questions and problems. This inspired his coauthor
Mulder to use this meta-concept as well. The first instance was Mulder’s “Meta-
conjecture” mentioned in Mulder (this volume). Trees and hypercubes share being
median graphs. In a sense they are the extreme cases within this class, in the class
of all median graphs with n vertices, the trees realize the minimum number of edges:
n− 1, and the n-cube Qn realizes the maximum number of edges 2n. The following
has served as a “master plan” in the sense of McMorris.

Metaconjecture. Let P be a property that makes sense, which is shared by the
trees and the hypercubes. Then P is shared by all median graphs.

The reader is referred to Mulder (this volume) for the incentive this Metaconjecture
has given. In the spirit of this Metaconjecture one also tries to generalize results
on trees to median graphs whenever possible. This was the motivation for Buck
McMorris to study the axiomatic characterization of locations functions on median
graphs. Location functions are are a specific instance of consensus functions. A con-
sensus function is a model to describe a rational way to obtain consensus among a
group of agents or clients. The input of the function consists of certain information
about the agents, and the output concerns the issue about which consensus should
be reached. The rationality of the process is guaranteed by the fact that the consen-
sus function satisfies certain “rational” rules or “consensus axioms”. For a location
function on a network the input is the position of the clients in the network, and
the output is the set of preferred locations. For a full discussion of the axiomatic
characterizations of three important location functions see McMorris, Mulder, and
Vohra (this volume), where the details of the results discussed below can be found.

A central problem in location theory and consensus theory is to find those points
in a set X that are “closest” to any given profile π = (x1, x2, . . . , xk). Most of the
work done in this area focuses on developing algorithms to find these points [12;
58]. In recent years, there have been axiomatic studies of the procedures themselves
and these have resulted in a much better understanding of the process of location
and consensus [4; 5; 23; 27; 28]. Without any conditions imposed, a location function
(consensus function) on X is simply a mapping L : X∗ → 2X − ∅, where X∗ is the
set of all profiles of all finite lengths and 2X − ∅ denotes the set of all nonempty
subsets of X.

Let δ : X × X∗ → R be a function such that δ(x, π) represents a measure of
“remoteness” of x to the profile π. An attractive class of location functions on
(X, δ) is defined by letting L(π) = {x ∈ X : δ(x, π) is minimum}. Two important
location functions in this class are the median function Med, defined by letting

δ(x, π) =
k∑

i=1

δ(x, xi), where π = x1, x2, . . . , xk, and the center function Cen, defined

by letting δ(x, π) = max{δ(x, x1), δ(x, x2), . . . , δ(x, xk)}.
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In the continuous case we consider connected networks N = (V,A) with vertex
set V and set of arcs A. Think of N as being embedded in n-space. The arcs are
curves with a length. The set X is the set of all vertices and all interiors points on
the arcs. In the discrete case we consider connected graphs G = (V,E) with vertex
set V and edge set E. Now the set X is the set of vertices V . Note that there might
be big differences between the continuous and the discrete case. For instance, the
center function Cen is single-valued in the continuous case but not in the discrete
case. Also proof techniques may be quite different.

In 1996 Vohra [65] characterized the median function on tree networks axiomat-
ically, where only three simple axioms were needed. In a tree network the set X

is the set of all vertices and interior points on the arcs, where arcs can have any
length. This is the “continuous case”. Rephrased Vohra’s axioms are as follows.
the segment S(x, y) between x and y in a tree network is the set of all point on the
path between points x and y. For two profiles π and ρ we denote the concatenation
of these by π, ρ.

(A) Anonymity: for any profile π = x1, x2, . . . , xk on X and any permutation σ

of {1, 2, . . . , k}, we have L(π) = L(πσ), where πσ = xσ(1), xσ(2), . . . , xσ(p).

(B) Betweenness: [Continuous] L(x, y) = S(x, y), for all x, y ∈ X.

(C) Consistency: If L(π) ∩ L(ρ) 6= ∅ for profiles π and ρ, then
L(π, ρ) = L(π) ∩ L(ρ).

Note that it is easy to show that Med satisfies these three axioms. But Vohra
proved the ‘converse’ as well: any consensus function on a tree network satisfying
(A), (B), and (C) necessarily is the median function on the tree network.

