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We consider the problem of finding an optimal schedule for jobs on a single machine when there are penalties for both tardy and
early arrivals. We point out that if attention is paid to how these penalties are measured, then a change of scale of measurement
might lead to the anomalous situation where a schedule is optimal if these parameters are measured in one way, but not if they are
measured in a different way that seems equally acceptable. In particular, we note that if the penalties measure utilities or disutilities,
or loss of goodwill or customer satisfaction, then these kinds of anomalies can occur, for instance if we change both unit and zero
point in scales measuring these penalties. We investigate situations where problems of these sorts arise for four specific penalty
functions under a variety of different assumptions. The results of the paper have implications far beyond the specific scheduling
problems we consider, and suggest that considerations of scale of measurement should enter into analysis of conclusions of
optimality both in scheduling problems and throughout combinatorial optimization.

Many practical problems involve the search for an
optimal schedule. We consider the problem of

scheduling n jobs on a single machine in which each job
has a specified due date or completion time and a penalty
is applied for a completion time different from the desired
one. In many practical problems, a penalty is applied only
for tardy completions; while more generally, a penalty is
applied to both early and tardy completions, perhaps in a
different way. The interest in scheduling problems where
penalties are applied to early arrivals as well as late arriv-
als is closely tied to the concept of "just-in-time" produc-
tion, the goal being to have "the right amount of materials
of the right quality at the right time in the right place to
produce the right quantity of items demanded by the next
step of the production" (Cheng 1990). Because penalties
can be applied to early arrivals, we allow the machine to
lie idle and we schedule without preemption, i.e., we do
not allow a job to be interrupted once it is started. The
penalties we study involve weighting factors that weight
the deviations from desired completion times.

Often these weights are not uniquely determined. For
instance, two weight assignments may be equally accept-
able if they both give rise to the same ordering of the items
or if one is related to the other by a change of scale.
Typically weights are measured using some scale of mea-
surement, and we examine the effect on the solution to a
scheduling problem if we make admissible changes of

scale. We show that in some cases such changes can trans-
form an optimal solution into a nonoptimal one, and we
systematically describe those situations when this anomaly
occurs. More precisely, we show that the conclusion of
optimality can be meaningless in a technical sense that we
shall make precise. The main point of this paper is to show
that considerations of scale change need to play a role in
analysis of scheduling problems. More generally, we wish
to make the reader aware of the need to consider sensitiv-
ity of conclusions to the change of scales of measurement,
not only in the scheduling context, but also in other con-
texts in operations research. Roberts (1990, 1994) makes
similar comments about such well-known problems of
combinatorial optimization as the shortest path problem
and the minimum spanning tree problem, and Cozzens
and Roberts (1991) investigate certain graph coloring
problems, arising in channel assignments in communica-
tions, from a similar point of view.

In the rest of this section, we introduce the basic nota-
tion to be used throughout the paper, give some references
to the literature, and give a brief overview of the rest of
the paper.

We are interested in n jobs in which the ith job has
processing time p,- > 0 and desired completion time d^ ^
0. At most one job can be carried out at a time, and there
is no preemption. A schedule S (feasible schedule 5) as-
signs a completion time C, to each job /, with time starting
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at 0 and each job i getting processing time /?,. We let
= ( C l , . . . , Cn) and we also use the vectors d = id^,...,
dn) and p = ( p i , . . . , />„), where we use the convention
that single boldface letters represent vectors. Since no job
may start before time 0, we have Q 3= Pi, for all i. Our
terminology follows that of Baker and Scudder (1990).

We consider two special cases, those with common due
dates, i.e., where d,- = d for all i, and those with common
processing times, i.e., where /?, = p for all i. The first case
is abbreviated odd, with ncdd standing for the situation
where we are not in case cdd. The second case is abbrevi-
ated cpt, with ncpt standing for the situation where we are
not in case cpt. (It should be noted that in the cdd case, we
do not make any assumptions on the common due date d.
For example, d is not necessarily "large," i.e., we allow d <

^UlPr)
Typically, we have an objective function

and we seek a (feasible) schedule S that minimizes F(5).
Note that the objective function does not explicitly depend
upon the processing times. These play a role in determin-
ing whether or not a schedule is feasible. We consider only
objective functions that depend upon the deviations be-
tween desired and actual completion times, and specifically
we define the earliness of the ith job

EiiS) = Ei = max{0, rf, - C,},

and the tardiness of the ith job

TiiS) = Ti = max{0, C,- - d,}.

One objective function arises if we simply consider a
weighted sum of earliness and tardiness, obtaining

FiS) =
1=1

where a, and p, are positive weights. If only tardiness is
penalized, we consider the function

FiS) = F^^^ = 1
1=1

In objective functions fsum£'|r('5) ^nd F^^^fiS), we mini-
mize the sum of the deviations. An alternative is to mini-
mize the maximum deviation; we then have the objective
functions

FiS) = f max£|7-

. . . , a„E„,

and

FiS) = F^^T = max{j3ir,, . . . , p„T„}.

A variefy of other objective functions have been studied in
the literature; many are summarized by Baker and Scud-
der (1990). We limit ourselves to these four. Baker and
Scudder (1990) provide motivation for cost functions that
are modeled by these objectives.
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In the case where a, = p, for all i, the objective function
has symmetric weights and we say that we are in the case
of symmetry; we abbreviate this case as s. If we are not in
case s, we say we are in case ns. If /3, = j3 for all i and if a,
= a for all i when we are considering earliness penalties,
then we say that we have common weights and abbreviate
this case as cw. If we do not have common weights, we say
we are in case new. In Section 2, we systematically study
the four penalfy functions F.^^^r, ^sumr. ^maxEi?-, and
FmaxT under all combinations of the four assumptions cdd
or ncdd, cpt or ncpt, s or ns, and cw or new. In other
words, we consider sixteen cases for each objective func-
tion. Of course, when we do not consider earliness penal-
ties, considerations of symmetry are irrelevant, so there
are only eight cases. We make the notational convention
that we are in case ns here.

Let us consider the function FsumEiriS) for example. The
case cw, cdd, s (and either cpt or ncpt) gives rise to the
objective function

FiS) = a i |C,. - d\,
1=1

where of course rf, = d for all /. For all practical purposes,
this is the same as the objective function

FiS) = - - d\.

This objective function arises, for example, in the work of
Kanet (1981), Sundararaghavan and Admed (1984), Bag-
chi et al. (1986), Hall (1986), Emmons (1987), Szwarc
(1989), and Hall et al. (1991). The case cw, cdd, ns (and
cpt or ncpt) gives rise to the objective function

FiS) = a 2 £,• + j3 S Ti,
1=1 1=1

and this objective function has been studied by, for exam-
ple, Panwalkar et al. (1982), Emmons (1987), and Bagchi
et al. (1987).

The objective function arising in the case new, cdd, ns
(and cpt or ncpt) has been studied, for example, by Ahmed
and Sundararaghavan (1990), Cheng (1987), Emmons
(1987), Ouaddus (1987), Bector et al. (1988), Baker and
Scudder (1989), Hall and Posner (1991), and Hoogeveen
and van de Velde (1991). The objective function arising in
the case new, ncdd, ns (and cpt or ncpt) has been studied,
for example, by Fry et al. (1987a), Fry and Leong (1987),
Fry et al. (1987b), Chand and Schneeberger (1988), Abdul-
Razaq and Potts (1988), and Ow and Morton (1988,1989).
The objective function arising in the case cw, ncdd, s (and
cpt or ncpt) has been studied, for example, by Cheng
(1990).

The objective function î maxisir is considered in the work
of such authors as Sidney (1977) and, more recently for
example, by Ferris and Vlach (1992). The objective func-
tions where only tardiness is considered are studied by a
wide variefy of authors; two survey papers in this literature



S122 / MAHADEV, PEKEC AND ROBERTS

are that by Koulamas (1994), emphasizing constant-
weighted tardiness, and that by Abdul-Razaq et al. (1990),
concerning weighted tardiness.

