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Abstract 

Following work of Stroud and Saeger [26] and Anand et al. [1], we formulate a port of entry 

inspection sequencing task as a problem of finding an optimal binary decision tree for an 

appropriate Boolean decision function. We report on new algorithms for finding such optimal trees 

that are more efficient computationally than those presented by Stroud and Saeger and Anand et al. 

We achieve these efficiencies through a combination of specific numerical methods for finding 

optimal thresholds for sensor functions and two novel binary decision tree search algorithms that 

operate on a space of potentially acceptable binary decision trees. The improvements enable us to 

analyze substantially larger applications than was previously possible. 
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1. Introduction 

As a stream of containers arrives at a port, a decision maker must decide which 

“inspections” to perform on each container. Current inspections include 

neutron/gamma emissions, radiograph images, induced fission tests, and checks of 

the ship’s manifest. The specific sequence of inspection results will ultimately 

result in a decision to let the container pass through the port, or a decision to 

subject the container to a complete unpacking. Stroud and Saeger [26] looked at 

this as a sequential decision making problem and formulated it in an important 

special case as a problem of finding an optimal binary decision tree for an 

                                                
1 All three authors were supported by ONR grant number N00014-05-1-0237 and NSF 
grant number SES-0518543 and David Madigan was supported by grant DMS-0505599 
to Rutgers University.  
 



 

 

appropriate binary decision function. Anand et al. [1] reported an experimental 

analysis of the Stroud-Saeger method that led to the conclusion that the optimal 

inspection strategy is remarkably insensitive to variations in the parameters 

needed to apply the method.  

Finding algorithms for sequential diagnosis that minimize the total "cost" of the 

inspection procedure, including the cost of false positives and false negatives, 

presents serious computational challenges that stand in the way of practical 

implementation. 

We will think in the abstract of containers having “attributes” and having a sensor 

to test for each attribute; we will use the terms attribute and sensor 

interchangeably. In practice, we dichotomize attributes and represent their values 

as either 0 ("absent" or “ok”) or 1 ("present" or “suspicious”), and we can think of 

a container as corresponding to a binary attribute string such as 011001. 

Classification then corresponds to a binary decision function F  that assigns each 

binary string to a final decision category. If the category must be 0 or 1, as we 

shall assume, F is a Boolean decision function (BDF). Stroud and Saeger consider 

the problem of finding an optimal binary decision tree (BDT) for calculating F . In 

the BDT, the interior nodes correspond to sensors and the leaf nodes correspond 

to decision categories. Two arcs exit from each sensor node, labeled left and right. 

By convention, the left arc corresponds to a sensor outcome of 0 and the right arc 

corresponds to a sensor outcome of 1. Fig. 1 provides an example of a binary 

decision tree with three sensors denoted a, b, and c2. Thus, for example, if sensor 

a returns a zero (“ok”), sensor b returns a one (“suspicious”), and sensor c returns 

a one (“suspicious”), the tree outputs a one (i.e., a conclusion that something is 

wrong with the container). 

Figure 1 here. 

Fig. 1 A binary decision tree !  with 3 sensors. The individual sensors classify good and bad 

containers towards left and right respectively. 

                                                
2 We allow duplicates of each type of sensor. Thus, we allow multiple copies of a sensor 
(of type a, and similarly for b and c). When we speak of n sensors, we mean n types and 
allow such duplicates. Replicates of a particular sensor type may improve performance 
but such replicates must be combined to produce a single zero or one.  



 

 

Hyafil et al. [17] proved that even if the Boolean function F  is fixed, the problem 

of finding the lowest cost BDT for it is hard (NP-complete). Brute force 

enumeration can provide a solution. However, even if the number of attributes, n, 

is as small as 4, this is not practical. Please recall that n refers to the number of 

sensor types and not to the total number of sensors present in a tree. In present-

day practice at busy US ports, we understand that n is of the order of 3 to 5, but 

this number is likely to grow as sensor technology becomes more advanced. Even 

under special assumptions (called completeness and monotonicity – see below), 

Stroud and Saeger were unable to produce feasible methods for finding optimal 

BDTs beyond the case 4n = . They ranked all trees with up to 4 sensors according 

to increasing tree costs using a measure of cost we describe in Section 3. Anand et 

al. [1] described extensive sensitivity analysis showing that the Stroud-Saeger 

results were remarkably insensitive to wide-ranging changes in values of 

underlying parameters. 

The purpose of this paper is to describe computational approaches to this problem 

that are more efficient than those developed to date. We describe efficient 

approaches to the computation of sensor thresholds that seek to minimize the total 

cost of inspection. We also modify the special assumptions of Stroud and Saeger 

to allow search through a larger number of possible BDFs, and introduce an 

algorithm for searching through the space of allowable BDTs that avoids 

searching through the Boolean decision functions entirely. Our experiments 

parallel those of Stroud and Saeger. This paper is an expanded version of a short 

conference paper by Madigan et al. [22], with added details and a detailed formal 

proof that our search methods in the larger space of allowable BDTs can reach 

any tree in the space from any other tree. 

A variety of papers in recent years have dealt with the container inspection 

problem. Boros et al. [3] summarize a portion of this literature and Ramirez-

Marquez [25] gives a more extensive survey of the literature. Dahlman et al. [9] 

provides an overview of the container security problem and present an outline of a 

potential comprehensive multilateral agreement on the use of containers in 

international trade. We close this section by reviewing the relevant literature. 



 

 

A number of authors have built on the work of Stroud and Saeger [26]. One 

direction of work has been to study the sensitivity of optimal and near optimal 

trees to the input parameters used by Stroud and Saeger. As input parameters such 

as the costs of false positives and false negatives, the costs of delays, etc., are 

estimated with more or less accuracy, one wants solutions whose sensitivity to 

changes in these parameters is known and tolerable. As noted above, Anand et al. 

[1] did an extensive sensitivity analysis of the Stroud-Saeger results and showed 

that the optimal inspection strategy is remarkably insensitive to variations in the 

parameters needed to apply the Stroud and Saeger [26] method. The paper [22] 

introduces more efficient search heuristics that allow us to address problems 

involving more sensors, and it is the work of [22] that we expand on in this paper. 

In related research, Concho and Ramirez-Marquez [9], [25] have used 

evolutionary algorithms to optimize a decision tree formulation of the inspection 

process. Their approach was based on the assumption that readings rj by the jth 

sensor are normally distributed, with a different distribution depending on 

whether the container in question is “bad” or “good.” Thresholds tj were used to 

determine outcomes of inspections, with a container declared suspicious by the jth 

sensor if rj > tj.  Here, the cost function used depends upon the number of sensors 

used and the cost of opening a container for manual inspection if needed, but does 

not take into account the cost of false positives or false negatives, which is a key 

feature of the work in [26], [1], [22] and this paper.  

