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Abstract. The rationale for and the opportunities to bring the biology-
mathematics interface into the high schools are explored through examples
from the author’s career. Among topics considered are (1) epidemiological
modeling, (2) biology as information science, (3) physical mapping of DNA,
(4) DNA and RNA chains and the “RNA detective game,” (5) systems biol-
ogy, (6) graph-theoretical models of the spread of disease, (7) measurement of
cough severity and fatigue, (8) biosurveillance, and (9) location of bioterror-
ism sensors. With each, activities appropriate for the high school Biology and
Mathematics classrooms, and often both in partnership, are described.

1. Introduction

In 2002, I was invited to join the Secretary of Health and Human Services’
Smallpox Modeling Group. How was a mathematician selected to join this group?
The answer has a lot to do with the theme of this book.

The story I will tell is organized around my own career. One of the goals of
bringing the biology-mathematics interface into the high schools is to open up to
students the possibilities of new types of careers and in particular careers that blend
disciplines. In turn, the availability of such careers is connected to new, rapidly-
increasing, interdisciplinary educational programs in biomath at the college and
graduate school level. Having examples of areas in which new types of careers are
possible can be very helpful. In the process of telling this story, I will give a variety
of examples of activities that are appropriate for high schools. I have tried many of
them already with high school teachers and/or students. The blending of disciplines
provides a wonderful vehicle for highlighting each of them, and the examples I give
can be used in either high school Biology or high school Mathematics classes, and
often in both with teachers collaborating in new partnerships.

One of the reviewers of this article felt that it would be helpful for me to sum-
marize my educational background and career path. By way of background: My
Bachelors, Masters, and Ph.D. degrees are all in Mathematics, though already as an
undergraduate I had interests in the connections between Mathematics and other
disciplines. After getting my Ph.D., I did a postdoctoral fellowship in a Psychology
Department, worked in the Math Dept. at a “think tank,” did another postdoc in
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a social sciences group, and then joined the Rutgers University Mathematics De-
partment, where I have been on the faculty since 1972. I have been associated with
the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS)
since 1988. DIMACS, based at Rutgers, was one of the original National Science
Foundation “science and technology centers” and is a consortium of academic, in-
dustry, and government partners (http://dimacs.rutgers.edu). Since 1996, I have
been Director of DIMACS, which runs a wide gamut of research and education
programs with an emphasis on interdisciplinarity.

2. Epidemiological Modeling

My story starts with mathematical modeling of epidemics, though that is more
near the end than the beginning. Epidemiological models of infectious diseases go
back to Bernoulli’s mathematical analysis of smallpox in 1760 (Bernoulli [1760]) and
since then mathematical models have been developed for key pathogens such as in-
fluenza (see e.g., Lin, Andreasen, and Levin [1999]), malaria (see e.g., Anderson and
May [1991]), gonorrhea (see e.g., Hethcote and Yorke [1984]), tuberculosis (see e.g.,
Blower, et al. [1995]), and HIV (see e.g., Perelson, et al. [1996]). Understanding
infectious systems requires being able to reason about highly complex biological sys-
tems, with hundreds of demographic and epidemiological variables. Intuition alone
is insufficient to fully understand the dynamics of such systems. Experimentation
or field trials are often prohibitively expensive or unethical and do not always lead
to fundamental understanding. Therefore, mathematical modeling becomes an
important experimental and analytical tool. Mathematical models have become im-
portant tools in analyzing the spread and control of infectious diseases, especially
when combined with powerful, modern computer methods for analyzing and/or
simulating the models. Great concern about the deliberate introduction of diseases
by bioterrorists has led to new challenges for mathematical modelers. Great concern
about possibly devastating new diseases like avian influenza or H1N1 virus (“swine
flu”) has also led to new challenges for mathematical modelers. Since Bernoulli’s
pioneering work, mathematical modeling has provided insights into drug-resistance,
rate of spread of infection, and effects of treatment and vaccination, and is being
used today to help us deal with emerging disease threats such as SARS or pandemic
flu.

The size and overwhelming complexity of modern epidemiological problems
calls for new approaches and tools. As a result, in 2002, DIMACS launched a “Spe-
cial Focus” on “Computational and Mathematical Epidemiology” that has paired
mathematicians, computer scientists, and statisticians with epidemiologists, biolo-
gists, public health professionals, physicians, etc. (See http://dimacs.rutgers.edu/-
SpecialYears/2002 Epid/.) The special focus has featured tutorials, workshops, and
research working groups and has introduced numerous students and faculty to the
subject of epidemiology and the possible approaches to epidemiological problems
through mathematics, computer science, statistics, and other methods. This special
focus has also led to a wide variety of related activities, including activities that
are bringing materials at the interface between the biological and mathematical
sciences into the high schools and training teachers to bring such materials into
their classrooms.

While much of traditional mathematical epidemiology uses more advanced
mathematical tools such as differential equations, a growing body of methods that
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use tools accessible to high school students is being developed. These include graph-
theoretical models of spread of disease (see section on that topic below) and combi-
natorial group testing to test for AIDS and other sexually-transmitted diseases (Du
and Hwang [2000]). The biological background required to understand these topics
is minimal and requires only some understanding of hosts, pathogens, incubation
periods, etc. At DIMACS, we have had considerable experience with introducing
these topics at the high school level and have found them to be very successful with
both mathematics and biology students and teachers who do not have a major
background in mathematics or one in biology. We started out in 2005 with a pro-
gram called the DIMACS BioMath Connect Institute (BMCI) that was DIMACS’
first attempt to bring together high school biology and mathematics teachers to
explore topics in biomath together and design activities and prepare materials to
bring back to their schools (http://dimacs.rutgers.edu/dci/2005/). BMCI contin-
ued in 2006 and then we developed the DIMACS BioMath Connection (BMC) that
is concerned with developing modules at the interface between the biological and
mathematical sciences that are usable in both Biology and Mathematics classes in
the high schools. These modules are pilot- and field-tested, and we run programs
to train teachers to implement them. To date, modules have been developed or
are in the process of being developed in three areas: computational molecular bi-
ology, epidemiology, and ecology/population biology. (For more about BMC, see
http://dimacs.rutgers.edu/BMC/.)

BMC has so far produced three modules in epidemiology that are aimed at both
math and biology classes in the high schools. They have been pilot-tested and field-
tested in the schools and are, at this writing, being revised for completion. The titles
of these modules are: “Mathematical Modeling of Disease Outbreaks,” “Imperfect
Testing,” and “Competition in Disease Evolution.” The contents of these modules
reflect a variety of important themes in epidemiology, from a mathematical point
of view.

The module “Mathematical Modeling of Disease Outbreaks” introduces simple
mathematical models that can answer some of the following questions: Will there
be a flu outbreak this season? How many individuals will become infected? How
long will it persist? Would vaccination prevent an epidemic? What other mea-
sures could be taken to prevent an epidemic? Two hypothetical infectious disease
outbreak investigations serve as the motivating examples and storyline. Students
receive an introduction to the basic characteristics of viruses and bacteria and the
differences in treatment options for diseases they cause. Students then participate
in a classroom simulation of the spread of disease to introduce the concepts be-
hind the mathematical model before the details of the model are described. The
model is constructed and the students have the opportunity to interactively see how
changes in the parameters of the model change the pattern of the disease outbreak.
For example, students can assume that a certain proportion of the population is
vaccinated and compare the resulting outbreak to one where none of the population
is vaccinated. At the end of the module, the students return to the outbreak inves-
tigations and are able to understand how epidemiologists might go about trying to
answer the questions posed using mathematical models that incorporate some of
what they know about the biology of the pathogen. The Mathematics topics are
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arithmetic and state graphs, and the Biology topics are viruses, bacteria and the
diseases they cause; vaccination, transmission routes and spread of disease.1

The module “Imperfect Testing” uses a case study approach to answer the fol-
lowing questions: What do the results of an imperfect medical test actually mean?
How does one measure the effectiveness of a particular medical test or compare
tests? How does this information affect public policy or personal decision making?
The results of a mammogram, like those of many tests, are not always correct. A
false positive test result may create unnecessary anxiety, while a false negative test
result may result in a false sense of security. The students are presented with the
case of an adult female who learns her mammography test is positive. They then
discuss the possible implications or outcomes of a positive test result, given the
properties of the test. These properties, which include sensitivity and specificity,
help to determine the rates of incorrect test results and the predictive value of a
test for a single individual. Next the woman has a genetic test where she learns
she has the BRCA gene mutations associated with breast cancer. This leads to a
dilemma for her daughter who must now decide if she will be tested for this BRCA
allele. Since results from testing for this allele still do not completely determine
whether or not she will develop breast cancer, the students now learn about the
concept of relative risk. The Mathematics topics include probability, conditional
probability, ratios, and graphing a rational function, and the Biology topics include
genetic testing, genetic variation, ethical choices, decision making based on data
interpretation, taking perspectives, and gold standards. This module can be used
in classes in biology, anatomy, algebra I, and algebra II.

