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Abstract

The Department of Homeland Security identifies stadium safety as a crucial component of risk mitigation in the US.
Patron screening poses difficult trade-offs for security officials: rigorous screening prevents weapons from entering
the structure, but it also creates lines that become security hazards and may be infeasible if patrons are to get into
the stadium within a few minutes of the beginning of the game. In order to quantitatively inform venues about how
different screening procedures will affect their venue, we developed a patron screening model together with security
personnel at a National Football League (NFL) stadium. Our model specifically addresses the speed of screening using
different procedures: walk-through magnetometers, wandings, and patdowns. We then created a real-time simulation
of queue formation using the physical arrangement of gates at the stadium. This allowed for analysis based on different
patron screening procedures and configurations. We validated our model and simulation using ticket scan data and
security director experience. Our approach is generic enough for any stadium and has been used to explore inspection
protocols at multiple venues including an NBA arena. We also successfully demonstrated our work to NFL Security.
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1. Introduction
Safety is a major concern at public venues such as stadiums. Many venues including those for sporting events, music
concerts, theme parks, malls, and other public venues screen participants as they enter. The goal of screening is to
improve safety inside the venue by preventing patrons from bringing in weapons such as knives, guns, and explosive
devices.

In screening patrons, venues face an important balance between security, cost, and patron convenience. Better security
measures mean that fewer unwanted items enter a venue. However, more accurate security procedures, such as mag-
netometers, take up larger amounts of space, need additional personnel, and require more training. All of these present
additional one-time and ongoing costs to a venue. Additionally, more stringent security checks often result in longer
screening wait times, which could dissatisfy patrons. Longer lines themselves are now considered security hazards in
the wake of the Boston Marathon bombing. Security personnel recognized that crowds of uninspected patrons could
easily be the target of a similar bombing attack.

Working with a National Football League (NFL) stadium, we built a model and simulation of patron arrival times,
screening rates, and queue clearance. This tool allowed the venue to make informed what-if analyses about the feasi-
bility and requirements of different screening procedures. The venue then made quantitatively-informed decisions by
combining the results of our screening simulation, what is known about the accuracy of different screening procedures,
and the other screening tradeoffs listed above.

In designing our model and simulation, our goal was to create a flexible and accurate approach for comparing screening
procedures at any venue. Our contributions as described here are:

• A venue-independent formulation to describe patron screening

• A description of how we implemented these formulations for a specific venue

• An explanation of how this information allowed our venue to make an informed decision about patron safety
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2. Related Work
2.1 Other Research
Our research was heavily influenced by earlier simulation work involving sports stadiums and other large venues.
This work has been primarily concerned with modeling evacuations of such venues. We mention in particular the
work of Regal Decision Systems (http://www.regaldecision.com/), supported by the Department of Homeland Security
(DHS), which also supported our work. Their REGAL Evac is a discrete event simulation model developed to evaluate
evacuation plans and pedestrian flow for any facility, producing results in the form of 3D animation. This has been
applied to a variety of NFL stadiums.

Mention should also be made of the work at the University of Southern Mississippi Center for Spectator Sports Safety
and Security (NCS4), which is also supported by DHS. The book [4] gives an overview of many aspects of sport
stadium security and safety, including ingress and egress. An example of work from NCS4 is [6], which gives a GIS-
based football stadium evacuation model using macro-simulation for University of Southern Mississippi’s football
stadium.

In [3], the authors present a simulation of a stadium that is based on section by section computer drawings.

In a different approach, [9] uses a 2-dimensional cellular automaton approach to simulate evacuations from large
and complex structures. This in turn is based on a rather extensive literature that brings behavioral factors into the
analysis of crowd behavior, in particular in evacuation situations (see e.g., [8, 10]). In the latter, the authors present a
multi-agent based framework for simulating human and social behavior during emergency evacuation.