Another direction of work is to investigate the optimum threshold levels for 

sensor alarms so as to minimize overall cost as well as minimize the probability of 

not detecting hazardous material. Stroud and Saeger [26] developed threshold 

models in their work. We talk about some of this work here, building on [22]. For 

further related results, see [1], [3], [10]. Boros et al. [4] showed that multiple 

thresholds provide substantial improvement at no added cost. The problems of 

optimal threshold setting become much more complex and difficult to solve for a 

larger number of sensors. An alternative approach to determining threshold levels 

involves a simplifying assumption about the tree topology. Assuming a “series” 

topology (looking at one sensor at a time in a fixed order), one can first determine 

an optimal sequence of sensors. Once an optimum sequencing of sensors is 



 

 

obtained, the threshold level problem is then formulated. Zhang et al. [28] have 

used a complete enumeration approach to determine the optimum sequence of 

inspection stations and the corresponding sensors’ threshold levels to solve 

problems with up to three sensors in series and parallel systems. 

Elsayed et al. [10] studied specific topologies for inspection stations, specifically 

stations arranged in series or parallel topologies. They developed general total 

cost of inspection equations for n sensors in series and parallel configurations. In 

contrast to the work of Stroud and Saeger and that in this paper, they disregarded 

costs of false positive and false negative classifications of containers. 

Zhu, et al. [29], in work extending [10], considered sensor measurement error 

independently from the natural variation in the container attribute values. They 

modeled situations when measurement errors exist (and are embedded) in the 

readings obtained by the inspection devices and used a threshold model to identify 

containers at risk for misclassification. They studied optimization of container 

inspection policies if repeated inspections of at-risk containers are a part of the 

process. 

Boros, et al. [4] extended the work of Stroud and Saeger and changed the 

formulation of the problem. Rather than minimizing expected cost determined as a 

combination of expected cost of utilizing an inspection protocol plus expected 

cost of misclassifying a container, they looked at the problem of maximizing the 

probability of detection of a “bad” container. They formulated a large-scale linear 

programming model yielding optimal strategies for container inspection. This 

model is based on a polyhedral description of all decision trees in the space of 

possible container inspection histories. The dimension of this space, while quite 

large, is an order of magnitude smaller than the number of decision trees. This 

formulation allowed them to incorporate both the problem of finding optimal 

decision trees and optimal threshold selection for each sensor into a single linear 

programming problem. The model can also accommodate budget limits, 

capacities, etc., and one can solve it to maximize the achievable detection rate. 

Boros, et al. were able to solve this model for 4 sensors, and branching that allows 

up to 7 possibly different routing decisions at each sensor (in contrast to the 

binary routing solved by Stroud and Saeger, and implicit in Boolean models) in a 



 

 

few minutes of CPU time, on a standard desktop PC. They were also able to run 

the model for as many as 7 sensors, when they allowed only binary decisions, as 

in Stroud and Saeger. It should be noted that Boros, et al. also considered more 

container classifications than just the bad or good. They demonstrated the value of 

a mixed strategy applied to a fraction of the containers. Goldberg et al. [15] added 

budget constraints to the problem and considered the problem of finding an 

inspection policy that maximizes detection probability given that the cost of 

inspection cannot exceed a given budgeted amount.  

Jacobson et al. [19] looked at baggage screening at airports and compared 100% 

screening with one type of screening device with screening with a second device 

when the first device says a bag is suspicious. They calculated costs and benefits 

of the two methods. (Jacobson et al. [20] also looked at baggage screening at 

airports, and studied how integer programming models can be used to obtain 

optimal deployment of baggage screening security devices for a set of flights 

traveling between a given set of airports.) 

The first step in the container inspection process actually starts outside the United 

States. To determine which containers are to be inspected, the United States 

Customs and Border Protection (CBP) uses a layered security strategy. One key 

element of this strategy is the Automated Targeting System (ATS). CBP uses 

ATS to review documentation, including electronic manifest information 

submitted by the ocean carriers on all arriving shipments, to help identify 

containers for additional inspection. CBP requires the carriers to submit manifest 

information 24 hours prior to a United States-bound sea container being loaded 

onto a vessel in a foreign port. ATS is a complex mathematical model that uses 

weighted rules that assign a risk score to each arriving shipment in a container 

based on manifest information. The CBP officers then use these scores to help 

them make decisions on the extent of documentary review or physical inspection 

to be conducted [30]. This can be thought of as the first inspection test and the 

“sensor” is the risk scoring algorithm. Thus, in some sense, all trees start with the 

first sensor and this sensor is then not used again. It is not unreasonable to think of 

more sophisticated risk scoring algorithms that also involve sequential decision 

making, going to more detailed analysis of risk on the basis of initial risk scoring 



 

 

results. The Canadian government uses similar methods. The Canadian Border 

Services Agency (CBSA) uses an automatic electronic targeting system to risk-

score each marine container arriving in Canada.  As with ATS, this Canadian 

system has several dozen risk indicators, and a score/weight for each indicator.  

The Canada Border Services Agency is applying a new performance metric, 

Improvement Curve, to measure risk-assessment processes at Canada’s marine 

ports with improved efficiencies [16]. Identifying mislabeled or anomalous 

shipments through scrutiny of manifest data is one step in a multi-layer inspection 

process for containers arriving at ports described in [27.] Other relevant work on 

risk scoring and anomaly detection from manifest data is found in [5] and [13] 

2. Complete, Monotonic Boolean Functions 

The special assumptions Stroud and Saeger make in order to render computation 

more feasible are to limit consideration to so-called complete and monotonic 

Boolean functions. A Boolean function F  is monotonic if, given two strings 

1 2 1 2... , ...n nx x x y y y  with i ix y!  for all i, 1 2 1 2( ... ) ( ... )n nF x x x F y y y! . F is 

incomplete if it can be calculated by finding at most 1n !  attributes and knowing 

the value of the input string on those attributes. For small values of n, Stroud and 

Saeger [26] enumerate all complete, monotonic Boolean functions and then 

calculate the least expensive corresponding BDTs under assumptions about 

various costs associated with the trees. Their method is practical for n up to 4, but 

not for 5n = . The problem is exacerbated by the number of BDFs. For example, 

for 4n = , there are 114 complete, monotonic Boolean functions and 11,808 

distinct corresponding BDTs. By comparison, for unrestricted Boolean functions 

on four variables, there exist 1,079,779,602 BDTs! For 5n = , there are 6,894 

complete, monotonic Boolean functions and 263,515,920 corresponding BDTs. 

Stroud and Saeger [26] showed that for the unrestricted case, the corresponding 

number of BDTs for n = 5 is approximately 5 x 1018. 

3. Cost of a BDT 

Following Anand et al. [1] and Stroud and Saeger [26], we assume the cost of a 

binary decision tree is the total expected cost across potential outcomes. The 



 

 

overall cost comprises two components: (i) the expected cost of utilization of the 

tree and (ii) the expected cost of misclassification. The expected cost of utilization 

of a tree, Cutil, is computed by performing a summation over the cost of using each 

sensor in the tree times the probability that a container is inspected by that 

particular sensor. We compute the expected cost of misclassification for a tree by 

calculating the probabilities of false positive (PFP) and false negative (PFN) 

misclassifications by the tree and multiplying by their respective costs CFP and 

CFN. Thus, the total cost Ctot is given by  

 

Ctot = Cutil + CFP*PFP + CFN*PFN . 