In Section 1, we introduce relevant concepts from the
theory of measurement and give an example to illustrate
how an optimal solution could change to a nonoptimal one
under admissible change of scale. Section 2 gives the sys-
tematic description of situations when admissible changes
of scale preserve optimality. In Section 3, we discuss the
results and present issues for further analysis.

1. MEANINGFULNESS OF THE CONCLUSION OF
OPTIMALITY

In using scales of measurement, we often make somewhat
arbitrary choices such as of unit or zero point. One speaks
of admissible transformations of scale as transformations
of scale values that result from changes in these arbitrary
choices. For example, in the case of measurement of mass,
we can change from pounds to ounces by changing the
unit, and this amounts to multiplying each scale value by
—. Similarly, we can change from kilograms to pounds by
multiplying each scale value by approximately 2.2. When
the admissible transformations of scale correspond exactly
to multiplication by a positive constant, as here, we say we
have a ratio scale. In contrast, if we are measuring temper-
ature, we can change both the unit and the zero point. For
example, in going from degrees Centigrade to degrees
Fahrenheit, we use the admissible transformation ^x + 32,
which changes the unit by ^ and the zero point by 32.
When the admissible transformations of scale correspond
exactly to multiplication by a positive constant and addi-
tion of another constant (not necessarily positive) as here,
we say we have an interval scale. When any (strictly)
monotone increasing transformation of scale is admissible,
we say we have an ordinal scale. An example of an ordinal
scale is the Mohs scale of hardness. Every mineral gets a
scale value which is an integer between 1 and 10, and the
only significance of the numbers is that a mineral with a
higher number scratches a mineral with a lower number.
Any (strictly) monotone increasing function of scale values
would give a scale with similar properties. Preferences
sometimes only give rise to ordinal scales. The theory of
scale type was introduced into measurement theory by
Stevens (1946,1951,1959). A general introduction to mea-
surement theory can be found in the books by Krantz et al.
(1971), Luce et al. (1990), Suppes et al. (1989), and Rob-
erts (1979).

If the truth of a conclusion can depend upon some arbi-
trary choices involving scales of measurement, as for exam-
ple about units or zero points, we would probably not want
to put much weight behind that conclusion. In measure-
ment theory, we call a statement using scales meaningful if
its truth or falsity is unchanged after applying admissible
transformations to all of the scales in the statement. We
show that in the case of the single machine scheduling
problem with earliness and tardiness penalties, the conclu-

sion that one schedule is optimal can be meaningless.
Whether or not it is meaningful depends upon how we
measure penalties.

For further information about meaningful statements,
the reader is referred to Roberts (1985, 1994) and Luce et
al. (1990). For other applications of this concept to prob-
lems of combinatorial optimization like the scheduling
problems discussed here, see Roberts (1990, 1994) and
Cozzens and Roberts (1991).

To give a simple example of the application of measure-
ment theoretical ideas to the scheduling problem we have
considered, let us suppose that the weights in our objective
functions are measured on a ratio scale. This is quite nat-
urally the case, since they are often thought of as dollar
penalties, and the dollar defines a ratio scale (we can
change the unit by changing to cents or Deutschmarks or
Yen). Consider the objective function F^^^^^-p- Suppose
that schedule S is optimal. This means that

for all schedules S'. For conclusion (1) to be meaningful,
we would like it to hold if changes in unit are made in the
parameters a,- and j3,. Let F'^^^^^j{S') denote the value of
the objective function for schedule S' if a, and ft are
transformed by a change of scale into A:a, and A:ft, respec-
tively, with A: > 0. We want to show that

holds for all schedules S'. This is true since

') +

Hence, if weights are measured on a ratio scale, and if
objective function î sum£-|7- is used, it is meaningful to con-
clude that a schedule S is optimal. Similar reasoning ap-
plies to objective functions F,^^j{S), /'^axEir. and F^^j.-
Hence, we have the following theorem.

Theorem 1.1. Suppose that the objective function is
F^umEiT, ^sumK'S), -f max£|7-. Or F^^r- Further suppose that
a,, j3,, i = 1 , . . . , « , are measured on a ratio scale. Then
the conclusion of optimality is meaningful.

However, if weights are measured on an interval scale,
there can be problems, even in the situation where cases
cw, cdd, and cpt all apply. To see why, consider the situa-
tion where there are three jobs, there are common due
dates with d = 3, and there are common processing times
with;? = 1. Suppose that the common weights are given by
a = 1 and /3 = 10. Note that all three jobs are equivalent
since they have equal processing times, desired completion
times, and weights. Hence, for any schedule 5' defined by
C(S') = (C'l, C2, C3), we may assume that C'i<C2< C3.

Consider the schedule 5 defined by the vector of com-
pletion times C(S) = (1, 2, 3). For this schedule.
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= a i (3 - 1) + a2(3 - 2) +

= 1-2 + 1-1 + 10-0 = 3.

- 3)

This turns out to be an optimal schedule. In fact 5 is a
unique optimal schedule (up to symmetry). To see why,
consider any other schedule S' defined by CiS') = (CJ,
Cj, C3), C; < C2 < C3. Since processing times are all 1,
we conclude that C[ > 1, C2 =̂ 2, C3 & 3. Since 5' i^ S,
we must have C3 > 3. If C3 s= 4, then

FsumElAS') > ^3(4 - 3) = 10 • 1 = 10 > FsumElAS).

Suppose that C3 < 4. Then because 773 = 1, C2 < 3. Since
P2= P3 = 1> we have C'3- C'2^ 1, C'^ - C[ ^ 2. Then,
since C3 > 3, we have

= a i (3 " C\) + a2(3 - C'2) + P3(C'3 - 3)

= 3 - C'l + 3 - C2 + 10(C'3 - 3)

= 8(C'3 - 3) + (C'3 - C'2) + (C'3 - C'l)

& 8(C'3 - 3 ) + l + 2 > 3 = F

Thus, 5 is the unique optimal schedule (up to symmetry).
Now suppose that we change a,- into Ara,- + / and )3, into A;̂ ,-
+ /, where A: = 1, / = 100 give us a change of unit (no
change) and a change of zero point, respectively. We get

a\ = a'2 = a'3 = 101, ^', = ^'2 = j3'3 = 110.

As before, let F's^,^^-j{S) denote the value of the objective
function for schedule 5 if a, and ft are transformed into a-
and j3,', respectively. Then we have

F'sun^\AS) = a',(3 - 1) + a'2(3 - 2) + ^'3(3 - 3)

= 101-2 + 101-1 + 110-0 = 303.

Compare 5 to the schedule 5 ' with C(5') = (2, 3, 4). We
have

F'sumE\AS') = a',(3 - 2) + P'2i3 - 3) + /3'3(4 - 3)

= 101-1 + 110-0 + 110-1 = 2 1 1 .

Thus, schedule S is no longer optimal after a change of
unit and zero point in measurement of weights. Hence the
conclusion that schedule 5 is optimal is not meaningful. It
does not seem to make sense to assert that a solution to
this scheduling problem is optimal if penalties are mea-
sured on an interval scale.

