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The Consensus Problem 
• Old problem from the social sciences 
• How do we combine individual opinions or 
information into a decision by a group? 
• Widely studied 
• Large literature 
 

• New graph-theoretical formulation 
• New applications: transportation, 
communications, scheduling, routing, fleet 
maintenance, genetics, … 
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a b 

c d 

Graph Coloring & Applications 

Proper coloring of graph  G = (V,E): 
 
{x,y} e E î f(x) π f(y) 
 

C4 
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a b 

c d 

Graph Coloring & Applications 

          Chromatic Number 
c(G) = smallest p so that graph  
G has a proper coloring in p colors.  

 C4 

 c( C4)  = 2 
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Graph Coloring & Applications 
Proper coloring of graph  G = (V,E): 
 

{x,y} e E î f(x) π f(y) 
 

Channel Assignment: 
 V = set of transmitters 
 edge = interference 
 color = assigned channel 
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Graph Coloring & Applications 
Traffic Phasing: 

 V = set of individuals or cars or … 
  with requests to use a facility  
  room, tool, traffic intersection 
 edge = interference 
 color = time assigned to the individual or car 
       or … 
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Graph Coloring & Applications 
Scheduling: 

 V = set of committees looking for meeting times 
 edge = committees have a member in common 
 color = time assigned to committee 

 
Similar problem in scheduling final exams for 
classes or meeting times for classes (in an ideal 
university where students first choose classes and 
then classes are scheduled) 
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Graph Coloring & Applications 
Routing: 

 V = set of garbage or mail truck tours = order 
of sites visited on a given day 

 edge = two tours have site in common 
 color = day assigned to tour 

 
 

Credit: wikipedia.org 
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Graph Coloring & Applications 
Fleet Maintenance: 

 V = set of vehicles (trucks, cars, planes, 
ships) and the days they are scheduled for regular 
maintenance 

 edge = two vehicles have overlapping 
schedule days 

 color = space in the maintenance facility 
assigned to a given vehicle 
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How Graph Coloring Enters into 
Physical Mapping of DNA 

Physical Mapping 101: 
 

• DNA = sequence of G, T, C, A:   CGAGATGCTG 
• Physical map: piece of DNA telling us location of 
certain markers along the molecule 

ü Markers = precisely defined subsequences 
• Step 1: Make copies of the molecule we wish to 
map – the target molecule 
• Step 2: Break each copy into disjoint  

fragments CG, AG, ATG, CTG 
ü Use restriction enzymes 
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How Graph Coloring Enters into 
Physical Mapping of DNA  

• Step 3: Obtain overlap information about the 
fragments 
• Step 4: Use overlap information to obtain the 
mapping 
 

Obtaining Overlap Information 
• One method used: Hybridization. 
• Fragments replicated giving us thousands of 
clones 
• Fingerprinting: check if small subsequences 
called probes bind to clones. Fingerprint of a clone 
= subset of probes that bind 
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How Graph Coloring Enters into 
Physical Mapping of DNA  

• Two clones sharing part of their fingerprints are 
likely to have come from overlapping regions of 
the target DNA. 

 

Errors in Hybridization Data 
• Probe fails to bind where it should (false negative) 
• Probe binds where it shouldn’t (false positive) 
• Human mis-reading/mis-recording 
• During cloning, two pieces of target DNA may 
join and be replicated as if they were one clone 
• Probes can bind along more than one site 
• Lack of complete data  
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How Graph Coloring Enters into 
Physical Mapping of DNA: 

Interval Graphs 
 

Take a family of real intervals. 
Let these be vertices of a graph. 
Join two by edge iff the intervals overlap. 
Corresponding graph is an interval graph. 
 

a 
b 

c 

d 
e a b 

c 

d 
e 
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How Graph Coloring Enters into 
Physical Mapping of DNA: 

Interval Graphs 
 

Good algorithms for: 
•  Recognizing when a graph is an interval graph. 
•  Constructing a “map” of intervals on the line that 
have the corresponding intersection pattern 
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How Graph Coloring Enters into 
Physical Mapping of DNA: 

Interval Graphs 
• Interval graphs arose in part from the pioneering 
work of geneticist Seymour Benzer in early 1960s. 