 

Costs (i) and (ii) both depend on the distribution of the containers and the 

probabilities of misclassification of the individual sensors. For example, consider 

the decision tree !  in Fig. 1 with 3 sensors. The overall cost function to be 

optimized can be written as: 

 

0 a a 0|0 b a 0|0 b 1|0 c a 1|0 c

1 a a 0|1 b a 0|1 b 1|1 c a 1|1 c

0 a 0|0 b 1|0 c 1|0 a 1|0 c 1|0

1 a 0|1 b 0|1 a 0|1 b 1|1 c 0|1 a 1|1 c 0|1

( ) ( )
( )
( )
( )

FP

FN

f P C P C P P C P C
P C P C P P C P C
P P P P P P C
P P P P P P P P C

! = = = =

= = = =

= = = = =

= = = = = = =

= + + +

+ + + +

+ +

+ + +

 

Here, 0P and 1P  are the prior probabilities of occurrence of “good” (ok or 0) and 

“bad” (suspicious or 1) containers, respectively (so 0 1 1P P+ = ). For any sensor s, 

|s i jP = represents the conditional probability that the sensor returns i given that the 

container is in state j, { }, 0,1i j! . For real-valued attributes, Anand et al. [1] 

describe a Gaussian model, which, combined with a specific threshold, leads to 

the requisite conditional probabilities; we discuss this further below. sC is cost of 

utilization of sensor s, and FNC  and FPC  are the costs of a false negative and a 

false positive. (The notation here differs from that used by Anand et al. [1]) In the 

above expression, the first and second terms on the right hand side together give 

the cost of utilization of the tree !  while the third and fourth terms represent the 

costs of positive and negative misclassifications. For specific values of various 



 

 

costs and the parameters of the Gaussian model, please refer to Anand et al. [1] 

and Stroud and Saeger [26]. 

4. Sensor Thresholds 

Sensors make errors. For sensors that produce a real-valued reading (e.g., Gamma 

radiation sensors), a natural approach to modeling sensor classification errors 

involves a threshold. With every sensor s, we associate a hard threshold, sT . If the 

sensor reading for a container falls below sT , then the output of that particular 

sensor in the tree is 0; it is 1 otherwise. The variation of sensor thresholds 

obviously impacts the overall cost of the tree. While sensor characteristics are a 

function of design and environmental conditions, the thresholds can, at least in 

principle, be set by the decision maker. Therefore, mathematically, the optimum 

thresholds for a given tree !  can be defined as a vector of threshold values that 

minimizes the overall cost function ( )f !  for that tree. 

We model the design and environmental conditions by assuming that sensor 

values for good containers follow a particular Gaussian distribution and sensor 

values for bad containers follow a different Gaussian distribution. This model was 

described in detail by Anand et al. [1] and Stroud and Saeger [26] along with 

approaches to finding optimal thresholds, based on assumptions about the 

parameters underlying the Gaussians. In particular, Anand et al. [1] describes the 

outcomes of experiments in which individual sensor thresholds are incremented in 

fixed-size steps in an exhaustive search for optimal threshold values, and trees of 

minimum cost are identified. For example, for 4n = , Anand et al. [1] reported 

194,481 experiments leading to lowest cost trees, with the results being quite 

similar to those obtained in experiments by Stroud and Saeger [26]. 

Unfortunately, the methods do not scale and quickly become infeasible as the 

number of sensors increases. 

One of the aims of this paper is to calculate the optimum sensor thresholds for a 

tree more efficiently and avoid an exhaustive search over a large number of 

threshold values for every sensor. To accomplish this, we implemented various 

standard algorithms for nonlinear optimization. Numerical problems related to the 



 

 

calculation of the Hessian matrix ( )f !H  required for Newton’s method led us to 

explore modified Cholesky decomposition schemes such as those described in 

Fang and O’Leary [11]. For example, a naïve way to convert a non-positive 

definite matrix into a positive definite matrix is to decompose it to TLDL  form 

(where L is a lower triangular matrix and D is a diagonal matrix) and then make 

all the non-positive elements of D positive. This crude approximation may result 

in the failure of factorization of the new matrix or make it very different from the 

original matrix. Therefore, to address this issue more reasonably, we use a 

modified TLDL  factorization method from Gill et al. [14], which incorporates 

small error terms in both L and D at every step of factorization. Further, if the 

Hessian matrix ( )f !H  is ill-conditioned, we take small steps towards the 

minimum using the gradient descent method until it becomes well conditioned. In 

this way we try to combine the advantages of both gradient descent and Newton’s 

method. Algorithm 1 summarizes the final scheme for finding the optimum 

thresholds. 

Algorithm 1 A Combined Method for Optimum Threshold Computation 

1. Initialize Tstart as a vector of random threshold values 
2. T ← inf 
3. while |T – Tstart| < 0.1% of Tstart do 
4. T ← Tstart 
5. Compute ∂f 
6. Compute Hf(τ)  
7. if H f(τ) is not positive definite, then 
8. Make H f(τ) positive definite 
9. end if 
10. if H f(τ) is well-conditioned, then 
11. Tstart ← Tstart – [H f(τ)]-1∂f 
12. else 
13. Tstart ← Tstart – λ∂f 
14 end if 
15. end while 
16. Output Topt ← T 
 

We note that the objective function ( )f ! is expected to be multimodal with 

respect to the various sensor thresholds. We used random restarts to address this 

concern. 



 

 

5. Searching Through a Generalized Tree Space 

The previous section describes how we choose optimal sensor thresholds for a 

specific tree. We now discuss algorithms for searching tree space to find low-cost 

trees. First we fine-tune Stroud and Saeger’s original definition of completeness 

and monotonicity to better suit the application. 

5.1. Revisiting Completeness and Monotonicity 

As noted in Section 2, Stroud and Saeger [26] limit their analysis to complete, 

monotonic Boolean functions. However, as we shall illustrate below, incomplete 

and/or non-monotonic Booleans functions can in fact lead to useful trees (trees 

that represent viable inspection strategies). We propose here definitions of 

monotonicity and completeness for trees themselves rather than the Boolean 

functions whence the trees derive. We show that some incomplete and/or non-

monotonic Boolean functions can sometimes lead to complete and monotonic 

trees. We shall study a class of trees called CM trees, showing that it is much 

larger than the class of BDTs corresponding to complete, monotone Boolean 

functions, yet allows for efficient search algorithms that lead to very low cost 

trees consistently. By no means do we assert that there aren’t other useful trees 

than CM trees. Consider, for example, the Boolean function F and its 

corresponding BDT’s shown in Fig. 2. The Boolean function is incomplete since 

the function does not depend on the attribute a. However, trees (i) and (ii), while 

representing the incomplete function faithfully, are themselves potentially viable 

trees with no redundancies present. Trees (iii) and (iv) on the other hand, are 

problematic insofar as they each contain identical subtrees. Sensor a is redundant 

in tree (iii) and tree (iv). Such considerations lead to the following definition: 

Complete Decision Trees. A binary decision tree will be called complete if every 

sensor type (attribute) occurs at least once in the tree and, at any non-leaf node in 

the tree, its left and right sub-trees are not identical. 

Figure 2 here. 

 Fig. 2. A Boolean function incomplete in sensor a, and the corresponding decision trees obtained 

from it. 