Note that it is reasonable in some applications to think
of weights as being measured on a scale different from a
ratio scale. In particular, if we are not given weights, but
only know that some jobs are more important than others,
we might only have an ordinal scale. Such a situation often
arises in practice. Scheduling problems where problem
data are measured on an ordinal scale are discussed by Liu
and Sidney (1996a, b) and Liu et al. (1996). Even if
weights are thought of as monetary penalties, the scale
they define is like an interval scale if we have a fixed fee
for currency transactions, e.g., from dollars to Deut-
schmarks. (Such a transaction is described by the transfor-
mation kx + I where / is the fixed fee and where k is the
exchange rate, i.e., the amount of Deutschmarks worth one
dollar. If we also allow a transformation from dollars to

cents, then the fixed fee is 0.) If the weights measure some
value or utility (or disutility) associated with a given early
or tardy completion, or loss of goodwill due to completion
at a time different than the requested time, then it is pos-
sible that we would measure these with a scale where
change of zero point as well as change of unit is allowed,
as is commonly done in utility theory—see for example
Coombs et al. (1970), Krantz et al. (1971), or Roberts
(1979). In this case, we have an interval scale. Quaddus
(1987) calls a,- and j3,- "costs," which might suggest measur-
ing them in dollar amounts and therefore possibly on a
ratio scale. However, he points out that techniques from
preference and value theory, such as those developed by
Keeney and Raiffa (1976), can be used to estimate these
costs; this suggests that they are measures of utility or
value. Hall and Posner (1991) speak of the a,- and /?,• as
weights or "values," which suggests again that they could
be measured on scales other than ratio scales. Many au-
thors, for example Elsayed et al. (1993), refer to a, and ft
as penalties arising in connection with "just-in-time" pro-
duction problems. Penalties in such problems are often
measured in terms of "customer satisfaction" (see for ex-
ample Auguston 1989), which certainly could be measured
on any of a number of different types of scales.

As the above discussion shows, the conclusion that S is
an optimal schedule may not be meaningful if weights are
measured on interval scales. In the next section, we sys-
tematically study the four objective functions defined
above if weights are measured on interval scales or ordinal
scales and determine the meaningfulness of the conclusion
of optimality under the sixteen cases defined by the pres-
ence or absence of the conditions cw, cdd, cpt, and s.

2. MEANINGFULNESS OF THE CONCLUSION OF
OPTIMALITY: THE CASE OF INTERVAL AND
ORDINAL SCALES

Our results are summarized in Table I. They show that
with interval or ordinal scales, and common and symmetric
weights, the conclusion of optimality is meaningful for all
the objective functions we have considered, but with com-
mon and nonsymmetric weights, it can be meaningless for
ŝum£|7- and î 'maxEir- With noncommon weights, the conclu-

sion of optimality can be meaningless in all cases except
the new, cdd, cpt, s case for Fs^^nE\T and the corresponding
new, cdd, cpt, ns case for F^^^nT- Th^ detailed conclusions
are not as important as the principle that the conclusion of
optimality may indeed be meaningless and that it is neces-
sary to take considerations of meaningfulness into account
in analysis of scheduling problems and, more generally, of
problems of operations research.

The entries in Table I are justified by a series of exam-
ples, theorems, and principles that give us a way of con-
structing new examples from old ones. Some of the details
are left to the appendix at the end. The reader who is most
interested in the general principles developed in this paper
or who wishes to use the table for reference without going
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Table I
Meaningfulness of the Conclusion of Optimality Under Either Interval or Ordinal Scales

Case /

CW cdd cpt s

cw cdd cpt ns

cw cdd ncpt s

cw cdd ncpt ns

cw ncdd cpt s

cw ncdd cpt ns

cw ncdd ncpt s

cw ncdd ncpt ns

new cdd cpt s

new cdd cpt ns

new cdd ncpt s

new cdd ncpt ns

new nedd ept s

new nedd ept ns

new nedd nept s

new ncdd ncpt ns

Yes
T2.1
No
El

Yes
T2.1

No
E2

Yes
T2.1

No
El + Pl

Yes
T2.1

No
El + Pl

Yes
T2.5

No
E3

No
E4

No
E3

No
E5

No
El + P1

No
E4 + P1

No
El + P1

ND

Yes
T2.2

ND

Yes
T2.2

ND

Yes
T2.2

ND

Yes
T2.2

ND

Yes
T2.6

ND

No
E6

ND

No
E7

ND

No
E6 + P1

Yes
T2.3
No
E8

Yes
T2.3

No
E9

Yes
T2.3

No
E8 + P1

Yes
T2.3

No
E8 + P1

No
ElO

No
E8 + P2

No
Ell

No
E8 + P2

No
ElO + PI

No
E8 + P1

No
ElO + PI

No
E8 + P1

ND

Yes
T2.4

ND

Yes
T2.4

ND

Yes
T2.4

ND

Yes
T2.4

ND

T2.7+E14

ND

*
T 2.7+E15

ND

No
E12

ND

No
E13

Yes = meaningful, No = can be meaningless (see Remark after Example 1),
ND = case not defined,
Ei = justified by Example i, Ti = justified by Theorem i,
Ei + Pj = justified by example constructed from Example i by Principle j ,
ew = common weights, new = noncommon weights,
cdd = common due dates, nedd = noncommon due dates,
cpt = common processing times, nept = noncommon processing times,
s = symmetric, ns = nonsymmetric (by notational convention, ns applies to F^^
* = meaningful with LWO schedule but not necessarily with other optimal sehedules. See remark following Theorem 2.7

through the detailed justifications may wish to skip the
appendix. Since one example suffices to show that a con-
clusion can be meaningless, the reader might naturally ask
if the examples we present are simply isolated cases. The
answer is that they are not, and that it is not hard to
produce many other examples. It should also be noted
that, in our examples, di, Pi, ai, jii are rational numbers.
Hence, it is straightforward to modify our examples to
produce new examples with integer processing times
and/or integer desired completion times and/or integer
weights.

Throughout this section, we adopt the convention that
when scale values are required to be positive, by admis-
sible transformations of interval scales we mean the
transformations x into kx + I, k > 0, that leave all
weights positive; in other words, k > 0 and / must be
chosen so that all ^a,- + / and A:j3, + / are positive. We
still call the corresponding scale an interval scale al-
though technically not all transformations of the form x
into kx + I are allowed. Similarly, if scale values are re-
quired to be positive by admissible transformations of or-
dinal scales we mean the (strictly) monotone increasing



transformations that take positive real numbers into posi-
tive real numbers.

Example 1. Suppose that the weights a,, ft, j = 1 , . . . , n,
are measured on an interval or ordinal scale. If the objec-
tive function is /̂ sumEir. then in the cw, cdd, cpt, ns case,
the conclusion of optimality can be meaningless.

Remark. Before justifying Example 1, we explain what we
mean in this paper by the conclusion "can be meaningless"
in a given case. By this, we mean that there are in-
stances of scheduling problems where weights are mea-
sured on an interval or ordinal scale and the
assumptions of the case hold, but where no schedule is
optimal for all acceptable choices of scale. To verify
this, it suffices to give examples of scheduling problems
and schedules S' so that 5' is not optimal under one
choice of scale of measurement, but S' is optimal after
an admissible transformation of scale under which no
previously optimal schedule remains optimal. When we
say that a particular case is meaningful, we mean that
the conclusion of optimality of S is meaningful for any
optimal 5. We will conclude that in two cases, there is
always an optimal schedule S for which the conclusion
of optimality is meaningful, but there might be other
optimal schedules for which this conclusion is not
meaningful.

Remark. Note that every transformation x into kx + I,
k > 0, that leaves all weights positive (i.e., an admissible
transformation of weights that are measured on an interval
scale) is a (strictly) monotone increasing transformation of
positive real numbers (i.e., it can be viewed as an admissi-
ble transformation of weights that are measured on an
ordinal scale). Hence, in order to show that the conclusion
of optimality can be meaningless if the weights are mea-
sured on an ordinal scale, it suffices to show that the con-
clusion of optimality can be meaningless if the weights are
measured on an interval scale. Conversely, if the conclu-
sion of optimality is meaningful when weights are mea-
sured on an ordinal scale, then the conclusion of
optimality is meaningful when weights are measured on an
interval scale.