Simulations of crowd behavior that take into account social groupings are also relevant to stadium evacuation and
egress from large structures. In [13], the authors study the effect of design decisions on the flow of agent movement
and how agent egress is affected by the environment in real world and large scale virtual environments. Their work
supports grouping restrictions between agents (e.g., families or other social groups traveling together). The work in
[12] models human crowds for real-time, graphics-based applications and develops novel algorithmic methods that
allow for crowd behavior on non-planar surfaces and uniquely-realistic social dynamics. This work is also relevant to
inspection processes, where social groups coming together might conceivably be modeled as units.

While there is robust literature on simulations for evacuation and egress from stadiums and similar large facilities,
there is much less literature on inspections. Primarily, such literature has been devoted to airports. For example, [2]
estimates the impacts of the United States Visitor and Immigrant Status Indicator Technology Program (US-VISIT)
in terms of traveler wait times and queue lengths, using simulation. The model developed uses data from the Los
Angeles International Airport. Also, [5] develops a discrete event simulation of security screening operations at an
idealized airport, based on composite data from two real life airports. The goal of this work is to gain insight into the
impacts of security screening configurations and to identify the optimal inspection time. They used arrival time data
from Customs and Border Protection for two airports, Atlanta and Tampa, as well as service time data from the Tampa
Airport, to build the data for their idealized airport. They also used physical configurations for inspections at the time
shortly after the September 11th attacks. The model used a “typical” one hour inspection period, while ours uses 14
different examples to give a variety of scenarios. Their model takes into account the need for secondary inspections,
which they assume occur in 20% of the cases. Our model instead builds in the total time needed for an inspection,
including secondary inspections, into one parameter.

The work in [11] applied discrete event simulation modeling to understand the operational dynamics of passenger se-
curity screening in conjunction with the re-design of the passenger checkpoint at Baltimore-Washington International
Airport. They used a time-motion study to gather data of minimum, maximum, and mode times for each step in the
inspection process. Customer arrival volumes and patterns were captured using the departure schedule and the airline
loading factors. In contrast to our work, this model considered the many steps of airport processing of customers, for
example comparing ticket counter queues to curbside check-in queues, whereas our work concentrates solely on the
actual inspection process and does not consider the many other aspects of stadium security such as behavioral analysis
in the parking lots, sensors and detectors, license plate readers, etc.

2.2 Information about Different Screening Procedures
To compare different screening procedures, we did extensive observation at the NFL venue we worked with and also
viewed film of their screening. We compared our data with that gathered at another NFL stadium and also with security
personnel at the venue we worked with.
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In general, patdowns and magnetometer walk-throughs take about the same amount of time, while wanding takes
considerably longer. There is also great variation in times taken over patrons, as well as variation in the amount of
time needed for wanding and patdowns from one inspector to another. The weather makes a difference too.

Magnetometers are thought to give the most accurate information, followed by wanding and patdown. Moreover,
patrons often find magnetometers less invasive than wandings and patdowns and most patrons are familiar with them
since they are used in airports. We also heard that it is easier to train staff to use magnetometers than to do wandings
and patdowns and the results are more consistent. However, there are some important disadvantages to magnetometers.
They require significantly more space to use, space that is at a premium when other potential uses of it are concerned.
They require more staff to use. Also, the equipment needed (the magnetometers) is significantly more expensive than
other screening methods. Finally, their performance is degraded in bad weather.

Because wanding takes longer than patdowns, in the past some NFL stadiums found it difficult to wand all patrons
before entry if they had the goal of getting all patrons into the stadium close to kickoff time. Thus, when the queue to
enter the stadium got too long, they switched from wanding to the faster patdown inspections.

Our models and simulations were aimed at determining how much time it would take to get all patrons into the stadium
under a given method of inspection. In this paper, we discuss three alternatives that we considered: 100% wanding,
100% magnetometer use, and wanding until the queues got too long, followed by patdowns. The simulations can and
have been used to evaluate other combinations of procedures. Another issue we analyzed was how many inspection
lanes were needed to achieve the goal of getting patrons into the stadium close to kickoff time. Due to the space
limitations and cost considerations for magnetometers, this was an important issue. Finally, we started with the goal
of getting all patrons into the stadium by 5 minutes after kickoff time, but the results of our simulations easily allow
us to modify this goal.