• He asked:  
Can you tell the genetic topology without actually 
seeing it? Can you just use overlap information? 
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How Graph Coloring Enters into 
Physical Mapping of DNA 

 

• From overlap information, create a fragment overlap 
graph: 

V = fragments (clones) 
E = fragments (clones) overlap 
 

• If clone overlap information is complete and 
correct, fragment overlap graph is an interval graph. 
• Then corresponding “map” of intervals gives relative 
order of fragments on the target DNA 
• This gives beginning of a “physical map” of the 
DNA. 
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How Graph Coloring Enters into 
Physical Mapping of DNA 

 

• But fragment overlap graph may not be an interval 
graph – due to errors/incomplete information 
• Label each clone with the identifying number of 
the copy of target molecule it came from 
• Think of label as a color 
• Two clones coming from same copy of the target 
molecule cannot overlap – we broke that molecule 
into disjoint fragments. 
• Thus: numbers give a graph coloring for the 
fragment overlap graph. 
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How Graph Coloring Enters into 
Physical Mapping of DNA 

 

Dealing with False Negatives: 
 

• Here, the primary errors omit overlaps. 
• Try to add edges to fragment overlap graph to 
obtain an interval graph. 
• Require the numbering to remain a graph coloring. 
• May not be doable. 
• If doable, work with resulting graph. 
• If several such graphs, use minimum number of 
added edges. 
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How Graph Coloring Enters into 
Physical Mapping of DNA 

 

Dealing with False Positives: 
 

• Here, the primary errors are overlaps that should 
not be there. 
• Delete edges from fragment overlap graph to 
obtain an interval graph. 
• Require the numbering to remain a graph coloring. 
• Always doable.  
• If several such graphs, use minimum number of 
deleted edges. 
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How Graph Coloring Enters into 
Physical Mapping of DNA  

Dealing with both False Negatives and Positives: 
 

• Here, we know some overlaps are definitely there 
and some are definitely not. 
• Think of two edge sets E1 and E2 on same vertex 
set V, E1 Ã E2. 
• Think of same coloring on each graph (V,Ei) 
• Look for set E of edges such that 
  E1 Ã E Ã E2 and (V,E) is an interval graph. 
• The coloring is automatically a  
coloring for (V,E). 
• This is called the interval sandwich problem. 
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How Graph Coloring Enters into 
Physical Mapping of DNA 

 

• Determining if we can add edges to G with a 
coloring f to obtain an interval graph for which f is 
still a coloring: NP-hard 
• Determining the smallest number of edges to 
remove to make G an interval graph: NP-hard. 
• The interval sandwich problem is also NP-hard. 
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List Coloring 
 

• Given graph G and list S(x) of acceptable colors at 
each vertex. 

ü  S  is a list assignment. 
• A list coloring for (G,S) is a proper coloring f 
such that f(x) e S(x) for all x. 

ü  List colorable if a list coloring exists. 
• Channel assignment: list of acceptable channels 
• Traffic phasing: list of acceptable times for use of 
facility 
• Scheduling: list of acceptable meeting times 
• Routing: List of acceptable days 
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List Coloring  

• Given graph G and list  S(x) of acceptable colors 
at each vertex. 

ü  S  is a list assignment. 
• A list coloring for (G,S) is a proper coloring f 
such that f(x) e S(x) for all x. 

ü  List colorable if a list coloring exists. 
• Fleet Maintenance: List of acceptable spaces in 
maintenance facility 
• Physical mapping:  

ü Lose or inaccurately record information about which 
copy of target DNA molecule a clone came from.  
ü Might know set of possible copies it came from. 
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List Coloring 
 

• Given graph G and list  S(x) of acceptable colors 
at each vertex. 
• Later, we will interpret S(x) as a set of pieces of 
information individual x has that are relevant to a 
decision a group of individuals has to make. 
• And we will consider how sharing of information 
can lead to acceptable solutions to a problem when 
not sharing means there is no acceptable solution.  
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List Coloring: Complexity 
 

• NP-complete to determine if G is colorable in at 
most k colors if k ≥ 3. 
• Thus, NP-complete to determine if there is a list 
coloring for (G,S) if |«S(x)| ≥ 3. 
• Both problems polynomial for 2. 
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List Coloring and Physical Mapping 
 

• False Negatives: Given (G,S), can we add edges 
to G to obtain an interval graph H so that (H,S) is 
list colorable? 