In the module “Competition in Disease Evolution,” students learn to consider
infectious diseases from the perspective of evolutionary biology on a basic level.
They gain an understanding of how different methods of pathogen reproduction
can greatly affect the evolutionary fitness of a disease. After learning to compute
simple and conditional probabilities, students use this to calculate probable levels
of exposure to a disease in a population, probabilities of infection given exposure,
and expected population-level rates of disease incidence. The Mathematics topics
include rounding real numbers to integers, and converting among fractions, decimal
representations and percentages, and the Biology topics include disease transmis-
sion, evolutionary fitness, natural selection, and evolutionary competition. This
module is appropriate for use in Pre-Algebra or Algebra 1 courses, or in any bi-
ology class (Introductory through AP) that covers concepts of evolution and/or
reproductive fitness. After using this module in her school, Vicki Shirley, a teacher
from Corinth, Mississippi, indicated that contributions to the disciplines of mathe-
matics, biology and teaching do indeed overlap: “The chance to ‘team-teach’ such
a real-world topic was beneficial to both our students and to us (the teachers).
Debbie, my partner, knew the biology and I knew the math so when you put us
together .... we were a dynamite duo! Having us both in the classroom together
gave the students two experts and we were able to field any question they had about
the module. Together we were able to truly help the students to understand that
Math and Biology can be used together to solve real-world problems. (Before this

1This paragraph and the next two are taken from the BMC Project Annual Report to the
National Science Foundation, September 2008 and, in turn, were taken from teacher materials for
the modules.
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module, the students didn’t even know that Biology and Math were even remotely
related!!!)”2

In describing the result of using these modules in her classroom, biology teacher
Kathy Gabric from Hinsdale Central High School, Hinsdale, Illinois, told us3:
“Bringing the modules into my classroom has really opened my eyes. Students
that are not so keen on biology but love math are suddenly animated. Students
that love biology but are not so great at math, begin to see that the two go hand
in hand. As they say on TV ‘numbers are everywhere’. The modules have taken
the topics they cover to a whole new level. The visualization that the math allows
results in fantastic discussions about what is really occurring.”

In sum, mathematical epidemiology is a wonderful vehicle for bringing the
interface between the biological and mathematical sciences into the schools.

3. Biology as an Information Science

I have long been interested in applications of mathematics. I became interested
in mathematical problems in biology very early in my career, well before smallpox
and mathematical epidemiology became a major interest of mine. As a graduate
student at Stanford University in the 1960s, I worked on a problem posed by award-
winning geneticist Seymour Benzer. The problem involved molecular biology.

Molecular biology is a prime example of the new biology. Many biological
phenomena are coming to be viewed as involving the processing of information
(Jackson [2005]). Computer and information science are playing an increasing role
in modern computational molecular biology and were critical players in the scientific
breakthrough of sequencing the human genome. We played a role in this at DI-
MACS through the DIMACS Special “Year” on Mathematical Support for Molec-
ular Biology (1994-2000) (see http://dimacs.rutgers.edu/SpecialYears/1994 1995-
index.html). During this six-year program, we invited biological and mathematical
scientists to collaborate, held workshops and tutorials, and led many previously
esoteric topics such as alignments, physical mapping, and phylogeny reconstruction
to become central areas of research in computer science and their precise math-
ematical formulation to become a building block for development of progress in
computational molecular biology. Through such partnerships between biological
and mathematical scientists, a variety of topics in biology have come to be stud-
ied from an information science point of view; examples include gene finding and
motif recognition, protein and RNA folding, protein structure prediction, and link-
age analysis. Through partnerships between mathematical and biological scien-
tists, major new areas of research have been developed, stimulated by the avail-
ability of massive amounts of new data, the integration of experimental methods
with algorithmic methods, and the development of powerful new tools for modeling
ever-more-complex biological systems. In recent years, the term “digital biology”
(Morris, et al. [2005]) has come to be used to represent such trends in the biological
sciences.

Just as ideas from computer science and mathematics have led to new biological
ideas and research areas, biological ideas have inspired new concepts and methods
in information science. Increasingly, for example, analogies with naturally occurring

2The feedback from the teacher came from the extensive evaluation we did of the field-testing
of the module, and was reported by our evaluator, Professor Len Albright.

3Private communication via email, September 2008.
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biological phenomena such as “swarming” have led to paradigms for new computer
algorithms.

It is not surprising that many undergraduate and graduate students are study-
ing topics at the intersection between the mathematical and biological sciences. A
2008 US-China Computer Science Leadership Summit, which I organized in Arling-
ton, Virginia, brought this point home in a dramatic way. The participants were
deans, directors, and department chairs of leading computer science departments
in the US and China. A major portion of the program was devoted to the increas-
ing interplay between computer science and biology and for the need to find new
ways to train computer scientists to work in this area. There is similar interest
in doing this for students in the biological sciences. Both themes have been em-
phasized in such conferences and reports as Hastings, et al., [2002], Hastings and
Palmer [2003], Levin, et al., [1997], Palmer, et al., [2003]. A variety of sources
have called for programs integrating mathematics and biology at the undergradu-
ate level. The report BIO2010 (Board on Life Sciences [2003]) recommends that
concepts, examples, and techniques from math and the physical and information
sciences be included in biology courses and that biological concepts and examples
be included in other science courses. The National Institute of General Medical
Sciences at NIH has launched an initiative to incorporate more mathematics and
physics in the biology curriculum. The Biomedical Information Science and Tech-
nology Initiative at NIH (see http://www.bisti.nih.gov/) has launched a variety of
programs to support development of connections between the mathematical and
biological sciences. The Mathematical Association of America report Math & Bio
2010 (Steen [2005]) describes efforts at the undergraduate level to reduce barriers
to cross-disciplinary collaboration and activities.

While the interface between the biological and mathematical sciences at the
undergraduate and graduate level has taken off, high schools have done little to in-
troduce students to these interconnections. In April 2005, Midge Cozzens and I or-
ganized the first international conference on linking the biological and mathematical
sciences in the high schools at DIMACS (http://dimacs.rutgers.edu/Workshops/-
Biomath/). At that conference, a number of speakers emphasized the possibility
that introducing high school students to topics in biomath will enhance the study
of both disciplines. It is likely that students interested in mathematics will find
biological applications as a motivation to study more mathematics, as they will
see how math is useful. Similarly, students in biology who are exposed to mod-
ern math/computer science topics relevant to biology will come to understand the
importance of understanding modern mathematics and computer science. In both
cases, there will be an opportunity to introduce students to new career possibilities
and to newly-developing opportunities for further study.

Bringing the interconnections between the mathematical and biological sciences
into the high schools requires new curricular materials that teachers can use. De-
velopment of such materials is the principal goal of the DIMACS BMC program
that was discussed above. Moreover, we need to train teachers to use these new
materials, and this will involve exposing them to the interface between the dis-
ciplines. Teachers from different disciplines need to learn each others’ language,
open lines of communication, and develop new approaches for introducing cross-
disciplinary topics. This was a major goal of the DIMACS BMCI program, and
this goal continued in the DIMACS BMC program. Through BMCI and BMC, we
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have experimented with methods to prepare teachers to use our interdisciplinary
materials, and we have started to evaluate these methods, document them, and
disseminate the documentation.

Molecular biology programs at BMC and BMCI have been built around such
topics as global and local string alignment algorithms; the BLAST algorithm, in-
cluding algorithms for protein sequences; FAST algorithms (FASTP, FASTA); PAM
matrices; phylogenetic trees and tree parsimony; phylogenetic tree reconstruction
and phylogenetic footprinting; and genome rearrangement. These topics use math-
ematical methods that are easily accessible to high school students and do not
require sophisticated mathematical background. The basic mathematics required
involves graph theory, counting principles, the basics of probability, and the notions
of string, substring, and superstring from computer science. The biological back-
ground for the topics involves the basics of genomes, sequences, genes, introns and
exons, the genetic code, transcription, and translation, and is readily explained.