3. Theory
Our goal in modeling patron screening was two-fold: to create a flexible model that could be used in other venues and
to answer the specific questions of our venue. Our model has three components: the arrival of patrons to the venue,
the screening procedure, and the resulting build-up and clearance of the queue. We discuss each of these in turn.

3.1 Arrival Time
The first key to modeling patron screening is to model the arrival of patrons at the security screening point for the
event. Patrons do not arrive at a constant rate, which makes this an important component of the model. We will often
refer to the rate of patron arrivals at the screening point as simply the arrival rate.

Based on data provided by our venue and discussions with the venue’s security personnel, we observed that the arrival
rates followed the same general trend for all the events we considered, and each arrival rate could be viewed as having
four distinct time periods. In the first time period (well before kickoff), the arrival rates were small and insufficient
to form a line. Without loss of generality, we modeled the arrival rate at this time to be a small constant value. In
the second time period (closer to kick-off), the arrival rates would begin increasing. The arrival rates would then peak
and begin decreasing, which marked the third time period. Shortly thereafter, the arrival rates became small and again
insufficient to form a queue. Just as in the first time period, we modeled this range to be a small constant value.

For our purposes, we define the arrival rate to be a continuous piecewise linear function that inputs the time t (in
minutes) and returns the number of patrons arriving at that time (see Figure 1). While this function is obviously a very
simplified approximation of real patron arrival rates, it was sufficient for producing accurate results from our model.

For a given event, we define the patron arrival function arr(t) to be the number of patrons arriving at the gate for
screening between time t and time t +1:

arr(t) :=


c if t < t1
bi(t− t1)+ c if t1 ≤ t < t2
bd(t− t2)+bi(t2− t1)+ c if t2 ≤ t < t3
bd(t3− t2)+bi(t2− t1)+ c if t ≥ t3

(1)

where t1, t2, and t3 are the transition times between the time periods and c, bi, and bd are constants such that c ≥ 0,
bi > 0, bd < 0, and bd(t3− t2)+bi(t2− t1)+c≥ 0. Note that t1, t2, t3, c, bi, and bd are all constant parameters specific
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to the venue and the event (see Section 4.1). In addition, it is assumed that variable t ≥ 0 represents time in minutes
and that t = 0 corresponds to 60 minutes prior to kickoff. It is important to re-emphasize that arr(t) is the total number
of patrons arriving at time t for a particular entrance gate, which has many screening lines, and not for a particular
line.

Figure 1: Model for patron arrivals (function arr(t)) at the venue’s screening point.

3.2 Queue Length
The next piece of our model determines the size of the queue at any given time t. We will consider the queue at a
particular entrance gate and will denote the number of lines (for screening) at the gate by N. It is important to note
that the queue length refers to the total number of patrons awaiting screening in all N lines. This is analogous to the
previously defined function arr(t), which is the number of patrons arriving at time t at the gate. We define the function
recursively as

Q(t) :=

{
arr(t−1)− scr(t−1)+Q(t−1) if t > 1
0 if t = 0

(2)

where arr(t) is the arrival function from the previous section and scr(t) is a screening rate function to be defined later.
More specifically, in this paper, the screening function scr(t) will be one of the functions from {WP(t),W (t),M(t)},
each of which will be properly defined in the upcoming sections. It is important to note that Q(t) and scr(t) will be
mutually recursive. For example, the queue length at time t will depend on the number of patrons screened at time
t−1. On the other hand, the number of patrons screened at time t depends on the queue length at time t since it cannot
exceed the queue length.

Of course, this function allows us to determine the time when the queue for an event is cleared. This queue clear-
ance time is a key parameter in one of the quantitative goals for inspection and will be discussed in greater detail in
Section 3.4.