ü Impossible if (G,S) is not list-colorable.  
ü Adding edges makes coloring harder. 

• False Positives: Given (G,S), what is smallest 
number of edges to remove from G to obtain an 
interval graph H so that (H,S) is list colorable? 
• Both: Given (V,E1) and (V,E2) with E1 Ã E2 and S 
on V. Is there a set E so that E1 Ã E Ã E2, G = (V,E) 
is an interval graph, and (G,S) is list colorable? 
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What if (G,S) is not List Colorable? 
 

Alternative approach: Don’t change the fragment 
overlap graph, but instead modify the list 
assignment S. 
 
QUESTION: If (G,S) is not list colorable, can we 
modify the lists S, getting a new set of lists S*, so 
that (G,S*) is list colorable? 
 
• This question arises in channel assignment, traffic 
phasing, scheduling, routing, fleet maintenance, 
DNA physical mapping, and other problems.  
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The Problem as a Consensus Problem 
 

• Think of vertices as individuals. 
• If (G,S) has no list coloring, some individuals will 
have to make sacrifices by expanding or changing 
their lists for a list coloring to exist. 

• Three models for how individuals might change 
their lists.  

• Think of these as providing a procedure for group 
to reach a consensus about a list coloring. 
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First Consensus Model: The Adding 
Model 

• Each individual may add one  
color from set of colors already 
used in «S(x). 

ü  One acceptable channel 
ü  One acceptable use time 
ü One acceptable meeting time 
ü One acceptable day for a tour 
ü One acceptable space in a maintenance facility 
ü  One possible additional copy number for a 
clone 
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{1,3} 

{1,2} 

{2,3} 

{1} 
a b 

c d 
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{1,3} 

{1,2} 

{2,3} 

{1} 

Not list colorable. 
f(a) must be 1.  
Thus, f(b) must be 2, f(d) must be 3. 
What is f(c)? 

a b 

c d 
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{1,3} 

{1,2} 

{2,3} 

{1} 

Not list colorable. 
f(a) must be 1.  
Thus, f(b) must be 2, f(d) must be 3. 
What is f(c)? 

Adding color 1 
to S(c) allows us 
to make f(c) = 1. 

a b 

c d 
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p-Addability 
 

(G,S) is p-addable if there are p distinct vertices 
x1, x2, …, xp  in G and (not necessarily distinct) 
colors c1, c2, …, cp in «S(x) so that if 

S*(u) = S(u) « {ci) for u = xi 
S*(u) = S(u) otherwise 

 
then (G,S*) is list-colorable. 
 
In previous example, (G,S) is 1-addable. 
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p-Addability 
 

Observation: (G,S) is p-addable for some p iff 
|«S(x): x e V| ≥ c(G).              (*) 

 

p-addable implies colorable using colors from 
«S(x).  So (*) holds. 
If (*) holds, exists a coloring f. Let ci = f(xi). 
 
Observation: If  |«S(x)|  ≥ 3, it is NP-complete to 
determine if (G,S) is p-addable for some p. 
(Since it is NP-complete to determine if c(G) £ k 
when k ≥ 3.) 
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The Inflexibility 
 

• How hard is it to reach consensus? 
• What is the smallest number of  “individuals” who 
have to add an additional acceptable choice? 
• What is the smallest p so that (G,S) is p-
addable? 