Three BMC modules in computational molecular biology have been pilot- and
field-tested through BMC. “Biomatrices (Evolution by Substitution)” deals primar-
ily with evolutionary processes resulting in amino acid substitutions due to changes
in DNA; it does not assume any prior knowledge about biology. The mathematical
content includes single- and multi-stage probability events, disjoint and indepen-
dent events, matrices, matrix multiplication, and powers of matrices. The module
does not assume any prior knowledge about biology. Some very basic knowledge of
chemistry would be useful. Mathematics prerequisites are decimal multiplication
and percentage calculations. Other mathematics topics in this module are not as-
sumed as prior knowledge, and are developed in such a way that students can learn
them for the first time or refresh their prior knowledge of those topics. The module
is written to provide students clear access to the problem under investigation. The
lessons were developed with the assumption that students have no prior exposure
to matrices, or Markov chains, and minimal understanding of probability. Practice
problems are provided to reinforce the key concepts and to vary the relative amount
of attention paid to the content in each lesson of the module. At the completion of
the module, assessment questions are also provided to determine what the students
have learned and are capable of doing.4

In the module “Genetic Inversions,” students apply the basic concepts of DNA
and evolution to a particular kind of genetic mutation. They play a game involving
the rearranging of sequences by inverting subsequences. Next, they are challenged
to develop and write an algorithm for carrying out inversions. Finally, an improved
algorithm is introduced and analyzed. Students connect the algorithm with the
concept of gene mutation, and with the evolutionary distances that separate differ-
ent species of animals. There is no assumption of any background in either biology
or mathematics so that the module should be appropriate in all high school classes.

The module “Spider Silk” asks students to apply knowledge of protein structure
and function to pose and answer the fundamental question: What alignment of
two sequences is biologically most meaningful? The module develops the basic
mathematical principles that underlie computer programs used to align amino acids

4This paragraph and the next two are taken from the BMC Project Annual Report to the
National Science Foundation, September 2008 and, in turn, were taken from teacher materials for
the modules.
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nearly instantaneously. After becoming familiar with spiders, their webs and their
silks, students use graphs (networks), dynamic programming, and recursive thinking
to model sequence alignments. Then students use the computer program Biology
Student Workbench (BSW) (http://bsw-uiuc.net/) to align the amino acids of silks
from different species of spiders and interpret their differences. “Spider Silk” can
be used in its entirety in either a Biology class or a Math class. If less time is
available, Days 1-3 can stand alone in a Math setting, or Days 1, 4, and 5 could be
used alone in Biology. Ideally the module could be team-taught by a pair of math
and biology teachers. This module is appropriate for use with Biology 1 students
who have studied protein structure, synthesis, and function, and classification of
organisms. It would be an appropriate capstone to the study of DNA/RNA and
protein synthesis in biology. Mathematically, “Spider Silk” would be an appropriate
unit of study in a discrete mathematics course, either as a self-contained unit or
in conjunction with the study of graph theory or recursion. Alternately, it could
be used in more traditional math courses to introduce discrete mathematics topics
as enrichment or to examine recursion in an applied setting in preparation for the
study of sequences.

All biology students should be exposed to topics such as these because it is
difficult to appreciate modern biology without viewing it through the lens of the
mathematics underlying information science. Mathematics students should also be
exposed to such topics, to enhance their appreciation for the wide variety of uses
of modern mathematics. While I was not exposed to these topics in high school,
my first exposure to the biology-mathematics interface came as a sophomore at
Dartmouth College, when I learned about predator-prey models. That exposure
opened up many new horizons for me. I followed that in graduate school at Stanford
University with a Ph.D. thesis that combined my growing interest in the social and
behavioral sciences (also stemming from Dartmouth) with a biological motivation,
and, as mentioned above, included work on a problem posed by geneticist Seymour
Benzer.

4. Benzer’s Problem

Benzer’s problem was posed in the late 1950s and, briefly put, asked: How
can you understand the “fine structure” inside the gene without being able to see
inside? (This was in the days before gel electrophoresis and modern methods of
sequencing genomes.) Classically, geneticists had treated the chromosome as a
linear arrangement of genes. Benzer [1959, 1962] asked whether the same thing
was true for the “fine structure” inside the gene. So, was the gene fundamentally
linear (as in Figure 1)? Or did it have a circular structure (as in Figure 2)? A
figure-eight structure (as in Figure 3)? At the time, we could not observe the
fine structure directly. Benzer studied mutations. He assumed mutations involved
“connected substructures” of the gene. By gathering mutation data, he was able
to surmise whether or not two mutations overlapped. Consider the data in Table
1, where the i,j entry is 1 if mutations Si and Sj overlap and 0 otherwise. Figure 4
shows connected substructures along a linear curve that have the same overlaps as
indicated by Table 1. The beginning and end of the ith substructure is indicated
by points Si and Si. Asking students to do the same thing for other tabular data
is an activity that is readily accessible at the high school level. Benzer’s 1959
paper gave overlap data for a small portion of the genetic structure of a certain



WHY BIOMATH? WHY NOW? 9

virus, bacteriophage T4 (phage T4). The overlap data for 19 mutants of phage T4
is consistent with the hypothesis of linearity. This data and corresponding linear
representation are shown in Roberts [1976]. Benzer’s paper includes partial overlap
data for 145 mutations of phage T4. This data is also consistent with the hypothesis
of linearity. Having students look up Benzer’s 19-mutation data and checking the
linearity makes for a good exercise.

Figure 1. Linear Structure for Gene.

Figure 2. Circular structure for fine structure in the gene.

Figure 3. Figure-eight structure for fine structure inside the gene.

S1 S2 S3 S4 S5 S6

S1 1 1 0 0 0 0
S2 1 1 1 1 0 0
S3 0 1 1 1 0 0
S4 0 1 1 1 1 0
S5 0 0 0 1 1 1
S6 0 0 0 0 1 1

Table 1. The i, j entry is 1 if the mutations Si and Sj overlap, 0
otherwise. (The example is from Roberts [1976].)

Suppose we represent the tabular (matrix) information as a vertex-edge graph
with vertices corresponding to the rows and columns of the matrix and the vertices
corresponding to rows i and j joined by an edge if and only if the i, j entry of
the matrix is 1. Then if we can find such corresponding substructures along a
linear curve, we say that the graph is an interval graph. Interval graphs have
been very important in genetics. Figure 5 gives an example. To show that it is an
interval graph, we find intervals, one for each vertex, whose corresponding overlaps
correspond exactly to the edges in the graph. Such intervals are shown in Figure 6.
A good exercise is to show that the cycle of length 4 is not an interval graph. Nor is
the graph of Figure 7. Today, there are efficient algorithms for recognizing interval
graphs and they have a great many applications both in biology and in a variety
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Figure 4. Connected substructures along a linear curve that have
the same overlaps as indicated by Table 1. The beginning and end
of the ith substructure is indicated by points Si and Si.

Figure 5. An interval graph.

Figure 6. Intervals to show that graph of Figure 5 is an interval graph.

Figure 7. A graph that is not an interval graph

of other fields. For more on this topic, see for example Fishburn [1985], Golumbic
[1980], or Roberts [1976, 1978].

Long after Benzer’s problem was solved using other methods, interval graphs
played a crucial role in physical mapping of DNA and more generally in the
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mapping of the human genome. A physical map represents a piece of DNA,
telling us the location of certain markers along the molecule, markers being pre-
cisely defined subsequences. In physical mapping, the first step is to make copies
of the molecule we wish to map – the target molecule. Then we break each copy
into disjoint fragments using restriction enzymes (more on fragments in the next
section). We obtain overlap information about the fragments and then use the
overlap information to obtain the mapping. One method of obtaining the overlap
information is called hybridization. The fragments are replicated, giving us thou-
sands of clones. The DNA fingerprinting is used to check if small subsequences
called probes bind to fragments. The fingerprint of a clone is the subset of probes
that bind to it. Two clones sharing part of their fingerprints are likely to have
come from overlapping regions of the target DNA. From the overlap information,
we create a fragment overlap graph whose vertices are fragments (clones) and
with an edge joining two fragments (clones) if they overlap. If the clone overlap in-
formation is complete and correct, the fragment overlap graph is an interval graph.
Then the corresponding “map” of intervals gives the relative order of fragments on
the target DNA and this gives the beginning of a “physical map” of the DNA. For
more details about this process, see for example Setubal and Meidanis [1997]; the
preceding paragraph borrows heavily from their introduction to physical mapping.

5. DNA Chains and RNA Chains

So how did I get from Benzer’s problem to modeling smallpox for the Secre-
tary of Health and Human Services?5 It has become increasingly clear, as I said
above, that biology has become an information science. How so starts with
deoxyribonucleic acid, DNA, the basic building block of inheritance and carrier of
genetic information. DNA can be thought of as a chain consisting of bases. Each
base is one of four possible chemicals: Thymine (T), Cytosine (C), Adenine (A),
Guanine (G). Thus, using shorthand, the following are DNA chains:

GGATCCTGG, TTCGCAAAAAGAATC.

However, real DNA chains are long. That in Algae is 6.6× 105 bases long; that in
slime mold 5.4 × 107 bases long; that in a fruit fly 1.4 × 108 bases long; that in a
chicken 1.2× 109 bases long. DNA in humans is 3.3× 109 bases long. The sequence
of bases in DNA encodes certain genetic information. In particular, it determines
long chains of amino acids known as proteins.

RNA is a “messenger molecule” whose links are defined from DNA. An RNA
chain has at each link one of four bases, the same as those in DNA except that
the base Uracil (U) replaces the base Thymine (T). Thus, GGAGUUCCAGU is an
example of an RNA chain.