 

 

Next consider the Boolean function and BDT’s in Fig. 3. The Boolean function is 

not monotonic – when 1=b  and 0c = , 0a =  yields an output of 1 whereas 1a =  

yields an output of 0. Except for tree (i), the corresponding trees also exhibit this 

non-monotonicity because there is a right arc from a to 0 or a left arc from a to 1 

or both. However, tree (i) has no such problems and might well be a useful tree. 

Thus, we have the following definition: 

Monotonic Decision Trees. A binary decision tree will be called monotonic if all 

leaf nodes emanating from a left branch are labeled 0 and all leaf nodes emanating 

from a right branch are labeled 1. 

Figure 3 here. 

Fig. 3. A Boolean function non-monotonic in sensor a, and the corresponding decision trees 

obtained from the function. 

It is straightforward to show that: 

- all BDT’s corresponding to complete Boolean functions are complete, 

- all BDT’s corresponding to monotonic Boolean functions are monotonic, and 

- the number of complete and monotonic trees increases very rapidly with the 

increasing number of sensors. There exist 114 complete, monotonic binary 

trees with 3 sensors and 66,600 with 4 sensors. 

5.2. Tree Neighborhood and Tree Space 

As shown in Stroud and Saeger [26], the number of binary decision trees 

corresponding to complete, monotonic Boolean functions increases exponentially 

with the addition of each new sensor. Expanding the space of trees in which to 

search for a cost-minimizing tree to the space of complete, monotonic trees, CM 

tree space, actually increases the number of possible trees but can decrease the 

computational challenge. We propose here a heuristic search strategy that builds 

on notions of neighborhoods in CM tree space. 

Chipman et al. [7] and Miglio and Soffritti [23] provide a comparison of various 

definitions of neighborhood and proximity between trees. Chipman et al. [7] 



 

 

describe methods to traverse the tree space and in what follows we develop a 

similar approach. We define neighbors in CM tree space via the following four 

kinds of operations on a tree. (Fig. 4 gives an example of neighboring trees 

obtained from these operations for a particular tree.) 

Split: Pick a leaf node, replace it with a sensor that is not already present in that 

branch, and then insert arcs from that sensor to 0 and to 1. 

Swap: Pick a non-leaf node in the tree and swap it with its parent node such that 

the new tree is still monotonic and complete and no sensor occurs more than once 

in any branch. 

Merge: Pick a parent node of two leaf nodes and make it a leaf node by collapsing 

the two leaf nodes below it, or pick a parent node with one leaf node child, 

collapse both of them and shift the sub-tree up in the tree by one level.  The nodes 

on which both these operations are performed are selected in such a fashion that 

the resulting trees are complete and monotonic. 

Replace: Pick a node with a sensor occurring more than once in the tree and 

replace it with any other sensor such that no sensor occurs more than once in any 

branch. 

Figure 4 here. 

Fig. 4.  An example to illustrate the notion of neighborhood. 

It is easy to show that these moves take a tree in CM tree space into another tree 

in CM tree space. Appendix II presents a proof that these moves generate an 

irreducible process in CM tree space. That is, for any pair of trees 1!  and 2!  in 

CM tree space, there exists a finite sequence of operations selected from the four 

operations above that start at 1!  and end at 2!  In fact, the Replace operation is not 

needed for this proof but is useful in the search algorithm. 

5.3. Tree Space Traversal 



 

 

5.3.1 The Stochastic Search Method 

We have explored alternate ways to exploit these operations to search for a tree 

with minimum cost in the entire CM tree space. Our initial approach was a simple 

greedy search: randomly start at any arbitrary tree in the space, find its 

neighboring trees using the above operations, move to the neighbor with the 

lowest cost, and then iterate. As expected, however, the cost function is 

multimodal and the greedy strategy gets stuck at local minima. For example, there 

are 9 modes in the entire CM space of 114 trees for 3 sensors and 193 modes in 

the space of 66,600 trees for 4 sensors. To address the problem of getting stuck in 

a local minimum, we developed a stochastic search algorithm coupled with 

simulated annealing. The algorithm is stochastic insofar as it selects moves 

according to a probability distribution over neighboring trees. The simulated 

annealing aspect involves a so-called “temperature” t, initiated to one and lowered 

in discrete unequal steps after every h hops until we reach a minimum. 

Specifically, if the algorithm is at a particular tree, ! , then the probability of 

moving to a particular neighbor ! "  is given by: 

( ) ( )( )1 tP c f f!! ! !" "=  

where ( )f !  and ( )f ! "  are the costs of trees !  and! "  and c is the normalization 

constant. Therefore, as the temperature is decreased, the probability of moving to 

the least expensive tree in the neighborhood increases. Algorithm 2 summarizes 

the stochastic search algorithm. 

Algorithm 2 Stochastic Search Method using Simulated Annealing 

1. for p = 1 to numberOfStartPoints do 
2.  t ← 1 
3.  numberOfHops ← 0 
4. currentTree ← random(allTrees) 
5. do 
6.  Compute ( )f !   
7.  neighborTrees ← findNeighborTrees(currentTree) 
8. for all ! "# neighborTrees 
9.  Compute ( )f ! "  
10.  Compute P!! "  
11. end for 
12.  currentTree ← random(neighborTrees, !! "P ) 



 

 

13. numberOfHops ← numberOfHops + 1 
14  if numberOfHops = h then 
15.   t ← t – ∆t 
16.   numberOfHops ← 0 
17.  end if 
18. while ( ) ( )f f! ! ">  ! ! "# neighborTrees  
19. end for 
20. Output lowest cost tree over all p 
 

5.3.2 Genetic Algorithms based Search Method 

We have also used a genetic algorithm (GA) based approach to search CM tree 

space. The underlying concept of this approach is to obtain a population of 

“better” trees from an existing population of “good” trees by performing three 

basic genetic operations on them: Selection, Crossover, and Mutation. With 

reference to our application, “better” decision trees correspond to lower cost 

decision trees than the ones in the current population. As we keep on generating 

newer generations of “better” trees (or currently best trees), the gene pool, 

genePool, keeps on increasing in size. We describe each of the genetic operations 

in detail below. The use of GAs to explore tree spaces was also considered in 

Papagelis and Kalles [24], Bandar et al. [2] and Fu [12]. Also, Im et al. [18] and 

Li et al. [21] describe applications where genetic and evolutionary algorithms 

were used to solve highly multi-modal problems. 

1. Selection: We select an initial population of trees, bestPop, randomly out of the 

CM tree space to form a gene pool. We always maintain a population of size N of 

the lowest cost trees out of the whole population for the crossover and mutation 

operations. 

2. Crossover: The crossover operations are performed between every pair of trees 

in bestPop. For each crossover operation between two trees i!  and j! , we 

randomly select nodes 1s  and 1s!  in i!  and j!  respectively and replace the subtree 

1is
!  (rooted at 1s  in i! ) with 

1js
! "  (rooted at 1s!  in j! ). A typical crossover operation 

is shown using the example in Fig. 5: 

Figure 5 here. 



 

 

Fig. 5. An example of a crossover between two trees. 