• Such a p is denoted I(G,S) and  
called the inflexibility of (G,S).   
• It may be undefined. 
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{3,4} 

{1,3} 

{2,4} 

{1,2} 

{2,3} 

{1,4} 
a 

u 

c 

w 

b 

v 

K2,2,2 

What is I(G,S)? 
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{3,4} 

{1,3} 

{2,4} 

{1,2} 

{2,3} 

{1,4} 
a 

u 

c 

w 

b 

v 

K2,2,2 

(G,S) is not 1-addable. 
• On each partite class {x,y}, S(x) » S(y) = ∆. 
• List assignments need two colors for each partite class. 
• If one set S(x) changes, need 4 colors on remaining two 
partite classes and one more color on class containing x.  
• But only four colors are in «S(x). 
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{3,4} 

{1,3} 

{2,4} 

{1,2} 

{2,3} 

{1,4} 
a 

u 

c 

w 

b 

v 

K2,2,2 

I(G,S) = 2. 
Add color 1 to S(u) and color 2 to S(b). 
 

f(u) = f(a) = 1, f(b) = f(v) = 2, f(c) = 4, f(w) = 3 
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Complete Bipartite Graphs 
 

• Km,n: There are two classes of vertices, A and B.   
• A has m vertices, B has n vertices. 
• Every vertex of A is joined to every vertex of B. 

K3,2 

A 
B 
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Complete Bipartite Graphs 
 

• Km,n has played an important role in list coloring. 

• What is I(Km,n, S)? 
 

Sample result 
• Consider K10,10. 
• Consider S: On class A, use the 10 2-element 
subsets of {1,2,3,4,5}. Same on B. 
• What is I(K10,10,S)? 
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Complete Bipartite Graphs 

{3,5} 

 

• Consider K10,10. 
• Consider S: On class A, use the 10 2-element 
subsets of {1,2,3,4,5}. Same on B. 
• What is I(K10,10,S)? 

A B 

{1,2} 

{1,4} 

{2,4} 

All edges 
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Complete Bipartite Graphs 
 

• Suppose S* is obtained from S by adding colors. 
• Suppose f(x) is a list coloring for (K10,10,S*). 
• Suppose f uses r colors on A and s on B. 
• r+s £ 5 
• Let C(u,v) = binomial coefficient  
• There are C(5-r,2) sets on A not using the r colors. 
• Add one of the r colors to each of these sets. 
• There are C(5-s,2) sets on B not using the s colors. 
• Add one of the s colors to each of these sets. 
• Get I(K10,10,S) £ C(5-r,2) + C(5-s,2). 
• Easy to see equality if r = 3, s = 2. 
• So: I(K10,10,S) = 4. 
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Complete Bipartite Graphs 
 

• Similar construction for KC(m,2),C(m,2)  and S 
defined by taking all C(m,2) subsets of {1,2,…,m} 
on each of A and B. 
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Complete Bipartite Graphs 
 

Another Sample Result: 
• Common assumption: All S(x) same size. 
• Consider K7,7 and any S with |S(x)| = 3, all x, and  
|«S(x)| = 6. 
• Claim: (K7,7,S) is 1-addable. 
• Consider the seven 3-element sets S(x) on A.  
• Simple combinatorial argument: There are i,j in 
{1,2,…,6} so at most one of these S(x) misses both  
• S* obtained from S by adding i to such a set S(x). 
• Take f(x) = i or j for any x in A. 
• For all y in B, S*(y) = S(y) has 3 elements, so an 
element different from i and j can be taken as f(y). 
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Complete Bipartite Graphs 
 

• Consider K7,7 and S with |S(x)| = 3, all x, and  
|«S(x)| = 7. 
• Claim: There is such an S so that (K7,7,S) is not 0-
addable. 
• On A, use the seven sets {i,i+1,i+3} and same on 
B, with addition modulo 7. 
• Show that if f is a list coloring, {f(x): x e A} 
contains one of the sets {i,i+1,i+3}.  
• This set is S(y) for some y in B, so we can’t pick 
f(y) in S(y). 
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Upper Bounds on I(G,S) 
 

• Clearly, I(G,S) £ |V(G)| if (G,S) is p-addable, 
some p. 
• (Can add colors to at most each vertex.) 
 