DNA and RNA provide prime examples of how fundamental mathematical
methods of counting can be important in molecular biology and explained to high
school students. Let us start by asking: How many possible DNA chains are there in
humans? To answer this question, we apply the fundamental rule of combinatorics
known as the Product Rule. Let us start with a simpler question: How many
sequences of 0’s and 1’s are there of length 2? There are 2 ways to choose the first
digit and, no matter how we choose the first digit, there are two ways to choose

5This section borrows heavily from Roberts and Tesman [2009]. All of the examples are taken
from that book.
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the second digit. Thus, there are 2× 2 = 22 = 4 ways to choose the sequence. The
four possible sequences are:

00, 01, 10, 11

How many sequences of 0’s and 1’s are there of length 3? By similar reasoning, we
see that this is 2× 2× 2 = 23 = 8.

This reasoning illustrates the Product Rule: If something can happen in n1

ways and, no matter how the first thing happens, a second thing can happen in n2

ways, then the two things together can happen in n1 × n2 ways. More generally,
if something can happen in n1 ways and, no matter how the first thing happens,
a second thing can happen in n2 ways, and, no matter how the first two things
happen, a third thing can happen in n3 ways, . . . then all the things together can
happen in n1 × n2 × n3 × . . . ways.

So, how many possible DNA chains are there in humans? How many DNA
chains are there with two bases? Using the product rule, we see that this is 4× 4 =
42 = 16. There are 4 choices for the first base and, for each such choice, 4 choices for
the second base. How many DNA chains are there with 3 bases? We get 43 = 64.
How many with n bases? We get 4n. By this reasoning, the number of possible
human DNA chains is 4∧ (3.3× 109), i.e., 4 to the 3.3× 109 power. How big is this
number? It is greater than 10 ∧ (1.98× 109) (1 followed by 198 million zeroes). A
simple counting argument helps us to understand the remarkable diversity of life.
Perhaps mathematical modeling will help us protect this rich array of life on our
planet.

More sophisticated counting arguments can also help us to understand issues
of molecular biology. RNA chains are very long. Early in the era of modern
molecular biology, scientists asked if we can we discover what they look like without
actually observing them. The trick they used was to split up long RNA chains into
smaller ones, called fragments, using enzymes. The idea behind this leads to a
mathematical challenge that I call the “RNA Detective Game,” but which in
the history of molecular biology was called the fragmentation stratagem. Some
enzymes break up an RNA chain into fragments after each G link and others break
up the chain after each C or U link. For example, consider the chain

Chain K: CCGGUCCGAAAG

Applying the G enzyme breaks the chain into the following fragments:

G fragments: CCG, G, UCCG, AAAG

We know that these are the fragments, but we do not know the order in which they
appear. How many possible chains have these four fragments? Again using the
product rule, we see that there are 4 choices for the first fragment, for each such
choice 3 choices for second fragment, . . . . Thus, there are 4 × 3 × 2× 1 = 4! = 24
possible chains. There is one chain corresponding to each permutation of these four
fragments. One such chain different from the original is

UCCGGCCGAAAG

Suppose we instead apply the U,C enzyme to the chain K. We get the following
fragments:

U,C fragments: C, C, GGU, C, C, GAAAG

How many chains are there with these fragments? Is 6! = 720 the correct answer?
Two of the permutations are the one that takes the fragments in the order given
and the one that takes the second fragment first and the first second and all others
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in this order. They give rise to the same chain. So 6! is wrong. What is the answer?
What if the fragments were

C, C, C, C, C?

There are 5! permutations of these fragments, but only one RNA chain with these
fragments:

CCCCC

To understand how to find the answer to this kind of counting problem, let us
consider a classical combinatorics problem of putting n distinguishable balls into k
distinguishable boxes. The number of ways to put n1 balls into the first box, n2 balls
into the second box, . . . , nk balls into the kth box is denoted by C(n;n1, n2, . . . , nk),
where n = n1 + n2 + . . . nk. It is well known that this multinomial coefficient is
given by:

C(n;n1, n2, . . . , nk) = n!/n1!n2!...nk!

Using this formula, we can calculate how many RNA chains of length 6 have 3 C’s
and 3 A’s. Think of 2 boxes, a C box and an A box. How many ways are there to
put 3 positions (balls) into the C box and 3 into the A box? (Similarly, if a family
has 3 boys and 3 girls, how many different orders are there for the 6 children to
be born?) The answer is C(6; 3, 3) = 6!/3!3! = 20. Some of these RNA chains are:
CACACA, ACACAC, AAACCC. If a 6-link RNA chain is chosen at random, what
is the probability of obtaining one with 3 C’s and 3 A’s? There are 46 possible
RNA chains of length 6. Thus, the probability is given by

C(6; 3, 3)/46 = 20/4096 ≈ 0.005.

The number of 10-link RNA chains consisting of 3 A’s, 2 C’s, 2 U’s, and 3 G’s is
C(10; 3, 2, 2, 3) = 25, 200. What if we know they end in AAG? Then, only the first
7 positions need to be filled, and 2 A’s and one G are already used up. Hence,
the answer is C(7; 1, 2, 2, 2) = 630. Notice how knowing the end of a chain can
dramatically reduce the number of possible chains.

We can now return to the U,C fragments of the RNA chain K. We have already
observed that the number of RNA chains with these fragments is not 6! = 720.
To calculate the answer, think of having 6 positions (there are 6 fragments) and
assigning 4 positions to the C box, 1 to the GGU box, and 1 to the GAAAG box.
Then, we see that the number of ways of doing this is given by

C(6; 4, 1, 1) = 6!/4!1!1! = 30

Actually, this computation is still a bit off, though not because the combinatorial
argument is wrong. Notice that the fragment GAAAG does not end in U or C.
Thus, we know it comes last. There are 5 remaining U,C fragments. The number
of chains beginning with these 5 fragments is given by C(5; 4, 1) = 5. These chains
begin as follows:

CCCCGGU, CCCGGUC, CCGGUCC, CGGUCCC, GGUCCCC

We get all chains with the given U,C fragments by adding GAAAG to the end of
each of these:

CCCCGGUGAAAG, CCCGGUCGAAAG, CCGGUCCGAAAG,
CGGUCCCGAAAG, GGUCCCCGAAAG

Thus, there are 24 possible chains with the given G fragments and 5 with the
possible U,C fragments.
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However, we have not yet combined our knowledge of both G and U,C frag-
ments. Which of the 5 chains above with the given U,C fragments have the right G
fragments? CCCCGGUGAAAG does not: It has CCCCG as a G fragment. Check-
ing the remaining 4 possible RNA chains with the given U,C fragments shows that
only the third one has the given G fragments. Hence, we have recovered the initial
chain. This is an example of recovery of an RNA chain given a complete digest
by enzymes.

How remarkable is it that we could recover the initial RNA chain this way?
How many RNA chains are there with the same bases as chain K? There are 12
bases: 4 C’s, 4 G’s, 3 A’s, and 1 U. The number of chains with these bases is given
by C(12; 4, 4, 3, 1) = 138, 600. Thus, knowing the number of bases is not nearly as
useful as knowing the fragments.

Consider another example. Suppose an unknown chain has the following frag-
ments:

G fragments: UG, ACG, AC
U,C fragments: U, GAC, GAC

Does any fragment have to come last? The G fragment AC has to come last because
it doesn’t end in G. Thus, the other two G fragments come first in some order and
there are only two possible RNA chains with these G fragments: UGACGAC,
ACGUGAC. The latter has AC as a U,C fragment. So, the former is the correct
chain.

Is it always possible to completely recover the original RNA chain given its G
fragments and U,C fragments? The answer is no, i.e., that there are two distinct
RNA chains with the same G and U,C fragments. Finding two such RNA chains
makes for a good exercise, certainly appropriate for the high school classroom. It
is one of many good exercises surrounding this “RNA Detective Game.” For more
on the RNA Detective Game, see Roberts and Tesman [2009].

The fragmentation stratagem we have described was used by R.W. Holley and
his colleagues at Cornell in 1965 (Holley, et al. [1965]) to determine the first nucleic
acid sequence. The method is not used anymore and was only used for a short time
before other, more efficient methods were adopted. However, it has great historical
significance and illustrates an important role for mathematical methods in biology.
Currently, by use of radioactive marking and high-speed computer analysis, it is
possible to sequence long RNA and DNA chains rather quickly. The mathematical
power of the fragmentation stratagem, nevertheless, is a good illustration of the
use of methods of discrete mathematics in modern molecular biology (and of the
power of counting) at a level that is understandable in the high school classroom.
Brother Patrick Carney of DePaul Catholic High School, Wayne, New Jersey re-
ports (personal communication) having presented the RNA Detective Game to his
students with considerable success.