3.3 Screening
We next modeled the screening of patrons. In our work with our venue, we discovered some key points that were
needed to make a model flexible enough for their needs and the needs of other venues. First, the screening time of
patrons varies from person to person. Second, the screening time for different screening methods varies as well. For
our purposes, we consider three different screening methods: patdown (P), wanding (W ), and magnetometer (M).

For each of these screening methods, we will be concerned with the number of patrons screened per minute, which
we may refer to as the screening rate. For patdown screening, we first define LP (resp. UP) to be the lower bound
(resp. upper bound) on the time, in seconds, it takes a single security staff person (screener) to screen one patron.
Similarly, for wanding screening, we define LW (resp. UW ) to be the lower bound (resp. upper bound) on the time it
takes to screen one patron. Also, for magnetometer screening, we define LM and UM to be the lower and upper bound
screening times for one patron. Each of these lower/upper bounds will be constant parameters determined from real
event data (see Section 4.1).
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For each screening method, we define a random variable for the number of patrons screened by a single screener in
one minute starting at a specific time (in minutes). More precisely, for some time t (in the same “minutes format”
as before), let the random variable YP(t) be a number chosen randomly from the uniform distribution [LP,UP] and
representing the average screening time per patron (in seconds) by one staff member using patdowns from time t to
time t + 1. We define a second random variable XP(t) := 60/YP(t), which represents the average number of patrons
screened by one staff member using patdowns from time t to t +1 (i.e., in one minute starting at time t).

Analogously for wanding, we define the random variable YW (t) to be a number chosen randomly from the uniform
distribution [LW ,UW ], and define the random variable XW (t) := 60/YW (t), which represents the average number of
patrons screened by one staff member using wanding from time t to t +1.

Similarly for magnetometers, the random variable YM(t) is chosen randomly from the uniform distribution [LM,UM],
and we define the random variable XM(t) := 60/YM(t), which represents the average number of patrons screened by a
single magnetometer from time t to t +1. Although modeling our screening rates based on uniform distributions is a
very simplified approximation, it was sufficient for producing accurate (and realistic) results from our model.

There were three specific inspection/screening methods our venue was interested in, and they are common screening
methods at other venues as well. The first is “wanding & patdown”, where the venue screens by wanding only until
a certain time (when the queue reaches a certain length) and then switches to patdown only. The second is “wanding
only”, where the venue screens only through wanding. The third is “magnetometer only”, where the venue screens
only through magnetometers. It is assumed that the venue will only use one of these three inspection methods during a
single game. Only these three inspection methods were considered for our venue, but it should be noted that our model
and approach can be readily adapted to other combinations of screening procedures (e.g., magnetometers only with a
switch to patdowns). Combinations of different procedures can even be considered by defining the random variables
to sample from a more complicated distribution (than the uniform one).

3.3.1 Wanding & Patdown

The first screening method we present is the wanding and switch to patdown method. In this screening procedure,
patrons are screened using the slower, but more effective wanding method until the queue reaches a certain length.
When that happens, security switches to the faster patdown technique. This switch prevents the line from becoming
so long that it becomes a security vulnerability, and also aims to ensure that patrons get into the stadium close to the
kickoff time. Whether any venues will use this procedure in the future is uncertain.

We first define the time at which the switch from wanding to patdown occurs. Let qs be the threshold number of
patrons in the queue that, when exceeded, will prompt the switch. This is a constant parameter based on the event
occurring at the venue (see Section 4.1). We define the switch time ts as

ts := min({t : Q(t)≥ qs}). (3)

We note that in general, t1 < ts < t2. We now define WP(t) to be the function giving the number of patrons screened
at time t (i.e., in the interval between t and t +1):

WP(t) :=

{
min(Q(t), bN ·XW (t)c) if t < ts
min(Q(t), bN ·XP(t)c) if t ≥ ts

(4)

where N is the number of screening lines at the gate and bxc denotes the floor of the real number x. The minimizing
function ensures that the number of patrons screened does not exceed the number of patrons in the queue. Observe
that this function is mutually recursive with Q(t) (in this case, scr(t)≡WP(t) in Equation 2).