Proposition: If (G,S) is p-addable for some p, then  

I(G,S) £ |V(G)| - w(G), 
 

where w(G) = size of largest clique of G. 
 
 

(Clique = set of vertices each of which is joined to 
each of the others.) 
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Upper Bounds on I(G,S) 
 

• We know I(G,S)/|V(G)| £ 1. 
Main Result: There are (G,S) such that  
I(G,S)/ |V(G)| is arbitrarily close to 1. 

• Interpretation: Situations exist where essentially 
everyone has to “sacrifice” by taking as acceptable 
an alternative not on their initial list. 

• In channel assignment, there are situations where 
essentially every list of acceptable channels needs 
to be expanded. Similarly in other applications. 

• Same result if all sets S(x) have same cardinality. 
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Upper Bounds on I(G,S) 
 

• We know I(G,S)/|V(G)| £ 1. 
Main Result: There are (G,S) such that  
I(G,S)/ |V(G)| is arbitrarily close to 1. 

• Interpretation: Situations exist where essentially 
everyone has to “sacrifice” by taking as acceptable 
an alternative not on their initial list. 

• In physical mapping, there are situations where 
essentially every list of possible copies needs to be 
expanded. 

• Same result if all sets S(x) have same cardinality. 
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Second Consensus Model: the Trading 
Model 

 

• Allow side agreements among  
individuals. 
• Allow trade (purchase) of colors from another’s 
acceptable set. 
• (The adding model paid no attention to where 
added colors came from.) 
• In channel assignment: Allow possibility that 
channel was incorrectly recorded in set of possible 
channels of another transmitter and should be 
moved. 
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Second Consensus Model: the Trading 
Model 

 

• Allow side agreements among  
individuals. 
• Allow trade (purchase) of colors from another’s 
acceptable set. 
• (The adding model paid no attention to where 
added colors came from.) 
• In physical mapping: Allow possibility that label 
was incorrectly recorded in set of possible labels of 
another clone and should be moved. 
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Second Consensus Model: the Trading 
Model  

• Think of trades as taking place in sequence. 
• Trade from x to y: Find color c in S(x) and move 
it to S(y). 

 

p-Tradeability 
 

• How many trades are required to obtain a list 
assignment S* so that there is a list coloring? 
• Say (G,S) is p-tradeable if this can be done in p 
trades. 
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{1} {1} {2} 

x1 x4 x2 

{2} 

x3 

If we trade color 2 from x3 to x2 and then color 
1 from x2 to x3, we get (G,S*) that is list 
colorable.  
 

(G,S) 
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{2} {1} {1} 

x1 x4 x2 

{2} 

x3 

 
Thus, (G,S) is 2-tradeable. 

(G,S*) 
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Second Consensus Model: the Trading 
Model 

 

• If |«S(x)| ≥ 3, then it is NP-complete to determine 
if (G,S) is p-tradeable for some p.  

• Recall: (G,S) is p-addable for some p iff 
 

|«S(x): x e V| ≥ c(G).              (*) 
 

• (*) not sufficient to guarantee p-tradeable for some 
p. 
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{1} {1} {1} 

x1 x4 x2 

{2} 

x3 

There are not enough 2’s. 
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The Problem (G,p1,p2,…,pr) 
 

• Given G and positive integers p1, p2, …, pr, is 
there a graph coloring of G so that for all i, the 
number of vertices receiving color i is at most pi? 
• Let pi = number of times i occurs in some S(x). 
• Then (G,S) is p-tradeable for some p iff this 
Problem (G,p1,p2,…,pr) has a positive answer. 
• Problem (G,p1,p2,…,pr) arises in “timetabling” 
applications (scheduling).  
• DeWerra (1997): This is NP-complete even for 
special classes of graphs (e.g., line graphs of 
bipartite graphs) 
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The Problem (G,p1,p2,…,pr) 
 

• Variants of this problem consider: 
•  Case where all pi are the same 
•  Case where every color i must be used exactly   

 pi times 
•  An edge coloring version 
•  A list coloring version. 