6. Systems Biology

Simple counting arguments, as we have noted, can lead us to an apprecia-
tion of the remarkable diversity of life on earth. Modern mathematical methods
allow us to deal with huge ecosystems and understand massive amounts of eco-
logical data. Mathematical ecology and population biology has a long history.
Yet, modern biology runs the gamut between understanding very huge systems
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and very tiny systems. In 2003, the National Science Foundation and the Na-
tional Institutes of Health asked me to organize a Workshop entitled Informa-
tion Processing in the Biological Organism (A Systems Biology Approach). (See
http://dimacs.rutgers.edu/Workshops/InfoProcess/ for information and a program
of the Workshop.) The key thesis of the Workshop was that the potential for dra-
matic new biological knowledge arises from investigating the complex interactions
of many different levels of biological information.

Such information starts from the small: DNA, RNA, and proteins. It extends
to protein interactions and biomolecules, protein and gene networks, and from
there to cells, organs, individuals, populations, and ecosystems. The Workshop
investigated information processing in biological organisms from a systems point of
view – the point of view in the modern area of research known as systems biology.
The list of “parts” is a necessary but not sufficient condition for understanding
biological function. Understanding how the parts work is also important. But it
is not enough. We need to know how they work together. This is the systems
approach. The Workshop was organized around four themes illustrative of the
systems approach: Genetics to gene-product information flows; signal fusion within
the cell; cell-to-cell communication; and information flow at the whole system level,
including environmental interactions.

Some examples discussed at the Workshop will illustrate this approach. Prince-
ton University professor Bonnie Bassler talked about her work on information pro-
cessing between bacteria that helps squids maneuver in the dark. Bacteria process
the information about the local density of other bacteria through a chemical lan-
guage that allows them to “count” numbers of other bacteria and react as a popu-
lation when this number has reached a “critical mass.” They use this, for example,
to produce luminescence. The process involved can be modeled by a mathemati-
cal model involving quorum sensing. Similar quorum sensing has been observed
in over 70 species. For more on this topic, see http://www.hhmi.org/research/-
investigators/basslerbio.html and http://www.molbio.princeton.edu/index.php
?option=content&task=view&id=27 (Quorum sensing is anticipated to be the topic
of a future module in the BMC project.)

A second example involved a feedback system called the “P53-MDM2” loop,
which is used in DNA damage repair. This was presented by Uri Alon, Weizmann
Institute, and Galit Lahav, Harvard University. Alon and Lahav and their col-
laborators (Lahav, et al., [2004]) modeled the process by which the P53 - MDM2
feedback loop contributes to the regulation of DNA damage repair. This loop re-
sults in a warning signal when there is stress to the DNA and the system then
decides whether to repair the damage or allow a cell to die – the death of a cell
might protect the life of the organism.

A third example, based on the work of Raimund Winslow of Johns Hopkins
University, was concerned with mathematical modeling of systems in the body such
as the heart, specifically of phenomena arising in excitation/contraction coupling
in the ventricle. Winslow’s models (Hinch, et al. [2004]) study the behavior of
calcium release channels, which are understandable using stochastic models based
on notions of probability. The work has application to the connection between
heart failure and sudden cardiac death.

These three examples involve more sophisticated mathematics than the count-
ing ones, in fact dynamical systems and differential equations. However, at some
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level, these too can be explained to high school students. Feedback loops can
be represented as vertex-edge graphs. Quorum sensing involves simple concepts
like majority rule. The stochastic nature of calcium release and other biological
phenomena can be discussed at the level of simple probabilities. What is most
important here is the wide variety of biological phenomena that can be discussed
using mathematical language.

7. Graph-theoretical Models of the Spread of Infectious Disease

So, how did I get to model smallpox? In 2001, a group of us at DIMACS was
discussing the news that “mad cow disease” had been identified in a cow in the U.S.
One of my colleagues suggested that, since mathematicians were smart, maybe they
could apply their methods to understand this disease, which threatened the food
supply, the health of both cattle and humans, and the economy. Further discussions
led to a plan for a DIMACS 5-year program on mathematical and computational
epidemiology that would involve workshops, tutorials, and research groups on a
wide variety of mathematical problems arising from trying to understand the spread
of infectious disease. This was the DIMACS special focus on Computational and
Mathematical Epidemiology mentioned earlier. Diseases to be studied included
AIDS, malaria, influenza, etc. Workshops were planned on evolution of viruses,
vaccination strategies, and methods of data mining for early detection of disease.
We planned to initiate this program in Fall 2002. However, the September 11,
2001 World Trade Center terror attacks and subsequent anthrax attacks led us
to rethink this. We were all set to go, and started earlier than planned, with an
emphasis on bioterrorism motivated by the anthrax attacks. Since smallpox is one
of the diseases that is considered a potential bioterrorist threat, we were led to
discuss this disease. We organized a research group on mathematical methods for
defense against bioterrorism, and it was through connections made in that group
that I was asked to serve on a federal smallpox modeling group. (I also wrote an
article on challenges for the mathematical sciences in defense against bioterrorism;
see Roberts [2003].)

While much of classical mathematical epidemiology is based on methods of
differential equations and dynamical systems, work in other areas of mathematics
more accessible to the high school audience is also relevant and growing – as I noted
above. Diseases are spread through social networks. “Contact tracing” (identifying
the contacts people might have with those who are infected) is an important part of
any strategy to combat outbreaks of infectious diseases, whether naturally occurring
or resulting from bioterrorist attacks. A simple way to model social networks is
to use vertex-edge graphs. The vertices represent people and an edge between
two people indicates that they have some contact. Assume that vertices are in
different states that may change over time. Let si(t) give the state of vertex i at
time t. In the simplest case, we might consider two states, 0 = susceptible, 1 =
infected. (This is an SI Model.) We assume that times are discrete: t = 0, 1, 2, . . .
More complicated models involve more states, e.g., susceptible, infected, exposed,
recovered, etc. (SEI and SEIR models). The Kaplan-Craft-Wein model for the
spread/control of smallpox, published in 2003, involved 16 different states. This
included different stages of the disease, immune (through vaccination or recovery
from the disease), traced but not vaccinated, etc. (See Kaplan, Craft, and Wein
[2003].)
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In such graph-theoretical models of the spread of disease, a vertex moves from
state to state every discrete time. But what kinds of movements are allowed? Once
you are infected, can you be cured? If you are cured, do you become immune or
can you re-enter the infected state?

In a simple model with only two states 0 and 1, we set a “threshold” k and
assume that a person in state 0 at time t moves to state 1 if at least k of their
neighbors in the graph are in state 1: You become infected if sufficiently many of
your neighbors are infected. It is assumed that once you are in state 1, you never
go back to state 0. We call this process an irreversible k-threshold process.
It is illustrated in Figure 8, where we take k = 2 and show the progression over
time of the state of infection of vertices in a graph. Here, we represent the infected
vertices (state 1 vertices) with solid circles like c and d, and the uninfected vertices
(state 0 vertices) with hollow circles like a and b. Notice that at time 1, vertices a
and b change from state 0 to state 1 since they each have two neighbors in state 1.
Also, by time t = 2, the situation is fixed and never changes again.

Figure 8. An irreversible k-threshold process with k = 2. Solid
vertices are infected (state 1), hollow ones uninfected (state 0).

There are various complications we could add to this model, and I like to let my
students suggest them. For instance, we could take k = 1, but only allow a vertex
to get infected with a certain probability if it has an infected neighbor. We could
add the condition that you are automatically cured after you are in the infected
state for d time periods. We could give a public health authority the ability to
“vaccinate” a certain number of vertices, making them immune from infection.

Mathematical models are very helpful in comparing alternative vaccination
strategies. The problem is especially interesting if we think of protecting against
deliberate infection by a bioterrorist. If you didn’t know whom a bioterrorist might
infect, what people would you vaccinate to be sure that a disease doesn’t spread
very much? In terms of the graph, we will think of vaccinated vertices as staying
at state 0 regardless of the state of their neighbors. The question of whom to
vaccinate makes a good exercise for students. Consider the graph of Figure 9, a “5-
cycle.” One strategy is “mass vaccination”: Make everyone 0 and immune in the
initial state. In the 5-cycle, mass vaccination means vaccinate all 5 vertices. This
obviously works to protect the population in the sense that no one can be infected.
However, in practice, vaccination is only effective with a certain probability, so
results could be different. Also, vaccines have side effects, so some people could get
sick or even die if we vaccinate. If vaccine has no cost and is unlimited and has no
side effects, of course we use mass vaccination.



18 FRED S. ROBERTS

Figure 9. A 5-cycle.