Proof of Example 1. The example here is the example
given in the previous section, and we simply give it a num-
ber here so we may refer to it in Table I. To summarize,
we have n = 3, d = 3, p = 1, a = 1, p = 10. The schedule
S defined by C{S) = (1, 2, 3) is the unique optimal sched-
ule (up to symmetry), but if k = I, I = 100, then with
C(S') = (2, 3, 4), we have after transformation of weights
that F',,^^^{S') < F^un^|7<5). So S is no longer
optimal. •

Remark. We say in Example 1 (and Table I) that the
condition of optimality can be meaningless. As we have
noted, this is simply to say that there are examples satisfy-
ing the case cw, cdd, cpt, ns under the objective function
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r which no schedule is optimal for all acceptable
choices of scale. It is not to say that all situations satisfying
these conditions under this objective function will make
the conclusion meaningless. For instance, let us take n =
2, d = 2,/7 = 1, o = 1, /3 = 10, and let C(5) = (1, 2). It
can be seen that S is optimal and that it remains optimal
after a transformation x into kx + I with k > 0 and a' =
ka + I > 0 and P' = A:/3 + / > 0. Actually, it suffices to
prove the latter because a special case has k = 1, / = 0,
which gives us back a and /3.

Example 2. Suppose that the weights a,, j3,, i = I,..., n,
are measured on an interval or ordinal scale. If the objec-
tive function is /̂ sumEir) then in the cw, cdd, ncpt, ns case,
the conclusion of optimalify can be meaningless.

Proof. Let rt = 3, d = 3.1, p = (1, 1, 1.1), a = 1, /3 = 10.
Then C{S) = (2.1, 3.1, 1.1) is the unique optimal schedule
up to symmetry among the first two jobs (see appendix).
Now, let A: = 1,1 = 100. Then after change of scale, we get
a' = 101, /3' = 110. We have

= 101(3.1 - 2.1) + 110(3.1 - 3.1)

+ 101(3.1 - 1.1) = 303.

However, if C(S') = (2, 3, 4.1), we have

F'sumE\TiS') = 101(3.1 - 2) + 101(3.1 - 3)

+ 110(4.1 - 3.1) = 231.2,

and so 5 is no longer optimal. •

Remark. Example 2 can be generalized to give one exam-
ple that covers all cases with cw, ns. We take n = 3, d =
(3,3,3 +q),p = (1,1,1 + r ) , a = 1,/3 = 10,with9,r&
0, \q - r\< 1. If C{S) = {1 +x,2+x,3 + q), where x =
q - r, then 5 turns out to be the optimal schedule up to
symmetry. However, if fc = 1, / = 100, then after the
corresponding change of scale, 5' with C{S') = (2, 3, 4 +
r) has a lower objective function value than S. Details are a
bit messy and are left to the reader.

Example 3. Suppose that the weights a,, j3,, J = 1 , . . . , n,
are measured on an interval or ordinal scale. If the objec-
tive function is FSU^EIT-, then in the new, cdd, cpt, ns and
new, cdd, ncpt, ns cases, the conclusion of optimality can
be meaningless.

Proof. Ijti n = 3, d = 2, p = {1, 1, 1 + q) with ^ = 0 or
.01, a = (i i, 1), p = (^, ^, 1), and take C{S) = (3, 4, 2).
The case ^ = 0 of course will give us cpt, while the case
q = .01 will give us ncpt. Then S is the unique optimal
schedule (see appendix). Let A: = 1, / = 1/2, giving us a ' =

:) = ^ (3 - 2) + ^ (4 - 2)

+ | ( 2 - 2 ) > 1.58.

If C{S') = (1,3 + q,2 + q ) , t hen
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sum£|r(5') = 1 • (2 - 1) + ^ (3 + ^ - 2)

+ I (2 + ^ - 2)

since q « 0.01. We conclude that 5 is no longer
optimal. •

Example 4. Suppose that the weights a,, /3,, i = 1 , . . . ,« ,
are measured on an interval or ordinal scale. If the objec-
tive function is FsumE\T> then in the new, cdd, ncpt, s case,
the conclusion of optimality can be meaningless.

Proof. Let n = 3, rf = 0,/> = (1, 1, 2), a = p = (2, 2, 5).
Let C(5) = (3, 4, 2). Then 5 is optimal. (Note that, by
symmetry, (4, 3, 2) defines the only other optimal sched-
ule). To see why, note that since d, = 0 for all /, an optimal
schedule S = iC^, C2, C3) will start at time 0, have no idle
times, and C, > C, O C,/j8, & Cj/^j, i, j = 1, 2, 3 (as
proved by Smith 1956). (In the present example, this is
simple to show. In the case where job 1 completes before
job 2, the only other candidates for optimal schedule are
(1, 4, 3) and (1, 2, 4), and it is easy to show that F^^^^^j. is
larger for these two schedules than for S.) Now take k = 1,
I = 3, giving a ' = p ' = (5, 5, 8). We have F'^^r^^jiS) = 51,
but fLm£;|7<'S') = 49 for schedule S' defined by C(5') =
(1, 4, 3). So 5 is no longer optimal. •

Remark. We have used d = 0 in the previous example. If
that makes the reader uncomfortable, we could use an
arbitrary d, add a fourth job with p^ = d, a^ = fi^ = 10^°.
Then it is clear that the fourth job is always first and the
rest of the argument is as in Example 4.

Example 5. Suppose that the weights a,, ft, i = 1 , . . . ,« ,
are measured on an interval or ordinal scale. If the objec-
tive function is F^^^^^j-, then in the new, ncdd, cpt, s case,
the conclusion of optimality can be meaningless.

Proof. Let n = 4, rf = (2, 2, 2, 1),/? = 1, a = p = (9, 9, 9,
1). Then C(5) = (2,1, 3, 4) is the unique optimal schedule
up to symmetry among first three jobs (see appendix).
Now, letk = l,l = I Then a = P' = (2, 2, 2, 1) and

F'sumEiriS) = 2(2 - 2) + 2(2 - 1) + 2(3 - 2)

+ l - ( 4 - 1) = 7.

However, if C(5') = (2, 3, 4, 1), then

FLn^ElAS') = 2(2 - 2) + 2(3 - 2) + 2(4 - 2)

+ 1-(1 - 1 ) = 6,

so 5 is no longer optimal. •

Example 6. Suppose that the weights ft,« = 1 , . . . , n, are
measured on an interval or ordinal scale. If the objective
function is F^^^j., then in the new, cdd, ncpt, ns case, the
conclusion of optimality can be meaningless.

Proof. L e t n = 2,d = l,p = il, 2), p = ( 1 , 3 ) . L e t
= (3, 2). Since only tardiness enters into the objective
function and p, & 1 = d, an optimal schedule will start at
time 0 and have no idle time. Thus, we need only consider
the alternative schedule 5' given by C(5') = (1, 3). We
have F,u^r(5) = 5, while F^^^j{S') = 6, so S is optimal.
However, if we take A: = 1, / = 2, we get P' = (3, 5) and
^owFsumAS) = 11 while F^um7<5') = 10. So S is no longer
optimal. •

Example 7. Suppose that the weights ft, / = 1 , . . . ,« , are
measured on an interval or ordinal scale. If the objective
function is Fsu^r. then in the new, ncdd, cpt, ns case, the
conclusion of optimality can be meaningless.

Proof. Let n = 4, rf = (2, 2, 2, l),p = 1, p = (9, 9, 9, 1).
Then C(5) = (1, 2, 3, 4) is the unique optimal schedule up
to symmetry among first three jobs (see appendix). Now let
/: = I / = f. Then p' = (18, 18, 18, 13) and

F'sumAS) = 18 • 0 + 18 • 1 + 13 • 3 = 57,

while if CiS') = (2, 3, 4, 1),

F'sumAS') = 18 • 0 + 18 • 1 + 18 • 2 + 13 • 0 = 54.