• See papers by 
• Hansen, Hertz, Kuplinsky 
• Dror, Finke, Gravier and Kubiak 
• Even, Itai and Shamir 
• Xu 
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The Trade Inflexibility  

• Trade inflexibility It(G,S) = smallest p so that 
(G,S) is p-tradeable. (May be undefined.) 

• Observation: If (G,S) is p-tradeable for some p, 
then It(G,S) £ |V(G)|. 
• Proof: Suppose S* from S by sequence of trades 
and (G,S*) has list coloring f. 
• If f(x) = i either i was in S(x) or it was added. 
• So, we can arrange at most one incoming trade 
(namely of i) to each such set S(x) since there is no 
reason to add any other colors to S(x). 
• So number of incoming trades can be limited to 
number of vertices 
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The Trade Inflexibility 
 

• Main Result: There are (G,S) such that 
 It(G,S)/|V(G)| is arbitrarily close to 1. 

• Same interpretation as for I(G,S). 
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The Trade Inflexibility 
 

• Main Result: There are (G,S) such that 
 It(G,S)/|V(G)| is arbitrarily close to 1. 

• There is also an implication for information 
sharing. 
• The result says that if everyone has relevant 
information, it may be necessary for almost 
everyone to share some information in order for the 
group to reach consensus. 
• Information may be your knowledge about 
acceptable channels for a transmitter, for example. 
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Trades Only Allowed to Neighbors 
 

• Might apply in channel assignment – if 
interference corresponds to physical proximity. 
• Not clear what this means in other applications we 
have talked about. 

• (G,S) is p-neighbor-tradeable if there is a 
sequence of p trades, each from a vertex to a 
neighbor, resulting in a list-colorable list 
assignment.  

• It,n(G,S) = smallest p so that (G,S) is p-neighbor-
tradeable 
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Trades Only Allowed to Neighbors 
 

• In contrast to p-tradeability, It,n(G,S) can be larger 
than |V(G)| 
• In fact, It,n(G,S)/ |V(G)| can be arbitrarily large. 
• Proof coming. 
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Third Consensus Model: The 
Exchange Model  

• Instead of one-way trades, use  
two-way exchanges. 
• A color from S(x) and a color 
 from S(y) are interchanged at  
 each step. 
• In channel assignment: channels of 
  two transmitters are transposed. 
• In physical mapping: labels of 
  two clones are transposed. 
• Similarly in other applications 
• Consider a sequence of exchanges.  
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Third Consensus Model: The 
Exchange Model 

 

• Note that p exchanges can be viewed as 2p trades.  
• However, sometimes one can accomplish the 
equivalent of p exchanges in less than 2p trades.  

 
 

 



66 

Third Consensus Model: The 
Exchange Model 

 

• Note that p exchanges can be viewed as 2p trades.  
• However, sometimes one can accomplish the 
equivalent of p exchanges in less than 2p trades.  

 ab ef 

cd 

bc ef 

ad 

bc af 

de 
ab ef 

cd cd 

b aef aef bc 

d 

bc af 

de 

z z 

z z z 

2 exchanges 

3 trades 
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p-Exchangeability 
 

• How many exchanges are required to obtain a list 
assignment with a list coloring? 

• (G,S) is p-exchangeable if this can be done in p 
exchanges.  

• Clearly, (G,S) is p-exchangeable for some p iff 
(G,S) is q-tradeable for some q.  

• Observation: If |«S(x)| ≥ 3, then it is NP-complete 
to determine if (G,S) is p-exchangeable for some p. 
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The Exchange Inflexibility 
 

• Ie(G,S) = smallest p so that (G,S) is p-
exchangeable. (May be undefined.) 

• Observation: If (G,S) is p-exchangeable for some 
p, then Ie(G,s) £ |V(G)|. 

• Main Result: There are (G,S) such that 
 Ie(G,S)/|V(G)|  is arbitrarily close to 1. 