What if vaccine is in limited supply? Suppose we only have enough vaccine to
vaccinate 2 vertices. Suppose we can only vaccinate at time 0 and no new vaccine
will become available after that time. Suppose an adversary has two doses of a
“pathogen” that can be used to infect two vertices at time 0. Consider an irre-
versible 2-threshold process. There are, up to symmetry, two different vaccination
strategies: Vaccinate two neighboring vertices and vaccinate two non-neighboring
vertices. These are shown in Figures 10 and 11, with a V indicating vaccinated
vertices. If you assume your adversary does not try to infect vaccinated vertices,
the adversary has in each case, up to symmetry, two responses: infect neighbor-
ing vertices or non-neighboring vertices. The “alternation” between your choice of
a defensive strategy and your adversary’s choice of an offensive strategy suggests
we consider the problem from the point of view of game theory. The Food and
Drug Administration is studying the use of game-theoretic models in the defense
against bioterrorism. In the graph of Figure 10, in an irreversible 2-threshold pro-
cess, if the adversary infects two neighboring non-vaccinated vertices, no one else
gets infected. However, if the adversary infects two non-neighboring non-vaccinated
vertices, three vertices end up being infected. In the graph of Figure 11, in an irre-
versible 2-threshold process, no matter what the adversary does by way of infecting
two non-vaccinated vertices at time 0, no one else gets infected. Thus, the vaccina-
tion strategy represented by Figure 11 is better in the sense that in the worst case
fewer people end up getting infected. Your students could “play” with this type
of problem for larger graphs, make assumptions that allow one to vaccinate more
often or the adversary to infect people more often, etc.

Figure 10. First vaccination strategy. V indicates vaccinated vertices.
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Figure 11. Second vaccination strategy. V indicates vaccinated vertices.

Suppose an adversary is out to infect as many people as possible. Given a
graph, what subsets S of the vertices should he or she plant a disease with so
that ultimately the maximum number of people will get it? This problem has an
economic interpretation: What set of people do we place a new product with to
guarantee “saturation” of the product in the population? As a defender against
bioterrorism, your job can be defined as follows: Given a graph, what subsets S
of the vertices should we vaccinate to guarantee that as few people as possible will
be infected? A more extreme version of the attacker’s problem is: Can we find a
set of vertices to infect that will guarantee that ultimately everyone is infected?
Mathematically, we speak of an irreversible k-conversion set: A subset S of the
vertices that can force an irreversible k-threshold process to the situation where ev-
ery state si(t) = 1. Note that if we can change back from 1 to 0 at least after awhile,
we can also consider the Defender’s Problem: Can we guarantee that ultimately no
one is infected, i.e., all si(t) = 0? A variant of the Defender’s Problem asks us to
design a graph (with a given number of vertices and/or edges) that minimizes the
number of vertices an opponent can ultimately force into the state 0.

To illustrate these ideas, consider the graph of Figure 12. It is easy to see that
an irreversible 2-conversion set consists of the vertices x1 and x3. For if we infect
them at time 0, then at time 1, x2 gets infected, then at time 2, x4 and x5 get
infected, and at time 3, x6 gets infected.

Figure 12. The set {x1, x3} is an irreversible 2-conversion set.

One can prove a variety of theorems about irreversible k-conversion sets. See
Dreyer and Roberts [2009] for details. Here, we simply note some simple examples
that students might be challenged to investigate. The size of the smallest irre-
versible 2- conversion set in a cycle with n vertices is ceiling[n/2], i.e., the least
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integer greater than or equal to n/2. This is easy to verify, starting with examples.
Finding irreversible k-conversion sets in trees and in grids also makes for interest-
ing exercises illustrative of the concepts. Remarkably, even for grids in the plane,
we don’t know the size of the smallest irreversible k-conversion sets even for small
values of k.

A variant on the vaccination problems we have discussed allows a defender to
vaccinate v people per time period, while an attacker can only infect people at the
beginning. What vaccination strategy minimizes the number of people infected? In
the literature, this is sometimes called the firefighter problem and we think of a
forest with trees, with a blaze spreading from trees to neighbor trees unless there is
a firefighter placed at those trees. Consider an irreversible k-threshold process with
k = 1, so a tree catches fire if any of its neighboring trees are on fire and it does not
have a firefighter protecting it. This is a place to observe an important property of
mathematical models: Once we translate a problem into mathematical language,
the analysis can apply under multiple interpretations, whether it is firefighting or
infection control. A variation on this problem in the infection context has the
vaccinator and infector alternate turns, having v vaccinations per period and p
doses of pathogen per period. What is a good strategy for the vaccinator?

To illustrate the process with v = 3 and i = 0 on a grid, consider the 8 × 12
rectangular grid, where point (i, j) means the point in row i and column j. Suppose
the process starts with vertex (4, 7) infected. One possible defensive strategy then is
for the vaccinator to put firefighters at (“vaccinate”) vertices (3, 6), (3, 8), and (5, 7).
If this is done, then the fire spreads to vertices (3, 7), (4, 6), and (4, 8), the three
“unprotected” neighbors of (4, 7). Suppose the vaccinator then puts firefighters
at (2, 7), (4, 5), and (5, 6). In turn, the fire spreads to (4, 9) and (5, 8). Suppose
now the vaccinator puts firefighters at (3, 9), (4, 10), and (5, 9). Now the fire can
only spread to (6, 8). In the final step, it is completely surrounded by putting
firefighters at (6, 7), (6, 9), and (7, 8). There are many issues to be studied in the
firefighter/disease spread problem. In the language of firefighting, we might ask:
Can the fire be contained? How many time steps are required before the fire is
contained? How many firefighters per time step are necessary? What fraction of
all vertices will be saved (burnt)? Does where the fire breaks out matter? What
about a fire starting at more than one vertex? For some references on the firefighter
problem, see Dreyer and Roberts [2009] and, for example, Hartnell and Li [2000],
MacGillivray andWang [2003], andWang and Moeller [2002]. In the above example,
12 firefighters (doses of vaccine) are required to contain the fire (epidemic) and in
the end, out of 96 vertices, seven are burnt and the rest are saved. Your students
might want to see if they can do better than this either in terms of number of
firefighters needed or in terms of more vertices saved.

One example of a problem that should be readily accessible to high school
students involves fighting diseases (firefighting) on graphs that are given as trees
that are rooted and that we can navigate from top to bottom. For each vertex
u, define the weight(u) = 1 + number descendants of u, where a descendant is a
vertex reachable from u by a path heading downwards in the tree. Assume that
the number of doses of vaccine (number of firefighters) per time period is given by
v = 1 and the attacker infects the root and then cannot infect anyone after that.
One algorithm for distributing doses of vaccine is the greedy algorithm: At each
time step, place a firefighter (vaccinate) a vertex u that has not been saved such
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that weight(u) is maximized. Consider the tree of Figure 13. A disease starts at
the root. In the following process, the vertices that end up being infected are shown
in the figure as black, while those that end up being noninfected are white. The
vertices one level below the root are called level 1 vertices, and similarly for level
2, level 3, etc. The leftmost vertex at level 1 has weight 12 and that is highest, so
it is vaccinated. At time t = 1, all other vertices at level 1 are infected but vertices
descended from the vaccinated vertex can never get infected. Next, we consider
vertices at level 2 that are not descendants of a vaccinated vertex. Two of them
have the maximum weight 6. We choose at random in case of ties, say choosing the
weight 6 vertex to the right to vaccinate, thus also saving all its descendants. The
remaining level 2 vertices now get infected at time t = 2. At t = 3 we vaccinate
one of the vertices at level 3 that is not a descendant of a vaccinated vertex and
that has weight 3 and at time t = 4, we vaccinate one of the vertices at level 4 that
is not a descendant of a vaccinated vertex. In the end, if this greedy procedure is
used, 26 vertices are infected and 22 are not.

The greedy algorithm does not always lead to the result with the largest num-
ber of uninfected people. For example, consider the tree of Figure 14. If we use the
greedy algorithm, we vaccinate the right-hand vertex at level 1 and end up with 7
uninfected people. However, if we vaccinate the left-hand vertex at level 1, we can
end up with 9 uninfected people. Hartnell and Li [2000] showed that for any tree
with one infection starting at the root and one dose of vaccine to be deployed per
time step, the greedy algorithm always saves more than half of the vertices that
any algorithm saves. Is this an acceptable solution? If we have a rapidly escalating
epidemic, finding a speedy solution that is pretty good through an efficient algo-
rithm might be preferable to finding an optimal solution if it takes so long to find
the latter that it cannot be implemented in time.

Figure 13. Tree for which the greedy algorithm leads to 26 in-
fected and 22 uninfected vertices. The infected vertices are black,
the uninfected ones white.

These graph-theoretical models of spread of disease have engaged me and my
graduate students. At the same time, I have talked about them to high school
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Figure 14. Tree for which the greedy algorithm does not lead to
the smallest number of uninfected people.

audiences. One group of high school students at the Charter School of Wilmington
developed smallpox models that led to their winning first place at the New Castle
Science Fair and invitation to the International Science and Engineering Fair in
Cleveland, Ohio. They were later invited to present their work to a group of
researchers at a workshop on epidemiological modeling at DIMACS.