3.3.2 Wanding Only

The next screening method is a wanding-only approach. We define W (t) to be the function giving the number of
patrons screened through this inspection method at time t (i.e., in the interval between t and t +1):

W (t) := min(Q(t), bN ·XW (t)c) (5)
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where N is again the number of screening lines at the gate. Again, the minimizing function ensures that we do not
screen more people than are in the queue. Observe that this function is mutually recursive with Q(t) (in this case,
scr(t)≡W (t) in Equation 2).

3.3.3 Magnetometer Only

The final inspection method is the magnetometer-only screening approach. We define M(t) to be the function giving
the number of patrons screened through this inspection method at time t (i.e., in the interval between t and t +1):

M(t) := min(Q(t), bN ·XM(t)c) (6)

where N is again the number of screening lines at the gate. Observe that this function is mutually recursive with Q(t)
(in this case, scr(t)≡M(t) in Equation 2).

3.4 Queue Clearance
Recall that the queue length function Q(t) (in Equation 2) allows us to determine how many people are in the queue at
any given time t. We are specifically interested in when this queue length becomes 0 after the arrival rate peaks. We
will denote the queue clearance time by tc and observe that

tc := min({t : Q(t) = 0, t ≥ t2}). (7)

Recall that t2 represents the time where the arrival rate peaks and begins to decrease. This time will often be just before
the event start time.

Since our arrival rate function arr(t) is piecewise linear with non-positive slope for t > t2 (see Figure 1), we observe
that for time t > tc, the queue length Q(t) will be negligible (that is, patrons arriving at the gate will have nearly no
wait time to be screened).

We now have a flexible model of patron arrivals, screening, and queue clearance for a venue. We now explain how we
implemented this model for the specific NFL venue we worked with.

4. Implementation
4.1 Choice of Parameters
The various parameters that were previously discussed were chosen to best represent our specific venue during NFL
games. The venue in question did not have patron arrival data explicitly, but it was able to provide us with patron
throughput data for 14 games. This throughput data gave the times when tickets were scanned.

The venue used a wanding & patdown approach for the events in our data set. It was clear from ticket data when
there was a change from the slower wanding screening method to the faster patdown screening method because of a
noticeable sudden increase in throughput. Immediately before (and immediately after) the sudden jump in throughput,
the throughput (number of patrons entering per minute) actually momentarily stops increasing. These two points,
where the throughput briefly plateaus, are used to approximate the average wanding time and the average patdown
time. Since we also knew the number of screening lines, this allowed us to compute the average screening time for
wanding and for patdowns for each game.

For patdowns, the average screening times per patron generally ranged from 6 to 8 seconds, depending on the game.
For a specific game, if the average patdown time was τP seconds per patron, then we set LP = τP−1 and UP = τP +1.
Similarly for wandings, the average screening times per patron ranged from 12 to 15 seconds. If the average wanding
time was τW seconds per patron, we set LW = τW −2 and UW = τW +2, since there appeared to be more variation in
the wanding times than the patdown times. The security personnel at our venue felt that these numbers were accurate
based on their personal experience.

The magnetometer times were less concrete since there was much less data available. Based on observations and
discussions with various other venues, we assumed that average magnetometer screening times per patron would
range from 5 to 7 seconds. This can obviously differ substantially from venue to venue depending on the sensitivity
of the magnetometers and how they are implemented in the screening process. Based on our assumptions, though,
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if the average magnetometer screening time is τM seconds per person, we set LM = τM− 1 and UM = τM + 1. These
parameters are summarized in Table 1. Note that the average and lower and upper bounds on these screening times
will vary from event to event.