• Interpretation: As before. 
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Exchanges Only Allowed between 
Neighbors 

 

• (G,S) is p-neighbor-exchangeable if there is a 
sequence of p exchanges, each between neighbors, 
resulting in a list-colorable list assignment. 

• Ie,n(G,S) = smallest p so that (G,S) is p-neighbor-
exchangeable. (Undefined if no such p.) 

• Ie,n(G,S)/|V(G)| can be arbitrarily large. 
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{1} {1} {1} 

x1 x4 x2 

{2} 

x3 

{1} {2} {2} 

x5 x6 x7 

Consider a path of 2k+1 vertices with k+1 
sets S(x) = {1} at the beginning and k sets 
S(x) = {2} at the end. 

k = 3 
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{2} {1} {1} 

x1 x6 x5 

{1} 

x2 

{2} {2} {1} 

x3 x7 x4 

The only way to color this path with colors 
from the set «S(x) = {1,2} is to alternate 
colors. Thus, we must move 2’s to the left in 
the path and 1’s to the right. 

Source 
vertex 
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{2} {1} {1} 

x1 x6 x5 

{1} 

x2 

{2} {2} {1} 

x3 x7 x4 

Doing this by a series of exchanges between 
neighbors is analogous to changing the identity 
permutation into another permutation by 
transpositions of the form (i i+1). The number of 
transpositions required to do this is well known 
(and can be computed efficiently by bubble sort). 

source 
vertex 
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{2} {1} {1} 

x1 x6 x5 

{1} 

x2 

{2} {2} {1} 

x3 x7 x4 

Jerrum (1985): Number of transpositions 
(i i+1) required to transform identity 
permutation into permutation  p  is 
 

J(p) = |{(i,j): 1 £ i < j £ n & p(i) > p(j)}|. 

source 
vertex 
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{2} {1} {1} 

x1 x6 x5 

{1} 

x2 

{2} {2} {1} 

x3 x7 x4 

Here, J(p) = k(k+1)/2. 
Thus, 
 

Ie,n(G,S)/|V(G)| = k(k+1)/2(2k+1) z • 
 

as k z •. 

source 
vertex 
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An analogous proof shows that It,n(G,S)/|V(G)|  
can be arbitrarily large. 
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Sketch of Proof of One of Main Results 
 

We show that It(G,S)/|V(G)| can be arbitrarily close 
to 1.  
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Sketch of Proof of One of Main Results 
 

We show that It(G,S)/|V(G)| can be arbitrarily close 
to 1. 
  
Km = complete graph on m vertices: every vertex is 
joined to every other vertex. 
 
Im = graph with m vertices and no edges. 
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K7 

The Graph G(m,p) 
 

• Suppose that m > 3p+2.  
• Take Km-p and p copies of graph Im-p  
• Join every vertex of these p+1 graphs to every 
other vertex of each of these graphs. 

I7 I7 

G(9,2) 



79 

Definition of S: 
 

 On Km-p: Use the sets  
 {i, i+1, m-p+1, m-p+2, …, m} 
    i = 1, 2, …, m-p-1 

and the set 
 {m-p, 1, m-p+1, m-p+2, …, m}. 

 
On each copy of  Im-p, use the sets 

 {i, i+1} 
  i = 1, 2, …, m-p-1 

and the set 
 {m-p, 1}. 
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K7 

I7 I7 

The Graph G(m,p) 
 

G(9,2) 

1289, 2389, 3489, 4589, 5689, 6789, 7189   

12, 23, 34, 45, 56, 67, 71 12, 23, 34, 45, 56, 67, 71 
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Continuing the Proof: 
 

•  Let f be a list coloring obtained after trades give a 
new list assignment S*. 
•  Let i e {1, 2, …, m-p}. 
•  Then i appears in two sets S(x) on Km-p and two 
sets S(x) on each Im-p. 
•  So, i appears in 2(p+1) sets in all. 
•  There are m colors available. 
•  In f, we need m-p of them for Km-p, leaving p of 
them for the Im-p’s. 
•  No two Im-p’s can have a color in common. 
• Thus, each uses exactly one color. 
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K7 