8. The African BioMath Initiative and Measurement Problems (Cough
Severity, Fatigue)

Over the last two decades, the African continent has experienced devastating
loss of life with catastrophic consequences, owing to the spread of deadly diseases
such as HIV/AIDS, tuberculosis, malaria, and influenza. Diseases of Africa pro-
vide new and complex challenges for mathematical modeling. Because of mod-
ern transportation systems, no one in the world is safe from diseases originating
elsewhere. Major new health threats such as H1N1 virus (“swine flu”) or avian
influenza present especially complex challenges to modelers in the context of de-
veloping countries. Such challenges were explored in several workshops during
the DIMACS Special Focus on Computational and Mathematical Epidemiology
and then led DIMACS to a major new African Biomathematics initiative (see
http://dimacs.rutgers.edu/US-AfricanInitiative/). We have already run workshops
and student short courses for U.S. and African participants on mathematical mod-
eling of infectious diseases of Africa. The goals of our African initiative include
studying challenges for mathematical models arising from the diseases of Africa; un-
derstanding the special challenges from diseases in resource-poor countries; bringing
together U.S. and African researchers and students to collaborate in solving these
problems; and laying the groundwork for future collaborations to address problems
of public health and disease in Africa. The long-run future of collaborations on
these problems rests in getting young people interested in them. This starts at the
precollege level.

Our African Initiative has already led to some themes that should be of special
interest to high school students. In several meetings/short courses in South Africa,
we have worked on mathematical problems arising from diseases that inflict a sig-
nificant burden on Africa. HIV/AIDS is a major case in point. Here, mathematics
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has been important in evaluation of alternative preventive and therapeutic strate-
gies; allocation of anti-retroviral drugs; evolution and transmission of drug-resistant
strains of antibiotics; and the interaction of HIV/AIDS with other infections such
as TB and malaria. (Such “coinfection” is a major theme in modern mathematical
epidemiology.) Malaria is another interesting case in point. For malaria, mathe-
matics has helped develop new methods of control (e.g., insecticide-treated cattle).
It has also been used to study the effect of global warming on mosquito populations
– a topic of central importance in a new DIMACS initiative on climate and disease.
Children are often exposed to news about climate change and other similar prob-
lems of society. Many of these problems are fundamentally interdisciplinary and it
is important for them to understand as early as possible how different disciplines
interface.

Diseases of animals are of special significance in the developing world. In Africa,
some key examples of such diseases are bovine tuberculosis (in domestic and wild
populations), avian influenza, and trypanosomiasis. Since children are especially
interested in animals, discussion of animal diseases has the strong potential of
engaging them. Our workshops and short courses in Africa have included math-
ematical models of animal diseases. The U.S. Department of Homeland Security
has established a university “center of excellence” FAZD (the National Center for
Foreign Animal and Zoonotic Disease Defense), based at Texas A&M University,
to study the spread of disease among animals. FAZD (see http://fazd.tamu.edu/)
has an extensive educational program, emphasizing the importance of educating
the next generation of homeland security workers in the area of disease.

While we hear about human diseases a great deal, and from time to time are
exposed to diseases of animals, few of our young people understand that plants are
also subject to disease. Diseases of plants are a major threat to the food supply
not only in Africa but everywhere in the world. The Department of Homeland
Security has also established a university center of excellence NCFPD (National
Center for Food Protection and Defense), based at the University of Minnesota,
that deals with protection of the food supply. A number of mathematical questions
amenable to presentation at the high school level include the dose-response models
needed to understand the impact on human health of certain concentrations of
agents in food, and NCFPD, like FAZD, has an extensive educational program.
(See http://www.ncfpd.umn.edu/ for more about NCFPD.)

DIMACS is running some new programs in its African Initiative. Each presents
possible problems of interest at the high school level. A DIMACS workshop and
shortcourse on conservation biology was held in South Africa in 2010. They dealt
with the mathematics of ecological reserves. A key idea here that could lead to
interesting discussion at the high school level is to define a notion of biological
diversity that applies to a reserve with a variety of species and that provides a
reasonable metric for the health of the reserve. Is biodiversity the inclusion of a lot
of species? A reasonable distribution of individuals in each species? A distribution
of individuals of varying ages? (See for example Sarkar [2002].) Another DIMACS
workshop, to be held in Madagascar, will deal with genetics and disease control. In
terms of food supply, this will deal with the safety of genetically altered crops. In
terms of diseases, it will consider for example control of malaria by genetically mod-
ifying mosquitoes. One idea here is to sterilize male mosquitoes. What percentage
of males do you need to sterilize to cut mosquito population significantly? What
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if sterilized males are more attractive to females for mating – say 25% more? Or
what if they are less attractive? How would this change the conclusions? (For more
on this topic, see for example Adam [2005].) Still a third workshop and shortcourse
was held in Uganda in 2009. It explored the relationship between economics and
epidemiology. If people won’t comply with a quarantine order, how much should
we pay them to do so? What incentives will encourage more people to get tested
for HIV? (For more on economic epidemiology, see e.g., Klein, et al. [2007]). We
have followed up this workshop with an emphasis on “behavioral epidemiology”
in the DIMACS Special Focus on Computational and Mathematical Biology, ex-
ploring ways to bring into epidemiological models the difference between individual
responses to disease events, caused by their own personal economic considerations
or their own priorities, concerns, and attitudes toward risk. These issues of eco-
nomic epidemiology, genetics and disease control, and conservation biology can all
be formulated in relatively simply mathematical models that should be of interest
both in Biology and Mathematics classes at the high school level.

One of the major complications of HIV is the susceptibility of patients to other
diseases, in particular tuberculosis. One activity that can be of interest even at very
elementary precollege levels is to discuss how to measure the severity of the cough
associated with TB. Another is to measure the fatigue associated with any disease
such as HIV. Typically, we measure severity of a patient’s cough on a 5-point scale:
5 = extremely severe, 4 = very severe, 3 = severe, 2 = slightly severe, 1 = no cough.
To test a particular cough-suppressant, we might ask if the average cough severity
in a group of patients treated with the suppressant is lower than the average in a
“control” group. To make this precise, we let a1, a2, . . . , an be the patients in the
first group and b1, b2, . . . , bm be the patients in the second group. Let f(x) be the
severity of patient x’s cough. Then we would like to see if

(1)
1

n

n
∑

i=1

f(ai) <
1

m

m
∑

i=1

f(bi).

We are comparing arithmetic means. Note that there can be a different
number of patients in each group, which is why we use n for one and m for the
other. For instance, if there are three patients in the test group and five in the
control group, those in the test group have cough severities 4, 3, and 1 while those
in the control group have cough severities 5, 5, 2, 1, and 1, then the average cough
severity in the test group is 2.67 while that in the control group is 2.8 and we
conclude that, indeed, the average cough severity is less in the first group. On the
other hand, if we were comparing the median cough severity, then the test group has
median 3 and the control group median 2, and the conclusion about average cough
severity is no longer true. We have to decide which of these two ways of averaging
scores is the more appropriate one, which may depend on the application. (There
are more complications. In the theory of measurement (Roberts [1979, 1994]), one
distinguishes the types of scales used. In this case, it is possible to argue that the
5-point scale is “ordinal”. In the case of ordinal scales, there are arguments that
comparison of medians is “meaningful” in a precise sense whereas comparisons of
arithmetic means is not.)

Judgments of cough severity are subjective. Suppose we ask a number of health
care professionals to make a judgment of the severity of patients’ coughs. We want
to compare the average cough rating of patient a to the average cough rating of
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patient b. Let fi(x) be the cough severity rating of patient x by health care worker
i. Now, instead of Equation (1), we have

(2)
1

n

n
∑

i=1

fi(a) <
1

n

n
∑

i=1

fi(b).

Note the subtle differences between Equations (1) and (2). In (2), we have the same
n on both sides since there are the same number of raters in each case. Also, the
subscript has moved to the f. We can make the same kind of analysis as before.
Here, the exercise is to ask the students to produce the equation and to explain the
differences.