Screening Method Lower Bound (L) Upper Bound (U)
Patdown τP−1 seconds/patron τP +1 seconds/patron
Wanding τW −2 seconds/patron τW +2 seconds/patron
Magnetometer τM−1 seconds/patron τM +1 seconds/patron

Table 1: Lower/Upper bounds for each screening method where the average screening times for patdowns, wandings,
and magnetometers are τP, τW , and τM , respectively.

Next, we needed to compute the constant parameters for the patron arrival function arr(t) (see Section 3.1). Recall
that a different arrival function must be produced for each event/game. For each game, we did the following. We first
computed the maximum throughput rate RT during the whole screening process. This should approximately be the
average patdown rate. Since wanding takes approximately twice as long as patdowns, we found the time at which the
throughput hit RT/2.1 (that is, slightly less than the wanding rate) and this time was determined to be t1. Similarly, we
found the time after the peak throughput where the throughput decreases down to 0.6RT and determined this time to
be t3. Based on the data and observations, the throughput value of 0.6RT appeared to be a reasonable measure of when
the arrival rates became insufficient to develop a queue. Finally, based on the throughput data and the values for t1
and t3, we approximate t2 (which is generally shortly before kickoff). From there, we fit the piecewise linear function
arr(t) to the given data set to determine the constant parameters bi, bd , and c in Equation 1.

In addition, actual observations enabled us to estimate the patron density per square foot in a crowd as well as the
average length of the queue when the screening method is switched from wanding to patdowns. This allowed us to
estimate that there were 2,000 patrons in the queue at the main entrance gate when this switch occurred. This sets our
final parameter qs = 2000.

In sum, the choice of parameters for our model was based on a combination of game data from the venue, actual
observations of the screening procedures, frequent discussions with the venue’s security personnel, and derivations
from other data.

4.2 Discrete Simulation
We then coded our model into the ARENA simulation package [1, 7]. Developed by Rockwell Automation, ARENA
allowed us to both encode our simulation parameters and create a straightforward graphical view of how the lanes and
queues formed and cleared (see Figure 2.) By running the simulation repeatedly, we could determine the time tc of
Equation 7 for the queue to clear for a given set of parameters. We describe the results of this simulation in Section 5.

4.3 Flexibility of Implementation
One of the key goals of our implementations was to create a flexible screening model. There are numerous venues that
are deeply concerned about security and the best ways to screen their patrons. Since nothing in our approach requires
that the venue be an NFL stadium, these other venues can be analyzed as well. Similarly, other screening procedures
and screening functions than WP(t), W (t), and M(t) could be used.

The process for doing analysis on other venues is straightforward. For the specific venue, one needs to determine the
appropriate fixed parameters and construct an arrival function arr(t) for specific events that they have data for. By
considering different screening protocols and varying the number of screening lines, one can do what-if experiments
for their specific venue.

5. Results
With a model and simulation, we were able to do what-if analysis for our venue. Our venue was well aware of the
security and cost implications of different screening methods but wanted to know how a change would affect the
number of lanes needed and the queue clearance time. Specifically, the venue wanted to know if a screening/lane
combination would clear the queue within five minutes of the event start, i.e., when t = 65.
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Figure 2: Screenshot of ARENA software simulating the arrival and screening of patrons. At the top are four simulated
gates, each with its individual line of waiting patrons and security personel. At the bottom are the various statistics
available during the simulation. These include the current time (this simulation was for a 1pm kick-off), graphs of
arrival rate, arrivals, the queue length, throughput rate, and throughput. Note that in this example the throughput rate
jumps because a the simulation is using a wanding & patdowns approach.

In order to address this, we ran simulations for each of the 14 events for which we had ticket data. We compared how
different screening and lane combinations compared to the base case of wanding & patdowns. The base case was the
queue clearance time using the wanding & switch to patdown method in use at the venue at the time of the event.