I7 I7 

The Graph G(m,p) 
 

G(9,2) 

1289, 2389, 3489, 4589, 5689, 6789, 7189   

12, 23, 34, 45, 56, 67, 71 12, 23, 34, 45, 56, 67, 71 
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Continuing the Proof: 
 

•  Since m > 3p+2, m-p > 2(p+1).  
•  So there are not enough copies of any color i £ 
m-p available to trade to the m-p vertices of Im-p 
since each appears in 2(p+1) sets S(x). 
•  Hence, on each Im-p, f uses a color in 

            {m-p+1, m-p+2, …, m} 
•  There are p such colors, one for each Im-p. 
• Thus, f on Km-p must use colors 1, 2, …, m-p.  
•  So, f uses color m-p+1 on all vertices of  one 
Im-p, m-p+2 on all vertices of a second Im-p, …, and 
color m on all vertices of a pth Im-p.  
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K7 

I7 I7 

The Graph G(m,p) 
 

G(9,2) 

1289, 2389, 3489, 4589, 5689, 6789, 7189 

12, 23, 34, 45, 56, 67, 71 12, 23, 34, 45, 56, 67, 71 

Must Use Colors 1, 2, 3, …, 7 on K7   
 

Must Use Color 8 on one I7 and 9 on other I7 
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Continuing the Proof:  

• To obtain S*, we must for each color among  
m-p+1, m-p+2, …, m find m-p copies to trade to 
one of the graphs Im-p. 
•  Thus, we need a minimum of p(m-p) trades. 
•  This number suffices. 
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K7 

I7 I7 

The Graph G(m,p) 
 

G(9,2) 

1289, 2389, 3489, 4589, 5689, 6789, 7189 

12, 23, 34, 45, 56, 67, 71 12, 23, 34, 45, 56, 67, 71 

Move all the 8’s to one of the I7’s and all 9’s to the other 
 

Must Use Color 8 on one I7 and 9 on other I7 
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K7 

I7 I7 

The Graph G(m,p) 
 

G(9,2) 

12, 23, 34, 45, 56, 67, 71 

128, 238, 348, 458, 568, 678, 718 129, 239, 349, 459, 569, 679, 719 

Must Use Color 8 on one I7 and 9 on other I7 

Move all the 8’s to one of the I7’s and all 9’s to the other 
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Continuing the Proof:  

 
So: 

     It(G,S) = p(m-p) 

     It(G,S)/|V(G)| = p(m-p)/(p+1)(m-p) 
          = p/(p+1) 
          z 1 
 
as  p z • 
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Open Problems 
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Open Problems 
 

We have presented three procedures for individuals 
to modify their acceptable sets in order for the 
group to achieve a list colorable situation. 

 
So far, very little is known about these procedures. 
 

Some Mathematical Questions: 
1. Under what conditions is (G,S) p-tradeable for 

some p? 
2.  Under what conditions is (G,S) p-exchangeable 

for some p? 
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Some Mathematical Questions 
 

3. What are the values of or bounds for the 
parameters I(G,S), It(G,S), Ie(G,S), It,n(G,S), 
Ie,n(G,S) for specific graphs or classes of graphs 
and specific list assignments or classes of list 
assignments? 

4. What are the values of or bounds for these 
parameters under the extra restriction that all sets 
S(x) have the same fixed cardinality? 

5. What are good algorithms for finding optimal 
ways to modify list assignments so that we obtain 
a list colorable assignment under the different 
consensus models? 
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Consensus Issue 
 

Are there other examples where obtaining a 
consensus requires almost everyone to 
compromise? 
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Some Questions Relating to Physical 
Mapping 

 
 

6. Given a graph G with a list assignment S, can we 
remove edges from G, obtaining an interval 
graph H, so that H with S has a list coloring? If 
so, what is the smallest number of edges we can 
remove to get such an H? 

 
7. Given (V,E1), (V,E2) with E1 Ã E2, and S on  V, is 

there a set E so that E1 Ã E Ã E2 with G = (V,E) 
an interval graph and (G,S) list colorable? 
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