For every pair of trees, such random crossover operations are performed 

repeatedly until we get a specified number, Nco, of distinct trees or have exhausted 

all possible crossover operations. All the trees thus obtained are then put in the 

gene pool. However, we impose some restrictions on the random selection of the 

nodes to make sure that the resultant tree obtained after the crossover operation 

also lies in the CM tree space. For example: if 
1is

! is a right subtree, then 
1js

! "  

cannot be a 0 leaf. Similarly, if 
1is

!  is a left subtree, then 
1js

! "  cannot be a 1 leaf. 

These restrictions ensure that the resulting tree would also be a monotonic tree. To 

make sure that the resulting tree is complete, we impose two restrictions: the 

sibling subtree of 
1is

! , which is denoted by 
2is

! , should not be exactly identical to 

1js
! "  and 

1js
! "  should have all the sensors which the tree i!  would lack, once 

1is
!  is 

removed from it. In other words, the tree resulting from the crossover operation 

should have all the sensors present in it. 

3. Mutation: The mutation operations are performed after every gmut generations 

of the algorithm. We do two types of mutations. The first type consists of 

generating all the neighboring trees of the current best population of trees using 

the four operations used in the stochastic search method and putting these trees 

into the gene pool. The second type of mutation operation consists of replacing a 

fraction, 1 M  ( 1M > ) of N, the total number of trees in bestPop, with random 

samples from the CM tree space which are not in the gene pool, therefore 

increasing the probability of generating trees that are quite different from the 

current gene pool. Algorithm 3 summarizes the genetic algorithm based search 

algorithm. 

Algorithm 3 Genetic Algorithms based Search Method 

1. Initialize bestPop ← generateTreesRandomly(N) 
2. Initialize genePool ← bestPop 
3. Initialize lastMutation ← 0 
4. for p = 1 to totalNumberOfGenerations do 
5.  for all τi, τj !  bestPop, i ≠ j 
6.   GATrees ← generateGATreesRandomly(τi, τj, Nco) 
7.  genePool ← genePool !GATrees 
8. end for 



 

 

9. bestPop ← selectBestTrees(genePool, N) 
10. lastMutation ← lastMutation + 1 
11. if lastMutation = gmut then 
12.  for all τ !  bestPop do 
13.   neighborTrees ← findNeighborTrees(τ) 
14.  genePool ← genePool ! neighborTrees 
15.  end for 
16.  bestPop ← selectBestTrees(genePool, N) 
17. bestPop ← selectBestTrees(bestPop, N – N/M) 
18.  bestPop ← bestPop! generateTreesRandomly(N/M) 
19.  genePool ← genePool ! bestPop 
20. lastMutation ← 0 
21. end if 
22. end for 
23. Output bestPop 

 

6. Experimental Results 

6.1 Optimizing Thresholds 

Our first set of experiments focused on evaluating the optimization algorithm for 

the threshold setting that we proposed in Section 4. In these experiments, for any 

given tree, starting with some vector of sensor thresholds, we tried to reach a 

minimum cost by adjusting thresholds in as few steps as possible. For comparison 

purposes, we did an exhaustive search for optimum thresholds with a fixed step 

size in a broad range for 3 and 4 sensors. Also, in all these experiments, the 

various sensor parameter values were kept the same as in the threshold variation 

experiments conducted in Anand et al. [1]. Both the misclassification costs and 

the prior probability of occurrence of a “bad” container were fixed as the 

respective averages of their minimum and maximum values used by Anand et al. 

[1]. To maintain consistency throughout our experiments, we did this for both the 

method of exhaustive search over thresholds with fixed step size and the 

optimization method described in Algorithm 1. With our new methods we were 

able reach a minimum every time with a modest number of iterations. For 

example, for 3 sensors, it took an average of 0.032 seconds, as opposed to 1.34 

seconds using exhaustive search over thresholds with fixed step size, to converge 

to the minimum for all 114 trees using Matlab on an Intel 1.66 GHz dual core 

machine with 1GB system memory. Similarly, for 4 sensors, it took an average of 

0.195 seconds, as opposed to 317.28 seconds using exhaustive search, to converge 



 

 

to the minimum for all 66,600 trees. Fig. 6 shows the plots for minimum costs for 

all 114 trees for 3 sensors using both the methods. In each case the minimum costs 

obtained using the optimization technique are equal to or less than those obtained 

using the exhaustive search. Also, many times the minimum obtained using the 

optimization method was considerably less than the one from the exhaustive 

search method. 

Figure 6 here. 

Fig. 6.  Minimum costs for all 114 trees for 3 sensors. To avoid confusion, dashed vertical lines 

join markers for the same tree. 

6.2 Searching CM Tree Space: The Stochastic Search Method 

Our second set of experiments considered the stochastic tree search algorithm 

proposed in Section 5.3.1. These experiments were conducted on the CM tree 

space of 66,600 trees for 4n = . Each experiment was started 10 times from some 

randomly chosen CM tree, moving stochastically in the neighborhood of the 

current tree, until a locally minimum cost tree was found. The exponent 1/t was 

initialized to 1 and was incremented by 1 after every 10 hops. The outcome of the 

experiment was the tree with minimum cost from all the trees visited in the 10 

runs. The average number of trees visited per experiment (averaged over 100 

replications of the experiment). Table 1 summarizes the results of these 

experiments. Each row in the table corresponds to the tree number that was 

obtained as the least cost tree along with its cost and frequency (out of 100). The 

last column in the table gives the rank of each of these tree minima among all the 

local minima in the entire tree space. For example, the algorithm was able to find 

the true best tree 42 times, true second best tree 15 times and so on. Thus, the 

algorithm was able to find one of the least cost trees most of the time. However, 

these trees are different from the lowest cost trees obtained in Anand et al. [1] and 

are in fact less costly than those trees. Another important observation is that 

although each of these four trees differ in structure, they still correspond to the 

same Boolean function, ( ) 0001010101111111F =abcd , where the ith digit gives 

( )F abcd  for the ith binary string abcd if strings are arranged in lexicographically 



 

 

increasing order. Also, interestingly, this Boolean function is both complete and 

monotonic. 

Table 1 here. 

6.3 Searching CM Tree Space: Genetic Algorithm based Search 
Method 

We performed similar experiments using the genetic algorithm described in 

Section 5.3.2. For 4n = , we started with a random population of 20 trees. At each 

crossover step we crossed every tree in this population with every other tree. We 

set the value of 1coN =  so that we get one new tree for each crossover operation. 

Also, with 3mutg = , we performed the mutation step after every three generations. 

During every mutation step, we replaced half of the population of best trees 

( 2M = ) with random samples from the tree space. We performed a set of 100 

such experiments each consisting of a total of 27 generations (including the ones 

obtained after mutations). We observed that for each such experiment, we had to 

evaluate on average only 1439.6 trees for their costs. Table 2 summarizes the 

results of these experiments. It is clear from the results that every time we were 

able to find one of the cheapest trees in the CM tree space. Also, we observed that 

as opposed to the stochastic search technique, where the algorithm returned a 

single best tree in most of the cases, the Genetic Algorithm based search 

algorithm returned a whole population of trees, most of which belonged to the 

cheapest 50 trees. Fig. 7(a) shows the histogram of the actual costs of the trees 

found for 4n = . Fig. 7(b) shows the zoomed-in version of the left-tail of the same 

histogram with the costs of the 20 cheapest trees found overlain in dotted vertical 

lines. 