Hence, S is no longer optimal. •

Example 8. Suppose that the weights a,, ft, i = 1 , . . . ,« ,
are measured on an interval or ordinal scale. If the objec-
tive function is F^^^^-j-, then in the cw, cdd, cpt, ns case,
the conclusion of optimality can be meaningless.

Proof. Let n = 3, rf = 3, ;j = 1, a = 1, j3 = 10. Then
CiS) = i^, YY, YY) is the unique optimal schedule up to
symmetry among all three jobs (see appendix). Now take
k = 1,1 = 100, giving us a' = 101, /3' = 110. It follows
that

nax£|r(5)& 101(3-II) > 180.

However, if CiS') = (2, 3, 4), then

^max£|r(5') = max{101(3 - 2), 110(3 - 3),

110 (4 -3 )} = 110 < 180,

and we conclude that 5 is no longer optimal. •

Example 9. Suppose that the weights a,, ft, / = 1 , . . . , n,
are measured on an interval or ordinal scale. If the objec-
tive function is ̂ max£|r. then in the cw, cdd, ncpt, ns case,
the conclusion of optimality can be meaningless.

Proof. Letn = 3,d = 3,p = il, 1, 1.1), a = 1, /3 = 10.
Then C(5) = (yy, ^, ^) is the unique optimal schedule up
to symmetry among first two jobs (see appendix). Now, let
k = 1,1 = 100, giving us a' = 101, P' = 110. It follows
that

nax£|r(5)& 1 0 1 ( 3 - i | ) > 180.

However, if CiS') = (2, 3, 4.1), then



^max£|r(5') = max{101(3 - 2), 110(3 - 3),

110(4.1 - 3 ) } = 121.

Hence, 5 is no longer optimal. •

Example 10. Suppose that the weights a,, /3,, i = 1 , . . . , n,
are measured on an interval or ordinal scale. If the objec-
tive function is ^max£|r; then in the new, cdd, cpt, s case,
the conclusion of optimality can be meaningless.

Proof. Let n = 2, </ = 2,p = 1, a = p = (1, 2). Then the
only optimal schedules are C(5) = (|, |) and C(5') = (5, 5)
(see appendix). Let k = 1 and / = 1, giving us a ' = P' =
(2, 3). Then

= max{2(|- 2), 3(2 " f)) = f,

') = max{2(2 - | ) , 3 ( | - 2)) = | ,

while if CiS") = (5, j), we have

x{2(2 - | ) , 3 ( ^ -= max{

We conclude that both 5 and 5' are no longer
optimal. •

Example 11. Suppose that the weights a,, j3,, i = 1,... ,n,
are measured on an interval or ordinal scale. If the objec-
tive function is f maxEir. then in the new, cdd, ncpt, s case,
the conclusion of optimality can be meaningless.

Proof. Let n = 2, d = 3,p = (1, 2), a = p = (1, 2). Then
CiS) = ij, |) is the unique optimal schedule (see appen-
dix). Let A: = 1, / = 1, giving us a ' = P' = (2, 3). Then

- 3), 3(3 - |)} = f ,
while if CiS') = (y, j), we have

^max£|T(5') = max{2(^ - 3), 3(3 - y ) } = I •

We conclude that 5 is no longer optimal. •

Example 12. Suppose that the weights /3,, J = I,..., n,
are measured on an interval or ordinal scale. If the objec-
tive function is /̂ maxr. then in the new, ncdd, cpt, ns case,
the conclusion of optimality can be meaningless.

Proof. Let n = 2, /7 = 2, rf = (1, 3), P = (1, 4). Note that
an optimal schedule will start at time 0 and have no idle
time (since only tardiness enters into the objective func-
tion). Thus, we only need to consider two schedules CiS)
= (4, 2) and CiS') = (2, 4). Hence, S is the unique
optimal schedule (because F^^j(S) = 3 < 4 =
F^^j{S')). Let A: = 1, / = 1, giving us p ' = (2, 5). Then
F'maxriS) = 6 > 5 = F'^^riS') and we conclude that 5 is
no longer optimal. •

Example 13. Suppose that the weights j3,, i = 1,..., n,
are measured on an interval or ordinal scale. If the objec-
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tive function is Fmaxr- then in the new, ncdd, ncpt, ns case,
the conclusion of optimality can be meaningless.

Proof. Letn = 2,p = (2, 3), d = (1, 4), p = (1, 5). As in
Example 12 we note that an optimal schedule will start at
time 0 and have no idle time. Thus, we only need to con-
sider two schedules C(5) = (5, 3) and CiS') = (2, 5).
Hence, S is the unique optimal schedule (because î maxT̂ '̂ )
= 4 < 5 = F^^^S')). Let A: = 1, / = 1, giving us p ' = (2,
6). Then F'^^riS) = 8 > 6 = F'^^^T{S') and we conclude
that S is no longer optimal. •

We now present some positive results. The following
theorems show for which of the scheduling problems we
have considered the conclusion of optimality is meaningful
if the weights are measured on an interval or ordinal scale.

Theorem 2.1. Suppose that the weights ai, ^,, J = 1 , . . . , n,
are measured on an interval or ordinal scale. If the objec-
tive function is f sum£|r. '^^" in all cases in which cw, s
hold, the conclusion of optimality is meaningful.

Proof. We have

= a
1=1

a S 7,(5').
1=1

Thus, for an admissible transformation of scale <I>,

+ <!>(«)
1=1 1=1

By our convention, a > 0 and 4'(a) > 0. Thus,

if and only if

if and only if

F'sumE\AS) D

The next three theorems can also be proved similarly.

Theorem 2.2. Suppose that the weights /3,, «' = 1,..., n,
are measured on an interval or ordinal scale. If the objec-
tive function is FsumT^ then in all cases in which cw holds,
the conclusion of optimality is meaningful.

Theorem 2.3. Suppose that the weights a,, P,, / = 1,... ,n,
are measured on an interval or ordinal scale. If the objec-
tive function is F̂ jm îT-, then in all cases in which cw, s
hold, the conclusion of optimality is meaningful.

Theorem 2.4. Suppose that the weights /3,, i = 1 n,
are measured on an interval or ordinal scale. If the objec-
tive function is î maxr. then in all cases in which cw holds,
the conclusion of optimality is meaningful.

Theorem 2.5. Suppose that the weights a,, )3,, J = 1 , . . . , n,
are measured on an interval or ordinal scale. If the objec-
tive function is /̂ sum£:|7-. then in all cases in which cdd, cpt,
s hold, the conclusion of optimality is meaningful.
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Proof. Suppose without loss of generality that

We consider a greedy schedule (see Kanet 1981,
Sundararaghavan and Ahmed 1984, Hall 1986). Let ; be
the largest integer such that d - jp ^ p. Then one greedy
schedule is schedule T defined by

dT) = id, d - p, d + p, d - 2p, d + 2p, . . . ,

d -jp, d +jp, d + ij + l)p, d + ij + 2)p, . . . ) .

Note that we cannot use d - ij + l)p because Ci^ p. All
other greedy schedules are obtained from T by switching
C2, and C2,+i for possibly some i with C2, =e d - jp, and by
switching C, and C, for possibly some pairs ii, j) with a, =

We say that (j, j) is a reversing pair for 5 if a, > a,- and
|C, - d\> \Cj - d\. It is easy to see that S with reversing
pairs cannot be optimal: simply switch C, and C, to obtain
a schedule S' with a smaller/"JUI^IT^S'). Also, since no two
C, can be equal, at most two |C, - d\ can be equal. It
follows that 5 is optimal if and only if it is greedy.

We complete the proof by noting that any (strictly)
monotone increasing transformation of positive real num-
bers doesn't change the greedy schedules since the order-
ing of weights is unchanged. Thus, the same schedules
remain optimal. •

Theorem 2.6. Suppose that the weights ft, i = 1 , . . . , n,
are measured on an interval or ordinal scale. If the objec-
tive function is f sumr. then in all cases in which cdd, cpt
hold, the conclusion of optimality is meaningful.