After running the simulation, we scored each event/lanes combination, starting with the goal of clearing the queue by
t = 65 minutes, i.e., 5 minutes after kickoff. The score was one of three scores based on its projected clearance time
and its comparison to the clearance time base case. If the clearance time was worse than the base case and did not
meet the clearing goal it was labeled worse. If the clearance time was comparable to that of the base case but still did
not meet the 65 minute goal, then the method was labeled neutral. If the clearance time met the clearance goal it was
labeled acceptable.

5.1 Magnetometer Scenarios
We looked at magnetometer scenarios with 20, 25, 30, 35, and 40 lanes. We observed that with 30 or fewer inspection
lanes, only two of the 14 games for which we had data would have had neutral or acceptable clearance times given
the goal (both being acceptable). Even with a clearance time of 75 minutes, only one more game would have become
acceptable. By contrast, with 35 lanes, all but one game would have become neutral or acceptable (4 acceptable). With
40 lanes, all games would have had a neutral or acceptable queue clearance time, 9 being acceptable. Only one would
not have been acceptable with a 70 minute clearance time, but in the worst case, even a 75 minute clearing time goal
could not be met. Decisions based on this data suggest the need to balance clearance time goals against the number of
magnetometers in which to invest, and also suggest the possibility of finding policies that encourage earlier entrance
into the stadium so as to facilitate earlier queue clearance times. This is indeed what some NFL teams have chosen to
do, by offering incentives to enter the stadium well in advance, e.g., opportunities to walk on the field, participate in a
lottery for prizes, or receive discounted refreshments.
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5.2 Wanding Scenarios
Similar to the magnetometer scenarios, we did what-if analysis with a wanding-only approach. Since wanding takes
longer than using magnetometers but requires less space, we used 40, 45, 50, 60, 65, and 70 lanes in our simulation.

Our results show that with up to 50 lanes, no games would have had even a neutral result. Two would have been
neutral with a 75 minute clearance goal. With 60 lanes, four games become acceptable and three neutral. Even
with a 75 minute clearance goal, only one more becomes neutral, though all three previously neutral games become
acceptable. Even with 65 lanes, two games remained worse (seven became acceptable). With a 75 minute goal,
however, all but two became acceptable (and those remained worse). Moving to 70 lanes, we found that all games
became at least neutral (7 acceptable) and all but one became acceptable with a 75 minute goal.

6. Our Venue’s Response
Our venue was very impressed with the results of this simulation. Foremost, they felt that the results of our model
and simulation mirrored their experience and expert knowledge. Our results also gave them meaningful figures as
to how many magnetometers they would need to do a full conversion. Similarly they had access to figures about a
wanding-only conversion.

Our venue then had the responsibility of weighing the trade-offs of moving to magnetometers. Advantages would
include a possible increase in safety and increase in patron satisfaction. Disadvantages included the extra cost of
magnetometers, weather problems, and increased staffing needs. With additional information about how many mag-
netometers were required to have an acceptable clearance time, the venue was able to study whether a magnetometer
approach was even feasible.

Our results were well received. In addition to helping our venue with their decisions, we presented this approach to
National Football League Security. We are also using this model to help security at a National Basketball Association
arena and are beginning discussions with Major League Baseball.

7. Conclusions and Future Work
In conclusion we believe our model and simulation reached our three main goals: to create a flexible model for
screening, to create a simulation for a specific venue, and to help the venue make an informed decision using what-if
analysis.

In addition to the success we saw at this venue, this approach can be used at any venue with security screening. As
mentioned before, this can include other sporting venues, musical concerts, malls, theme parks, or anywhere that
patrons are screened.

In terms of future work, we are interested in more complicated screening procedures and how they would work in our
model. For example, a venue might employ a random screening process where more expensive screening techniques
are used at random, perhaps after the queue gets too long. The hope is that this would be an effective, though less
expensive, deterrent. We are also interested in studying scenarios where the patron arrival function arr(t) has a
different form. Some venues have patrons arriving all day with multiple time ranges where the arrival rates peak,
which would require quite a different arrival function.
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