Figure 7 here. 

Fig. 7. (a) Histogram of costs of all 66,600 trees for n = 4. (b). Left tail of the histogram. The 

dotted lines show the costs of 20 best trees found using the genetic algorithm based search method. 

Table 2 here. 



 

 

6.4 Going beyond 4 Sensors 

We performed experiments for up to 10n = sensors. Here we present the results 

for 5n =  and 10n = . The sensor parameters for the fifth sensor were assumed to 

be the average of those of first four sensors. The last five sensors were assumed to 

be identical to the first five sensors; sensor f has the same parameters as sensor a, 

sensor g has same parameters as sensor b and so on. However, all ten sensors can 

be set to different threshold values. For these larger-scale experiments we used the 

GA approach with multiple random restarts. In addition, rather than fixing the 

number of generations in advance, we ran the algorithms until the best population 

remained constant over several subsequent generations. We then performed GA 

on all the optimum trees obtained from each such start until the cost of the best 

trees stabilized again. For 5n = , with 100 runs, the GA converged on a small 

number of trees with similar costs. Please see Appendix III for actual structures of 

these trees and their respective cost. For 10n = , random restarts always ended up 

with different populations of best trees. However, the cost of these trees were 

close and also, the trees were similar at the top few nodes. Please see Appendix III 

for the actual structures of these trees and their respective costs. Also notice that 

even though for each n, the costs of the cheapest trees obtained are very close to 

each other, the trees themselves are not close according to the neighborhood 

measure adopted above. 

7. Discussion 

As we have already noted, with binary decision trees, exhaustive search methods, 

both for finding the optimum thresholds for a given tree and for finding a 

minimum cost tree among all possible trees, become practically infeasible beyond 

a very small number of sensors. The various characterizations and algorithmic 

techniques discussed in this paper provide faster and better methods to explore the 

search space and arrive at a minimum efficiently. We were able to obtain results 

for 10 sensors using the stochastic search method described above; results for 

even larger numbers of sensors are possible. 
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APPENDIX I. Terminology 

A rooted binary tree is a connected, directed, acyclic graph denoted by a pair 

( ),V E  where V is a finite set of nodes and ( ){ }, |E v w V V v w! " # $ is a set of 

edges, (i.e. a set of ordered pairs of distinct nodes) such that there are exactly two 

edges going out of any internal node and exactly one edge coming into it. For any 

( ),v w E! , we call w  the child node of v  and v  the parent node of w .  Nodes 

sharing the same parent are called sibling nodes. v  is called a descendent of u  

and u  an ancestor of v  if and only if the unique path from the root to v  passes 

through u . The unique node in a tree with no parent node is called the root node 

while the nodes with no descendents are called leaf nodes. The internal nodes 

together with the root node are called non-leaf nodes. The subtree at a node v  is 

the binary tree with its root at v . If u and w  are left and right children of a node 

v , then the subtrees formed at u and w  are called the left and right subtrees of v  

respectively. The left and right subtrees of any node are called sibling subtrees of 

each other. A binary decision tree (BDT) !  is a rooted binary tree where the non-

leaf nodes correspond to specific sensors and the leaf nodes represent the final 

decision outputs. 

Merging a node v  in a tree corresponds to performing a Merge operation on that 

node while subtree removal at a node v  corresponds to replacing the subtree at v  

in the tree with a leaf node. A node v  in !  is at level l  if exactly l edges connect 

v  and the root node of ! . Alternatively, v  is said to be at level l of ! . A levelset 

( ),L l!  of a tree !  is the set of nodes in !  at level l. If lmax is the maximal level of 

! , then the level 1maxl !  is called the maximal non-leaf level of ! . 

Let CMn  represent the space of complete and monotonic binary decision trees in 

n sensors. We consider neighborhood operations chosen from the set {Split, Swap, 

Merge, Replace} (though it turns out that we do not need Replace for the proof of 

the main theorem).  Note that CMn!" # , o( ) CMn! "  for any operation o . Let 



 

 

1 2o ,o , ,oz! = …  represent a finite sequence of neighborhood operations where 

( )( )( )( )1 1( )=o o oz z! !"# …  and z is a positive integer. 

We define the following binary relation on a pair of trees , CMn
i j! ! " : 

i j! ! " #!  a finite sequence of neighborhood operations 1 2o ,o , ,oz! = …  

such that  ( )=Oj i! ! , or i j! != .  

Definition 1. (Simple tree) 

We define a simple tree CMn! "  as a complete and monotonic binary decision 

tree such that the levelsets ( ),L i!  of ! , 0, , 1i n= !… , each contain exactly one 

non-leaf node. The unique path from the root node (i.e., level 0) to level 1n !  

containing all the non-leaf nodes is called the essential path. Fig. 8 shows a few 

examples of simple trees for 4n = . 

Figure 8 here. 

Fig. 8. A few examples of simple trees for n = 4. 

Definition 2. (Partially simple tree) 

A partially simple tree to level l, l! , is defined as a complete and monotonic 

binary decision tree where the levelsets ( ),lL i!  of l! , 0, ,i l= … , each contain 

exactly one non-leaf node. Fig. 9 shows some examples of partially simple trees 

for 7n = . 

Figure 9 here. 

Fig. 9. A few examples of partially simple trees. The first tree is partially simple 

to level 0, the second tree to level 2 and the third tree to level 3. 



 

 

APPENDIX II. Proof of CM Tree Space Irreducibility 
for n > 2 

To establish irreducibility, i.e., that every tree in CMn is obtainable from any other 

tree in CMn by a sequence of neighborhood operations, we will first prove three 

lemmas that will form the backbone of the main proof. First we will show that for 

every CMn! "  there exists a simple tree CMn! "  such that ! "! . Next we will 

show that for every pair of simple trees, , CMn! ! "# , ! ! "! . Finally we will 

show that for every CMn! " there exists a simple tree, CMn! " , such that 

! "! . 

Lemma 1.  

For every tree CMn! "  there always exists a simple tree CMn! "  such that 

! "!  using only the neighborhood operations Split and Merge. 

Proof. We will first prove the following assertion: 

Given any partially simple tree, CMn
l! " , there always exists a sequence of 

neighborhood operations !  such that ( ) 1l l! ! +" = , where 1l! +  is a partially 

simple tree to level 1l + . The lemma will follow from this assertion since we can 

then define n such sequences of operations 1 2, , , n! ! !… , such that 

( )( )( )( )1 1n n !"# # #…  is a simple tree. Otherwise, we consider a sequence of 

operations !  which we will divide into two sub-sequences 1!  and 2!  such that 

( ) ( )( )2 1l l! !" = " " . 1!  will comprise zero or more Split operations and 2!  

will comprise zero or more Merge operations. Let lv  be the sole non-leaf node at 

level l in l! . Therefore, both the left and right child nodes of lv  are non-leaf. We 

will proceed by retaining one of the subtrees of lv  and removing the other via a 

sequence of Merge operations. The selection of which subtree to remove is based 

on one of the following rules: 



 

 

1. If only one of the two subtrees of lv  is complete in n l!  sensors, then we 

choose to remove the incomplete one. Fig. 10 tree (1) shows an example where 

we remove the right subtree of sensor c rather than the left one. 