Proof. The proof is similar to that of Theorem 2.5. We
suppose without loss of generality that

Then the greedy schedules are those obtained from

by switching some C, and C, that are less than or equal to d
(since we do not penalize earliness) and switching C, and
Cj for possibly some pairs (J, ;) with ft = ft. It is easy to
see that S is optimal if and only if it is greedy and that any
(strictly) monotone increasing transformation of positive
real numbers does not change the greedy schedule because
it does not change the order of weights. •

In all scheduling problems that we have considered so
far, we have concluded that either the conclusion of opti-
mality is meaningful for any optimal schedule (when
weights are measured on an ordinal scale) or we have
given an example where the conclusion of optimality is
meaningless for all optimal schedules (when the weights
are measured on an interval or ordinal scale). If the objec-
tive function is /"maxr and if cdd holds, we can only con-
clude that there exists an optimal schedule S such that the
conclusion of optimality is always meaningful.

Theorem 2.7. Suppose that the weights Pi, i = 1 , . . . , n,
are measured on an interval or ordinal scale. If the objec-
tive function is F^^j-, then in all cases in which cdd holds,
there exists an optimal schedule S for which the conclusion
of optimality is meaningful.

Proof. We first note that any optimal schedule will start at
time 0 and have no idle time (this is because only tardiness
enters into the objective function). Any such schedule is
completely determined by an ordering of jobs. Let 5 be a
schedule starting at time 0 with no idle times such that
A > Py ^ C, < Cj, i, j = 1 , . . . , n. In other words, 5 is
defined by the largest weight order (LWO), that is an
ordering of jobs in which a job with the larger weight
precedes a job with the smaller weight. We will also refer
to S as an LWO schedule.

It is straightforward to see that 5 is optimal. To see why
note that in any other schedule S' (that is not given by an
LWO), there exist jobs i and ; such that Cj = CJ + Pj (7 is
scheduled immediately after i) and such that ft > ft.
Then, for schedule 5"' obtained from S' just by switching
the ordering of the two consecutive jobs i and ; (i.e., S'
schedules j before i), we have: C" = Cj, CJ = Cl - pi + Pj,
and C'k = Q for any k =^ i, j . Since cdd holds, we also have
r; = Tj, r; « TJ, and TI = n,k=^ i,j. Note that

and we conclude that F^^j{S') ^ F^^j{S") (since
PkT'k for any k + i, j). Hence, by induction, we conclude
that there exists an optimal schedule 5* given by an LWO.
Clearly, for any two LWO schedules, 5 and S*, we have
FmaxiiS) ^ F^^T{S*). Therefore, 5 is optimal.

Finally, note that any (strictly) monotone increasing
transformation of positive real numbers does not change
the largest weight order. Hence, for an optimal schedule 5
given by a largest weight order, the conclusion of optimal-
ity is meaningful. •

Remark. Although the conclusion of optimality is mean-
ingful for any schedule given by the largest weight order, it
is possible that there exist other optimal schedules for
which the conclusion of optimality is meaningless (even if
the weights are measured on an interval scale). The follow-
ing two examples illustrate this.

Example 14. Suppose that the weights ft, / = 1,..., n,
are measured on an interval or ordinal scale. If the objec-
tive function is F^^j., then in the new, cdd, cpt, ns case,
there are instances of the scheduling problem and sched-
ules for which the conclusion of optimality is meaningless.

Proof. Let rt = 4, /? = 1, d = 1, and p = (10, 9, 3, 2).
Then C(5*) = (1, 2, 4, 3) defines an optimal schedule
which is not an LWO schedule. (It is straightforward to
check that S* is optimal since, for any schedule S', either
C; & 2 or Q & 2, i.e., T ; = CJ - 1 & 1 or T^ = C^ - 1 &
1, and F^^T{S') & max{10ri, 9T^} & 9 = F^^jiS*).)



However, if we take k = I and / = 1 we get P' = (11,
10, 4, 3) and S* is no longer optimal since F'^^T{S*) =
47* = 12 and F'^^T{S) = 10 for the LWO schedule 5
defined by C(S) = (1, 2, 3, 4). Hence the conclusion of
optimality is meaningless for S*. •

Example 15. Suppose that the weights /3,, J = 1 , . . . , n,
are measured on an interval or ordinal scale. If the objec-
tive function is F^^f, then in the new, cdd, ncpt, ns case,
there are instances of the scheduling problem and sched-
ules for which the conclusion of optimalify is meaningless.

Proof. Let n = 3,/» = (3, 2, 2), <f = 2, and P = (10, 2, 1).
Then C(5*) = (3, 7, 5) defines an optimal schedule which
is not an LWO schedule. (It is straightforward to check
that 5* is optimal since, for any schedule 5', C[ 3= 3, so

However, if we take k = 1 and / = 5 we get P' = (15, 7,
6) and S* is no longer optimal since F'^^i(S*) = IT^ =
35 and F'^^-j(S) = 30 for the LWO schedule S defined by
C{S) = (3, 5,. 7). Hence the conclusion of optimalify is
meaningless for 5*. D

We conclude the verification of Table I by introducing
two principles for generating new examples from old ex-
amples.

Principle 1. For F = fsum£|r> ^sumr. ^max£|r. or F^^j,
suppose E is an example in a case with cdd for which the
conclusion of optimality is meaningless for all optimal
schedules S if the weights are measured on an interval or
ordinal scale. Furthermore, suppose that there exists an
admissible transformation of weights $ , 4>(A:) = kx + I,
k > 0, such that no optimal schedule S remains optimal
after $ is applied. Then we can find an example E such
that ncdd holds and such that the conclusion of optimality
is meaningless for all optimal schedules in E if the weights
are measured on an interval and ordinal scale. Moreover, if
ncpt or s or ns holds in E, it also holds in E. However, ifcw
holds in E, we can define E so that cw also holds in E or
we can define it so that new holds in E. Also, ifcpt holds in
E, we can define E so that cpt also holds in E or we can
define it so that ncpt holds in E.

Proof. Given example E, define E by adding a new {n +
l)st job with a very large due date rfn+i, a processing time
Pn+i equal to the minimum p,- from E, and weights «„+! =
min a, and Pn+i = min j3, from E. For example, we could
take

n

dn+i = max di + S Pi + max/?,.

If S was optimal for E, then taking_C«+i = rf«+i certainly
gives an optimal schedule S for E. Also note that the
completion times of the first n jobs of any optimal sched-
ule U in E define an optimal schedule U in E, for if S is
optimal in E and 5 is defined as above, then if F is any of
the penalfy functions under consideration.
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F(U) ^F{U)^ FiS) = F(S) = F(U),

so F(U) = F{S). If in E, U is an optimal schedule, and if 5'
had a lower objective function value than U after a trans-
formation of weights inE, then taking Cl,+i = d^+i gives a
schedule 5' for £ with a lower objective function value
than U after the same transformation of weights.

Note that £ has properfy ncdd^ If £ had ncpt or ns or s,
so does £. If £ had cw, then £ as constructed has cw.
However, we can modify the construction of £ by changing
a^+i and /?„+! to be some very small numbers, getting an
example £ with new. If £ had cpt, then £ as constructed
has cpt. However, we can modify £ by changing Pn+j to be
some very small amount and get an example £ with
ncpt. •

Principle 2. For F = £max£|7-. suppose E is an example in
the case cw, cdd, cpt, ns for which the conclusion of opti-
mality is meaningless for all optimal schedules S if the
weights are measured on an interval or ordinal scale. Fur-
thermore, suppose that there exists an admissible transfor-
mation of weights 4), ^(x) = kx + I, k, I > 0, such that no
optimal schedule S remains optimal after <I> is applied.
Then we can find an example E such that new, cdd, arid ns
hold and such that there is no optimal schedule in £ for
which the conclusion of optimality is meaningful if the
weights are measured on an interval or ordinal scale. More-
over, we can define the example so that cpt also holds in E
or we can define it so that ncpt holds in E.