When McMorris started to work on the discrete case for Med he realized that it
should be done on median graphs. Now the betweenness axiom has to be adapted
to the discrete case. The interval I(u, v) between vertices x and y in a graph
G = (V,E) is the set of vertices lying on the shortest paths between x and y.

(B) Betweenness: [Discrete] L(u, v) = I(u, v), for all u, v ∈ V .

In [46] it was proved that the median function Med on cube-free median graphs is
characterized by the three obvious axioms (A), (B), and (C). A median graph G is
cube-free if G does not contain a 3-cube Q3. Such graphs are a nice generalization
of trees. They seem to be quite esoteric, but there is a one-to-one correspondence
between the class of connected triangle-free graphs and a subclass of the cube-free
median graphs, see [29]. For the class of all median graphs McMorris, Mulder and
Roberts [46] needed an extra ‘heavy duty’ axiom. These results were extended in
[43; 44], where also the ordered case, viz. distributive and median semilattices, is
discussed. Another interesting case initiated by McMorris is the t-Median Function,
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see [45]. We omit details.
There is not as much known for Cen on graphs. Foster and Vohra [22] studied the

center function on tree networks. A breakthrough occurred when Buck McMorris
and coauthors [53] succeeded in characterizing the center function on trees as we
have defined it. The result is that a location function L on a tree T is the center
function Cen if and only if L satisfies the following four axioms. For a profile π

we denote the set of vertices in π by {π}. For a vertex x we denote by π \ x the
subprofile of π by deleting all occurrences of x from π. For a profile π on a tree T

we denote by T (π) the smallest subtree of T containing all of π.

(Mid) Middleness: [Discrete] Let u, v be two not necessarily distinct vertices of
a tree T . Then L(u, v) is the middle of the unique path joining u and v in
T .

(QC) Quasi-consistency: If L(π) = L(ρ) for profiles π and ρ, then
L(π, ρ) = L(π).

(R) Redundancy: Let L be a location function on a tree T . If x ∈ T (π \ x) then
L(π \ x) = L(π).

(PI) Population Invariance: If {π} = {ρ} then L(π) = L(ρ).

A shorter proof if this result can be found in [60]. A closer look at that proof yields
that an analogous result holds for the continuous case, i.e., for tree networks.

McMorris and his coworkers are still continuing research on these location func-
tions, but also other nice instances as the Mean Function. A mean vertex of π is a
vertex v minimizing ∑

1≤i≤k

[d(v, xi)]2.

The mean of π is the set of mean vertices of π. The Mean Function Mean on G is
the function Mean : V X∗ :→ 2V − ∅ with Mean(π) being the mean of π.

1.5. Contributions to Bioconsensus: An Axiomatic Appraoch

Buck McMorris has made many contributions to the area of mathematical consensus
and a few of these contributions will be mentioned in this section. We first describe
what is meant by a consensus function and then we introduce two well known axioms
a given consensus function may or may not satisfy.

Let D be the set of all (finite) discrete structures of a particular type. (e.g., D
could be a set of specialized labelled graphs, unlabelled graphs, digraphs, partially
ordered sets, acyclic digraphs, hypergraphs, partitions, networks, etc.) A consensus
function on D is a map C : Dk −→ D, where k ≥ 2 is a positive integer. A
major aspect of the consensus problem for D is to find “good” consensus functions
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that can capture the common agreement of an input profile P = (D1, . . . , Dk) of
members of D , i.e. C(P ) should consist of the element (or elements) of D that
best represents whatever similarity that all of the Di’s share. If possible, a good
function C should not only have this “consensus” aspect, but additionally should
satisfy mathematical properties that enable it to be understood in order that it can
be effectively computed exactly or with approximating algorithms. The consensus
problem for discrete structures has been a very active area of research with much of
it stimulated by the axiomatic approach to social choice (voting theory) pioneered
by K. Arrow in the 1950’s. In the classical theory developed by Arrow and others, D
is usually taken to be the set of all weak or linear orders on a given set of alternatives
S. Many of the axioms are given in terms of the “units of information” (building
blocks) of members of D, which in the case for partial orders, are the ordered
pairs of S making up the order relation. (Other discrete structures obviously have
other types of building blocks.) For example, in generic terms, a property that
is universally accepted as being desirable for data aggregation is the following: A
consensus function C : Dk −→ D is Pareto (P) if whenever P = (D1, . . . , Dk) is a
profile and ‘unit of information’ x is in every Di, then x is in C(P ). The Pareto
condition simply requires the preservation of the unanimous agreement portion of
the input data profile. Another seemingly reasonable property is the following:
A consensus function C is independent (of irrelevant alternatives) (I) if whenever
profiles P and P ′ agree on a subset X ⊆ S, then C(P ) and C(P ′) agree on X.
This independence condition also seems to be a good one and captures an aspect
of a “stable” consensus function. Of course, what it means to “agree” must be
carefully defined. When D is the set of all weak orders on S (reflexive, transitive
and complete relations on S), agreement of two weak orders simply means that they
are equal as sets of ordered pairs when restricted to elements in X. Profiles then
are said to agree on X if they agree term by term on X. The famous Impossibility
Theorem of Arrow essentially says that the only consensus functions on weak orders
(where |S| ≥ 3) satisfying both (P) and (I) are the dictatorships, i.e., there is an
index j such that for any profile P , if x is strictly preferred to y in Dj , then x is
strictly preferred to y in C(P ) [1].