2. If both the subtrees are complete in n l!  sensors, we choose to remove the one 

that has fewer nodes in it. Fig. 10 tree (2) shows an example where we remove the 

right subtree of sensor b rather than the left one. 

3. If both the subtrees are incomplete in n l!  sensor types, then we choose to 

retain the subtree that has larger number of different sensor types in it. Fig. 10 tree 

(3) shows an example where we remove the left subtree of sensor d rather than the 

right one. 

4. If both the subtrees are incomplete in n l!  sensor types and have an equal 

number of different sensor types, then we choose to retain the one that has fewer 

nodes in it. Fig. 10 tree (4) shows an example where we remove the left subtree of 

sensor d rather than the right one. 

5. If both the subtrees are incomplete in n l!  sensor types and have equal number 

of different sensor types and equal number of nodes, we can merge any one of the 

two.  

Figure 10 here. 

Fig. 10. A few examples of trees to illustrate the selection criteria for subtree removal. In tree (1) 

we chose to remove the right subtree of sensor c, in tree (2), the right subtree of sensor b, in tree 

(3), the left subtree of sensor d and in tree (4), the left subtree of sensor d. 

Notice that in cases 1 and 2, 1 !" = . In cases 3, 4 and 5, 1!  is defined as the 

sequence of Split operations performed iteratively, wherein each of the Split 

operations is performed at the maximal level node of the subtree that we decide to 

retain (choosing arbitrarily when there is more than one such node) until that 

subtree is complete in 1n l! !  sensors not present at levels 0 through l. Let 

( )1 1
l l! != " . Note that both l!  and 1

l!  are simple up to level l. Construction of 

2!  is however non-trivial since we cannot merge a node that would lead to a tree 

that is incomplete in a different node. For example, Fig. 11 shows an example of a 



 

 

tree where merger of the node d from the leftmost branch of the tree results in the 

tree becoming incomplete in a higher level node b (circled). Therefore, we make 

use of an algorithm called “smartMerge” to construct 2! . smartMerge guarantees 

that there always exists a node in the subtree that we want to remove, which can 

be removed (through a Merge operation) without making the resultant tree 

incomplete at any node. 

Figure 11 here. 

Fig. 11. An example where the merger of node d from the leftmost branch of the tree will result in 

a tree incomplete in node b (circled). 

smartMerge Algorithm 

Input: A partially simple tree 1
l! . 

Output: A partially simple tree 1l! + . 

Let lv  be the sole non-leaf node at level l in 1
l! . Let 1sub!  and 2sub!  be the two 

subtrees of lv  in 1
l! . Further, we assume without loss of generality that we want 

to retain 2sub!  and remove 1sub! . Let the maximal non-leaf level of 1sub!  be m (as 

measured from the root node in 1sub! ). We first choose the non-leaf node 1mv  at 

level m of 1sub!  (choosing arbitrarily when there is more than one such node) as 

the candidate node to merge. Note that if we merge 1mv , at most one of 1m !  

ancestor nodes of 1mv  with level ,  0, , 2i i m= !…  (again, 0i =  for the root node 

of 1sub! ) can render the resultant tree incomplete. In other words, there can be at 

most one of 1m !  nodes in the resultant tree, whose left subtree would become 

exactly identical to the right subtree after we merge 1mv , thus resulting in an 

incomplete tree. Since we always insert an appropriate leaf (0 if the node is a left 

node, 1 otherwise) after merging 1mv , the tree cannot become incomplete at the 

parent node of the new leaf.  If a subtree (in 1sub! )  at a level r, { }0, , 2r m! "… , 

denoted by 1r!  and containing 1mv  becomes identical to its sibling subtree 2r!  

after the merger of 1mv , then we cannot merge 1mv . Let 2mv  be the sibling node of 

1mv  (obviously it would also be at level m). Anytime such a situation occurs, the 



 

 

next candidate node for removal is selected based on one of the following two 

possible configurations. 

1. 2mv  is a non-leaf node: In this case we propose to merge the exact counterpart 

of 2mv , denoted by 2mv! , in 2r! . Again, we need to check at most 1m !  nodes in 

the tree for completeness, but we know for sure that at least 1r!  cannot be 

identical to 2r! . Therefore, there are just 2m !  nodes that we need to check for 

completeness for the proposed merger of 2mv! . For example, in Fig. 12 tree (1), 

0l =  and therefore sensor a represents lv . Let the left subtree of a be 1sub!  and the 

right subtree be 2sub! . Further let sensor f (marked *) represent 1mv , where 4m = . 

First we observe that if we remove sensor f, the tree cannot become incomplete in 

its parent node (sensor d). In fact, it would become incomplete in sensor b 

(circled). Therefore, as discussed above, we propose to remove sensor g present in 

the right subtree of sensor b (circled). This step of getting the new candidate node 

for removal, 2mv!  from the previous one 1mv  is shown as a transition from tree (1) 

to tree (2) in Fig. 12. 

2. 2mv  is a leaf node: Denote by 1mu !  the parent node of 1mv . We propose to merge 

its counterpart 1mu !"  in 2r! . In this case, again we need to check 2m !  nodes for 

completeness for the proposed merger of 1mu !" . For example, in Fig. 12 tree (8), 

again 0l =  and sensor g (marked *) represents 1mv , while its parent node (sensor 

d) represents 1mu ! , where 4m = . It is clear that if we remove sensor g, the tree 

would become incomplete in sensor b (circled). Also, since the sibling node of 

sensor g is a leaf node, therefore, we propose to remove the sensor d in the right 

subtree of sensor b (circled). This step of getting the new candidate node for 

removal 1mu !"  from the previous one 1mv  is shown as a transition from tree (8) to 

tree (9). 

Note that as this process continues, both the children of a candidate node might be 

non-leaf. For example, let us assume that 1pv  (m g p m! " " ) is the proposed 

candidate node for removal after performing g candidate generation steps 



 

 

described above. At this point, there will be at most 1m g! !  nodes to check for 

completeness for the proposed merger of 1pv . Further, assume that the merger of 

1pv  results in the tree becoming incomplete at a certain higher node at level s. 

Therefore, if 2 pv  is the sibling node of 1pv , we select its counterpart node 2 pv!  

(with 2m g! !  completeness constraints) in 2s!  as the next candidate node for 

merger. Let us assume that both the children of 2 pv!  are non-leaf nodes. In this 

case we try to merge a non-leaf node 2qv!  at the maximal non-leaf level of the 

subtree rooted at 2 pv! . If the level of that node in 1sub!  is q ( p q m< ! ), then there 

are at most 2 ( )m g q p! ! + !  nodes to check for completeness for the proposed 

merger of that node. Therefore, even in the worst case, when p m g= !  and 

q m= , there are at most 2 ( ) 2 ( ( )) 2m g q p m g m m g m! ! + ! = ! ! + ! ! = !  

nodes to check for completeness.  Thus we reduce by one the number of nodes 

that need to be checked. Therefore, by induction, we will reach to a node which 

requires 0m m! =  nodes to be checked for completeness, and hence can be 

merged using the Merge operation. Then we repeat this procedure again to one of 

the non-leaf nodes at the maximal non-leaf level of the subtree that we want to 

merge, until 1l! +  is obtained. Algorithm 4 summarizes the smartMerge 

algorithm. Fig. 12, trees (1) through (16), show an example of obtaining a 

partially simple tree to level 1, 1! , from an arbitrary tree in CM7 (which is also 

trivially a partially simple tree to level 0). Further, trees (16) through (23) show 

how we can reach from the partially simple tree 1! , to a simple tree just by 

repeated use of the smartMerge algorithm. 