Proof. Given £, define £ by adding an {n + l)st job with
rfn+i = d, and/j^+i = q, where we use q = p if we want
cpt and arbitrary q i^ p otherwise. Choose 7 > 0 so that

(2)

for every schedule S that is optimal in E and

{ky + /)|(inax C\) + q - d\ < F'^^^jiS') (3)

for every schedule S' that is optimal in E after the weights
are transformed by admissible transformation 4). Let

= ^n+\ = r Define 5 from 5 by letting C«+i =
^ C,) + q and S' from 5' by letting C;+i =
« C,0 + q. Then by Equation (2),

««+i

and by Equation (3),

Hence, every optimal schedule 5 in £ defines an optimal
schedule 5 in E, and every schedule 5' in £ that is optimal
after applying admissible transformation <1> leads to a
schedule 5' in £ that is optimal after applying <I>. (Note
that $ is an admissible transformation of weights in E
since ^{i) > 0 because k,l> 0.)
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For every schedule f/for the (« + 1) jobs problem, let U
be U restricted to the first n jobs. Note that for any opti-
mal U inE,U must be optimal in E, for if S is optimal for
the n jobs problem and S is defined as above, we have

f max£|r(t7) ^ i

| ) . Hence, no optimal schedule U
in £ remains optimal after the weights are transformed by
$ since there is no optimal schedule 5 in £ which remains
optimal after transforming all the weights by $ . •

3. DISCUSSION

We have shown that there are situations in scheduling in
which an admissible change of scale can change an optimal
solution to one which is not optimal. The idea that one
needs to consider such a possibility is the most important
message in this paper, more important than the specific
examples we give.

If weights are measured on a ratio scale, then conclu-
sions about optimality of a schedule are meaningful under
the four objective functions we have considered. However,
this is not always true for interval scales or ordinal scales.
The results of Table I can be summarized as follows: in the
case of common weights, if weights are symmetric or if we
only apply penalties for tardiness, then conclusions about
optimality are meaningful for all of the objective functions
we have considered. In other cases, these conclusions can
be meaningless (in the sense that there exist weights such
that there is no optimal schedule for which the conclusion
of optimality is meaningful), except in the cases new, cdd,
cpt, s for objective function î sum îr and new, cdd, cpt, ns
for objective function F^^^j.. As demonstrated by Theorem
2.7 and Examples 14 and 15, the case of common due
dates and non-common weights for objective function
^max7- is different than all other cases that we have consid-
ered. In this case, there always exists an optimal schedule
(given by the largest weight order) for which the conclu-
sion of optimality is meaningful. However, there can be
other optimal schedules for which the conclusion of opti-
mality is meaningless.

One surprising result is that our conclusions about the
meaningfulness of the conclusion of optimality are the
same for interval and ordinal scales in all the cases that we
have considered. It is not hard to give examples of prob-
lems in combinatorial optimization where the conclusion
of optimality is meaningful for interval scales but not for
ordinal scales. (For instance, this is true for the traveling
salesman problem where edge weights represent data mea-
sured on an interval scale.) It would be interesting to char-
acterize scheduling problems for which the fact that the
conclusion of optimality is meaningful for any choice of
weights measured on an interval scale implies that the
conclusion of optimality is meaningful for any choice of
weights measured on an ordinal scale. This is a topic that
will require further research.

This paper leaves room for considerably more analysis.
For one thing, we have considered only single machines,
rather than multiple machines. Second, we have limited
discussion to four specific objective functions. A variety of
other objective functions are studied in the literature
(many are surveyed by Baker and Scudder 1990). It would
be interesting to extend the analysis in this paper to some
of these other objective functions as well.

We have not discussed measurement of parameters in
our problem other than weights. Specifically, we have not
discussed the measurement of desired and scheduled com-
pletion times and of processing times. Time is measured
on a ratio scale when we talk about durations (we can
change from minutes to hours or days or years). A change
of time scale would, therefore, not affect the truth or fal-
sity of the conclusion of optimality under the four objec-
tive functions discussed here. Even if time were measured
on an interval scale, as it would be if we talked about "the
year 2000" as opposed to "four years from now (1996),"
the conclusion of optimality would still be meaningful un-
der these four objective functions. However, this might no
longer be true if we were to use "nonlinear" objective
functions. Hence for such objective functions, one should
analyze meaningfulness not just under admissible transfor-
mations of weights, but also under admissible transforma-
tions of times, even if both define ratio scales.

The results of this paper suggest certain specific and
other more general policy recommendations. When it
comes to single machine scheduling problems in which
there is any doubt about the appropriateness of the ratio
scale as a model for measuring the penalties for tardy or
early arrival, the analyst must be careful to consider the
meaningfulness or invariance of the conclusion of optimal-
ity. In particular, in certain cases (as summarized in Table
I), the analyst should be dubious about any claim of opti-
mality. More generally, the main policy recommendation
we make is that operations researchers should be aware of
the possible impact of the way that we measure things on
the class of optimal solutions to a problem. Before devel-
oping or applying methods to compute an optimal solution
for any operations research problem, the analyst should
think about the types of scales used in measuring parame-
ters involved in the objective function, and should consider
whether or not it is meaningful to claim that a given solu-
tion is optimal. This warning applies even if the problem
and methods are of a standard nature. If the conclusion of
optimality might not be meaningful, the analyst should try
to reformulate the problem in such a way that he/she can
be comfortable that the conclusion of optimality will be
meaningful.

APPENDIX

In this appendix we provide the proofs that S is (uniquely)
optimal in the examples where these proofs were omitted.

Example 2. Here n = 3, d = 3.1, p = (1, 1, 1.1), a = 1, j3
= 10 and CiS) = (2.1, 3.1, 1.1). Then



+ 10(3.1 - 3 . 1 ) + 1-(3.1 - 1.1) = 3.

We show that 5 is the unique optimal schedule up to
symmetry. (Note that jobs 1 and 2 are equivalent, i.e., d^ =
d2,Pi = P2, "l = «2. and /3i = ^2-) Suppose CiS') = (CJ,
C'2, C'2). Furthermore, by symmetry, we assume CJ < C'2.
If any Cj > 3.4, then

FsumElAS') > 10(3.4 - 3.1) = 3 = Fsum£|r(5).

So, we assume that C,' « 3.4 for all i. We now consider
three cases.

Case 1. Ci < C2 < C^. Then since Ci + C2 + C3
+ P2+ P3, we have C3 s= 3.1. Suppose it is equal to 3.1 +
8, for S & 0. Since C^ « 3.4, we have 8 « .3. Now C'2 «
2 + S and C; « 1 + S. Hence,

+ 1 • (3.1 - (2 + S)) + 10((3.1 + 8) - 3.1)

= 3.2 + 8S & 3.2 > F

Case 2. CJ < C3 < Q . Then C'2 & 3.1; say it is 3.1 + 8.
As in Case 1, we have 0 « 8 ^ 0.3. Now Q ^ 2 . 1 + 8 and
C; « 1 + 8. Hence,

+ 10((3.1 + 8) - 3.1) + 1 • (3.1 - (2.1 + 8))

Case 3. C3 < CJ < C^. In this case, as in the other
cases, we have Q = 3.1 + 8, 0 =s 8 « 0.3, and we have CJ
« 2.1 + 8, C3 « 1.1 + 8. Then

+ 10((3.1 + 8) - 3.1) + 1 • (3.1 - (1.1 + 8))

and equality holds if and only if S' = S. We conclude that
5 is the optimal schedule up to symmetry among the first
two jobs. (The other optimal schedule is (3.1, 2.1,
1.1).) D

Example 3. Here n = 3, d = 2, p = il, 1, 1 + q) with q =
0 or .01, a = i\, i 1), p = ( 4 ^, 1), and C(5) = (3, 4, 2).
The case q = 0 of course will give us cpt, while the case
q = 0.01 will give us ncpt. Then if A = ^ + ^,

= 3 ^ (3 - 2) + ^ (4 - 2) + 1 • (2 - 2) = A.