Buck McMorris , along with his coauthors, has extended Arrow’s Impossibil-
ity Theorem in many different directions. For example, in 1983, McMorris and
Neumann proved an analog of Arrow’s Theorem for tree quasi-orders [47]. A tree
quasi-order is a binary relation ρ on a finite set S such that ρ is reflexive, transitive,
and (z, x), (z, y) ∈ ρ implies that (x, y) ∈ ρ or (y, x) ∈ ρ for all x, y, z ∈ S. The
last condition is called the tree condition and it is a generalization of completeness.
In 2004, McMorris and Powers extended the tree quasi-order version of Arrow’s
Theorem by dropping the Pareto condition and replacing it with two profile condi-
tions [49]. In this case, it was shown that the resulting class of consensus functions
are quasi-oligarchic. In 1991, Barthelemy, McMorris and Powers, using a carefully
constructed independence axiom, established a version of Arrow’s Theorem for con-
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sensus functions defined on the set H(S) of all hierarchies of S [2]. A hierarchy on
S is a collection H of subsets of S such that S, {x} ∈ H for all x ∈ S; ∅ 6∈ H; and
A ∩ B ∈ {A,B, ∅} for all A,B ∈ H. In 1995, Barthelemy, McMorris and Powers
investigated eight different versions of independence conditions for consensus func-
tions on H(S) and the complete relationships among these eight conditions were
determined [3]. In 2003, a deeper connection was made between consensus func-
tions on weak orders and consensus functions on H(S) with the possibility of having
an infinite number of voters. A key to this connection is to view a hierarchy as a
special type of ternary relation. Using this viewpoint, it was shown how to embed
and extend Arrow’s Theorem for weak orders to a result involving ternary relations
[48].

In 1952, Kenneth May gave an elegant characterization of simple majority deci-
sion based on a set with exactly two alternatives [39]. This work is a model of the
classical voting situation where there are two candidates and the candidate with
the most votes is declared the winner. May’s theorem is a fundamental result in the
area of social choice and it has inspired many extensions. In particular, in 2008, Mc-
Morris and Powers generalized May’s Theorem to the case of three alternatives, but
where the voters’ preference relations are required to be trees with the alternatives
at the leaves [51].

A popular consensus function on the set of hierarchies H(S) is majority rule.
Majority rule outputs the set of clusters that appear in more than half of the
input profile. The fact that the output is a hierarchy was first noted in 1981 by
Margush and McMorris [38]. Although this result is easy to prove, it stands in stark
contrast to the situation in classical voting theory where the majority outcome could
produce what is called a voting paradox. In 2008, McMorris and Powers proved that
the majority consensus rule on hierarchies is the only consensus function satisfying
four natural and easily stated axioms [50]. The majority consensus rule is part
of a larger class of consensus rules where the output is determined by a family
of overlapping sets, often called decisive sets. Axiomatic characterizations of this
class of consensus rules can be found in [47] and [52]. Finally, for a more thorough
discussion of axiomatic consensus theory we refer the reader to the book by Day
and McMorris [14].
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