 

Algorithm 4  smartMerge Algorithm 

0. Input: A partially simple tree 1
l!  

1. Initialize v1m ← a non-leaf node at the maximal non-leaf level of τsub1 
2. while τsub1 is not a leaf node, do 
3.  flag_delete ← TRUE 
4. for r = 0 to m -2 level ancestors of v1m, do 
5.  if τr1 = τr2, then 
6. if  v´2m  exists, then 
7. m  ← q  
8. v1m ← v´2q 



 

 

9. else 
10. m ← m – 1 
11. v1m ← u´m-1 
12. end if 
13. flag_delete ← FALSE 
14. break 
15. end if 
16. end for 
17. if  flag_delete = TRUE 
18. merge v1m 
19. v1m ← a non-leaf node at the maximal non-leaf level of τsub1 
20. end if 
21. end while 
22. Output partially simple tree 1l! +  
 

Thus we have shown that for any partially simple tree, l! , there exists a sequence 

of neighborhood operations (specifically, a series of zero or more Split operations 

followed by a sequence of zero or more Merge operations) that lead to a partially 

simple tree 1l! +  (i.e. a tree that is simple further down in the tree). Since with n 

sensors, 1n! "  is a simple tree, and since every tree is partially simple to level 0, 

we have thus established the existence of a sequence of neighborhood operations 

that starts with an arbitrary tree in CMn  and leads to a simple tree. This completes 

the proof of Lemma 1. 

Lemma 2. 

For every pair of simple trees , CMn! ! "# , ! ! "!  using only the neighborhood 

operations Split, Merge and Swap. 

Proof: We will prove that any simple tree ! "  in CMn  can be reached from any 

other simple tree !  in CMn  using the four operations, repeatedly. Let P and P!  

be the essential paths of simple trees !  and ! "  respectively, where: 

11 2
0 1 1

n
n

dd dP v v v!
!= ""# ""# """#……  

11 2
0 1 1

n
n

dd dP v v v!
!

"" "" " " "= ##$ ##$ ###$……  



 

 

where 0 1 1, ,..., nv v v !  are the non-leaf nodes at level 0,1, , 1n !…  in the essential 

path of !  and 0 1 1, ,..., nv v v !" " "  are the non-leaf nodes at level 0,1, , 1n !…  in the 

essential path of ! " . Also, 1 1 2 1{ , , , }nD d d d != …  and 2 1 2 1{ , , , }nD d d d !" " "= …  are 

direction (n-1)-tuples such that , { , },  1, 2, , 1i id d Left Right i n!" = #… . We use id  

to denote the direction complementary to di, that is, iffi id Left d Right= =  and 

vice-versa. Also, we say that 1 2D D=  iff ,  1, 2, , 1i id d i n!= = "… . Lastly, by 

“adding iv  towards d  at jv ”, we mean inserting iv  as a child node of jv  (using 

the Split operation) where iv  is the left child when d Left=  and the right child 

when d Right= . 

In order to go from !  to ! " , we first modify !  so that 1 2D D= . Then ! "  can be 

obtained by one or more Swap operations. Let k be an integer such that 1 k n! <  

such that 
if 1
if

i i

i i

d d i k
d d i k

!= " <# $
% &!' =( )

. If 1k n= ! , then 1D  differs from 2D  only in 

1nd ! . In this case we temporarily add 1nv !  towards 1d  at 0v . This can be done with 

a Split operation since in a simple tree, there is always a leaf node at each level, 

and therefore one at level 1. We then merge 1nv !  from P , add 1nv !  towards 1nd !  at 

2nv !  (i.e., again using the Split operation) and finally merge 1nv ! from 1d  at 0v . If 

1k n< ! , we insert 1nv !  towards kd !  at 1kv !  (because k kd d != ) (this is the Split 

operation) and merge 1nv !  from P . We then add 2nv !  at 1nv !  towards 1kd +!  and 

merge 2nv !  from P . We repeat this procedure for all 1k i n! < "  until 1 2D D= . 

After that we rearrange the nodes in the resultant tree using repeated Swap 

operations to obtain ! " . For example, in Fig. 12 let trees (23) and (42) be !  and 

! "  respectively in CM7. Since 1 1d d != , 2 2d d !=  and 3 3d d !" , therefore 3k = . As 

discussed above, in tree (24), we add sensor e towards the right of sensor c ( 2v ) 

and in tree (25), we merge sensor e ( 6v ) from the left of sensor f ( 5v ). We then 

add sensor f towards the left of sensor e in tree (26) and merge sensor f from left 

of sensor g ( 4v ) in tree (27). By proceeding in a similar fashion we can reach from 

tree (27) to tree (31). Thereafter, by doing repeated Swap operations, we can reach 



 

 

from tree (31) to tree (42). In this way, we prove that any simple tree can be 

reached from any other simple tree, using neighborhood operations repeatedly in 

CMn . This completes the proof of Lemma 2. 

Lemma 3. 

For any arbitrary tree CMn! "# there exists a simple tree, CMn! "# , such that 

! "# #!  using only the neighborhood operations Split and Merge. 

Proof: This lemma follows from the fact that the entire process of getting from an 

arbitrary tree to a simple tree is exactly reversible. For example, any Split 

operation can be reversed using a Merge operation and since we only merge nodes 

with both children as leaves, the converse is also true. Thus, we see that we can 

get from ! "  to ! "  using the steps to reach ! "  from ! "  in the exact reverse order. 

Fig. 12, trees (42) through (55), provide an example of reaching to an arbitrary 

tree from a simple tree. Notice that all the steps in this sequence are reversible. 

This completes the proof of Lemma 3. 

Theorem 1. 

In the space of complete and monotonic trees, every tree is reachable from every 

other tree by a sequence of neighborhood operations from the set {Merge, Swap, 

Split}. 

Proof: Lemmas 1, 2, and 3 give the result. 

Figure 12a here. 

Figure 12b here. 

Figure 12. An example showing that any arbitrary tree in τ6 can be reached from any other 

arbitrary tree using the four neighborhood operations repetitively. The node marked * in every tree 

is subject to a neighborhood operation while the nodes circled show a possible conflict with 

completeness constraint. 



 

 

APPENDIX III. Tree Structures 

1. 4n =  

Figure 13 here. 

Figure 13. Some of the best trees obtained using the genetic algorithm based search method. The 

cost of each of the first three trees is very close to 59.3364 and that of the last one is 59.4150 . 

2. 5n =  

Figure 14 here. 

Figure 14. Best trees obtained over 100 runs. The cost of each of these trees is 41.4668. 

3. 10n =  

Figure 15a here. 

Figure 15b here. 

Figure 15. Best trees obtained for four runs. Their cost is 8.6508, 8.5499, 8.7236 and 8.6189 

respectively. 