Let CiS') = (C;, C'2, C'3). If C^ > 2 + A or C^ < 2 - A,
then

') > 1 • ((2 + A) - 2) = A =

or

f sum£|r(5') > 1 • (2 - (2 - A)) = A = /

Suppose 2 - A ^ C 3 « 2 + A. Observe that ^ = ^ + |f <
\. If C; (respectively, C'2) is less than C3, then CJ (respec-
tively, C2) is at most 1 + A - ^. Hence we have
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(2 - (1 + A - g))

(1 - A) > A = f sum

I (2 - (1 + A -

Thus, we may assume that CJ, C'2 > C'3. If C!, > 2, then CJ
> 3 and C'2 > 4, or CJ > 4 and C^ > 3. It follows that

or

Thus, we may suppose that C3 « 2. Then C3 = 2 - 8, 8 &
0. We know 8 ^ A since C3 & 2 - A. It follows that C; &
3 - 8 and Ci > 4 - 8 or C; ^ 4 - 8 and Ci 3= 3 - 8.
Since 8 =s A < 1/4, both jobs 1 and 2 are tardy. Hence,

j ^ (3 - 8 - 2) + ^ (4 - 8 - 2)

+ 1 • (2 - (2 - 8))

and equality holds if and only if CiS') = CiS) = (3, 4, 2).
It follows that S is the unique optimal schedule. •

Example 5. Here n = 4, rf = (2, 2, 2, 1),/? = 1, a = p =
(9, 9, 9, 1) and C(S) = (2, 1, 3, 4). Then

Fsunu-iAS) = 9(2 - 2) + 9(2 - 1)
+ 9(3 - 2 ) + l - ( 4 - 1) = 21.

Consider 5 ' with CiS') = (CJ, C'2, C'j, Q ) . By symmetry,
we may assume that C'2<C'^< Q . If Q < CJ, then C; s=
3 and C3 & 4, so

Fsum£|r(5') ^ 9(3 - 2) + 9(4 - 2) = 27 > F ,«^ | r (5) .

Thus, suppose that Ci < C;. If C'2 ^ 2, then C; > 3, C3 >
4 and again we obtain

') > 9(3 - 2) + 9(4 - 2) = 27 > F

Thus, we may assume that C2 = 2 - A, with A > 0. Note
that since p2 = 1, }^ '^ 1. Also, we have C'^ ^ 3 - k.
Moreover, either

Case 1. C3

Case 2. Q
In Case 1,

& 4

^ 5

- A

- A

and C;

and Ci

& 5 -

S: 4 -

A or

A.

> 9(2 - (2 - A)) + 9((3 - A) - 2)

+ 9 ( ( 4 - A ) - 2 ) + l - ( ( 5 - A ) -

= 9(3 - A) + 4 - A

^ 9 - 2 + 3 = 2 1 = F
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and the equality holds if and only if A = 1 and C(5') =
CiS) = (2, 1, 3, 4).

In Case 2,

FsumE\AS') ^ 9(2 - (2 - A)) + 9((3 - A) - 2)

+ 9((5 - A) - 2) + 1 • ((4 - A) - 1)

= 9 ( 4 - A ) + 3 - A

Hence, S is the unique optimal schedule up to symmetry
among the first three jobs. •

Example 7. Here « = 4, rf = (2, 2, 2, 1),;, = 1, p = (9, 9,
9, 1) and C(5) = (1, 2, 3, 4). Then

Ci, C'2, C3, Q ) . By symmetry, we may
Q < C3. If Q ^ 4, then

- 2 )

Consider CiS') =
assume that C; <

Thus, we may assume that C3 < 4 and hence, since allp, =
1, we have Q s= 4. Also, again since allp, = 1, we have C;
& 1, Ci & 2, C; & 3. Hence, if Q = 4, then 5' = S. If C;
> 4, then

- 2) + /34(4 - 1)

= 9(3 - 2) + 1 • (4 - 1) = 12 = F,

Thus, 5 is the unique optimal schedule up to symmetry
among the first three jobs. •

Example 8. Here n = 3, d = 3, p = 1, a = 1, fi = 10 and
CiS) = (if, % ff). We have

20

To see that S is optimal, consider CiS') = (CJ, C2, C3). By
symmetry, we may assume that CJ < C2 < C3. If C; < if,
then

- jf) = XI =
Hence, C; & jf, and thus Ĉ  s= ff. If Ĉ  > ff, then

(if - 3) = ff =
Hence, C^ = ff, Ci = if. It follows that C'2 = fj, and so 5
is the unique optimal schedule up to symmetry among all
three jobs. •

Example 9. Here n = 3, d = 3,/> = (1, 1, 1.1), a = 1, j3 =
10 and CiS) = (2̂ , ff. If). Then

= max{l • (3 - f^) , io(ff-3) , 1 • (3 -{f)
= 20

To see that S is optimal, consider S' with CiS') = (CJ, C2,
C'2). By symmetry, we may assume that Ci < C2. If for i =
1, 2, or 3, C; < if, then

fj
Similarly, if Q > ff, then

Hence, we may assume that

(4)

If C[<C'2< C'3, then

13

so

> ' ) ^ i o ( ( 3 + ^ ) - 3 ) = | j :

If C; < C3 < C'2, then as above,

-o , 31
110'

and again

M>.
If C3 < Cl < C'2, then

C'2 &C'3 + P l +/72
13 35

(5)

35Since C'2^ -^hy Equation (4), equality holds in (5), and
because Ĉ  > î  by (4), CiS') = C(5) = (fi, ff, if). We
conclude that 5 is the unique optimal schedule up to sym-
metry among the first two jobs. •

Example 10. Here « = 2, rf = 2,;? = 1, a = p = (1, 2),
/8 5CiS) = ( | I) and CiS') = (|, 0. Note that

= max{l(|- 2), 2(2 - I)} = | ,

') = max{l(2 - j ) , 2 ( j - 2)) = | .

Consider S" with CiS") = iC'{, C'^).

Case 1. C; < C'̂ .

If C'i < J then

^max£|r(5") > (2 - I) = I = F

Similarly, if Cj > |, then

> 2(1 - 2) = I =
Hence, 5" is optimal if and only if 5" = 5 ' (because in any
optimal schedule, | « C'i < Cj + ; |C'2
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Case 2. C'[ >
If C'[ > I then

Similarly, if C'i < 5, then

/̂ •maxElrC "̂) > 2(2 - I ) = I =

Hence, 5" is optimal if and only if S" = 5 (because in any
optimal schedule, f « C'z < C'i +P2^ C'[ « | ) . Thus, the
only optimal schedules are 5 and S'. Q

Example 11. Here n = 2, d = 3, p = (1,2), a = ^ = (1,
j , f)

^ - 3), 2(3 - |)) = f-

2), and C{S) = (j, f). Then

Consider S' with C{S') = {C\, C'2).
lfC[<l then

fSimilarly, if C'2 > f, then

/^max£|r(5') > 2 ( ^ - 3) = I =

Therefore, we may assume that CJ > C'2 (otherwise, C2
C',+p2^l + 2>f).

If C; > J then

Similarly, if C'2 < f, then

^max£|7(5') > 2(3 - | ) = | =

Hence, 5' is optimal if and only if 5' = 5 (because in any
optimal schedule, ^ ^ C'2 < C^ + pi ^ C'l ^ j). Q
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