If instead of cough severity, we talk about weight loss, then we could measure
the weight in kilograms or in pounds. If we do that, then it is a good exercise
to have the students show that if (1) is true in kilograms, it must also be true
in pounds, and vice versa. It is also true that if (2) is true with all raters using
kilograms, then it is also true if all raters use pounds, and vice versa. However, it
is also an interesting exercise to ask students to give a numerical example to show
that if raters can choose their scales, then (2) can be true with some raters using
pounds and some using kilograms but false with some other combinations of who
uses pounds and who uses kilograms. For example, you could ask the students to
show via numerical example that if n = 2 and rater 1 uses pounds while rater 2
uses kilograms, then statement (2) could be true, whereas if rater 1 switches to
kilograms and rater 2 switches to pounds, then (2) could fail. Surprisingly, the
latter is not the case for geometric means and it is a good exercise to prove this.
Here, we are talking about the statement

(3) n

√

√

√

√

n
∏

i=1

fi(a) <
n

√

√

√

√

n
∏

i=1

fi(b)

Similar examples can be given using the scale measuring fatigue. In serious
diseases, one widely used scale is the Piper scale of fatigue. It asks questions like:

• On a scale of 1 to 10, to what degree is the fatigue you are feeling now
interfering with your ability to complete your work or school activities?
(1 = none, 10 = a great deal)

• On a scale of 1 to 10, how would you describe the degree of intensity or
severity of the fatigue which you are experiencing now? (1 = mild, 10 =
severe)

For more on averaging judgments of cough severity and of fatigue, see Roberts
[2010].

9. Biosurveillance

As diseases spread rapidly from country to country or within a large country,
and, for example, travelers from Africa can bring highly infectious diseases such
as Ebola across the miles to the U.S. in a matter of hours, it becomes incumbent
upon us to develop new ways of identifying the outbreak of diseases. Early on in
my exposure to epidemiology, I learned about the importance of “biosurveillance.”
Biosurveillance is aimed at giving us early warning of the outbreak of a disease
– whether naturally occurring or caused by a bioterrorist. This involves modern
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data-gathering methods, which bring with them new challenges for mathematicians.
There are some obvious types of data to gather in biosurveillance, including reports
on number of people diagnosed with a given disease. However, before diagnosis,
we would like to get early warning that something is happening. For this purpose,
we want to look at a variety of data and see if, using various pieces of data, we
can see patterns that suggest that there is a “disease event” taking place. Some
of the unusual sources of data being considered today are: managed care patient
encounter data; pre-diagnostic/chief complaint (emergency department data); over-
the-counter sales transactions at drug stores or grocery stores; 911-emergency calls;
ambulance dispatch data; absenteeism data; emergency department discharge sum-
maries; prescription/pharmaceuticals; “hits” on certain medical information web-
sites; and “adverse event reports” about responses to diseases and vaccines. For
example, the New York City Department of Health (see e.g., Mostashari [2002])
looks for absenteeism among subway workers, who presumably would be exposed
to a new disease in the city through subway riders. But it might combine this with
other data. For instance, suppose there is an unusual amount of subway worker
absenteeism in workers whose trains pass through a part of the borough of Brook-
lyn and there is also an increase in sales of Tylenol in the same neighborhood and
an increase in “hits” on websites that deal with “achy legs.” This “syndrome” of
data might give warning that a certain event is taking place. Today, we some-
times talk about the special type of biosurveillance called “syndromic surveillance”
(see http://www.cdc.gov/ncphi/disss/nndss/syndromic.htm) that includes combi-
nations of symptoms and other observed phenomena. New methods of syndromic
surveillance are being developed. They include spatial-temporal “scan statistics;”
statistical process control (SPC); Bayesian applications; “market-basket” associa-
tion analysis; text mining; rule-based surveillance; and change-point techniques.
It should be easy to devise exciting classroom activities that include syndromic
surveillance where we give each student some symptoms and do some “monitoring”
to discover syndromes.

At DIMACS, our work on syndromic surveillance was carried out in a “working
group” on disease detection, which led to collaboration with the CDC (U.S. Centers
for Disease Control and Prevention). CDC has recently launched a new program
on mathematical modeling of disease.

There are many sources of data that students can access and examine in class-
room activities involving syndromic surveillance. Some examples are the following6:

• Morbidity and Mortality Weekly Report: http://www.cdc.gov/mmwr/
• SEER Cancer Registry: http://seer.cancer.gov/
• US Vital Statistics: http://wonder.cdc.gov/welcome.html

10. Bioterrorism Sensor Location

Early warning is critical in public health and that is a major reason for our
emphasis on new tools for biosurveillance. Biosurveillance is important for all kinds
of diseases, both naturally-occurring ones, ones that come around periodically like
influenza, and those that are deliberately introduced by “bioterrorists.” Smallpox is
one of the diseases that the government fears could be reintroduced by bioterrorists.
I say “reintroduced” because we believe that smallpox has been eradicated in the

6Thanks to Dona Schneider for suggesting these.
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world. The only known stores of smallpox virus are kept in two locations in the
world, one in the U.S. and one in Russia. However, there is concern that terrorists
could get hold of some of the virus or genetically engineer a copycat virus, and thus
introduce a smallpox epidemic. One of the ways that the government seeks to get
early warning about potential bioterrorist attacks with diseases like smallpox is to
place networks of sensors/detectors to warn of such attacks. A key challenge is to
determine where to best locate these sensors.

There are many issues surrounding the location of bioterrorism sensors that
could make for good student activities. In 2006, DIMACS’ work on epidemiology
and bioterrorism, among other things, led to the center being named a “center of
excellence” by the U.S. Department of Homeland Security (DHS). Through Dy-
DAn, the DHS Center of Excellence for Dynamic Data Analysis that is based at
DIMACS, I have already presented some potential activities to high school teach-
ers that involve sensor location problems. (DyDAn is being supplanted by the new
DHS Center of Excellence, the Command, Control, and Interoperability Center for
Dynamic Data Analysis, CCICADA, also based at DIMACS.)

I first got involved with the bioterrorism sensor location initiative when the
U.S. Defense Threat Reduction Agency asked me to think about the mathematical
problem of locating sensors/detectors in an efficient way. I ended up learning a
lot about the problem from the Institute for Defense Analyses and from the New
York City Department of Health. Sensors are finding many uses in homeland se-
curity. We place sensors in buildings, on bridges, at border crossings, and even
on uniforms of police. These sensors sense radiation, dangerous chemicals, biolog-
ical agents, etc. Similar issues arise in placing sensors to protect against or give
early warning about attacks with chemical or nuclear weapons or attacks on our
networks: communication, financial, power, etc.

Bioterrorism sensor location problems are probably best explored in parallel
between Biology and Mathematics classes. For example, Biology students could
learn about how such sensors work. Typically, the sensors collect samples in the
air over a period of time, like a day, and then those samples are brought to a
laboratory for analysis. Students could study how the analysis is made and how
long it takes, and think about how to speed up the process. Mathematics students
could study more about the mathematics of efficient location patterns, which I
describe below. In turn, Biology students could study the properties of the different
types of “pathogens” of concern in bioterrorism and connect those properties up to
the location problem.

Sensors are expensive. How do we select them and where do we place them
to maximize “coverage,” expedite an alarm, and keep the cost down? Approaches
that improve upon existing, ad hoc location methods could save countless lives in
the case of an attack and also money in capital and operational costs.

We can define two fundamental problems. The Sensor Location Problem
(SLP) is to choose an appropriate mix of kinds of sensors and decide where to
locate them for best protection and early warning. The Pattern Interpretation
Problem (PIP) involves what to do when sensors set off an alarm. How can
we help public health decision makers decide: Has an attack taken place? What
additional monitoring is needed? What was the attack’s extent and location? What
is an appropriate response?
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The first step in addressing the SLP is to formulate models for making it precise
and measures of success of a sensor distribution plan. There are many possible
formulations of the SLP and these present good explorations for your students in
Math classes. What, indeed, is a measure of success? Is it to identify and ameliorate
false alarms? To defend against a “worst case” attack or an “average case” attack?
To minimize time to first alarm? (Worst case? Average case?) To maximize
“coverage” of the area? To minimize geographical area not covered? To minimize
size of population not covered? To minimize probability of missing an attack? Your
students can be asked to come up with such criteria (and others). Other criteria
involve cost. For example, given a mix of available sensors and a fixed budget,
what mix will best accomplish our other goals? It is hard to separate the goals.
Even a small number of sensors might detect an attack if there is no constraint on
time to alarm. Without budgetary restrictions, a lot more can be accomplished.
Of special interest are the biological characteristics of the different viruses that
might be used in a bioterrorist attack. Among those of interest besides smallpox
are plague and tularemia. They differ in size, weight, concentration needed to
be dangerous, etc. In turn, these characteristics of viruses affect where to locate
sensors that try to capture them. If viruses are disbursed through the air, lighter
viruses might be higher up, for example, than lower ones. I can imagine some very
interesting investigations for Biology students in connection with the location of
sensors to capture viruses with particular characteristics.

One approach to the SLP is to develop new algorithmic methods. Developing
new algorithms involves fundamental mathematical analysis. Analyzing how effi-
cient algorithms are involves fundamental mathematical methods. Implementing
the algorithms on a computer is often a separate problem – which needs to go hand
in hand with the basic mathematics of algorithm development. All of these are
topics appropriate for a Math class. For example, one can investigate “greedy al-
gorithms.” In such algorithms, we first find the “most important” location to place
a sensor and locate a sensor there. (What things could “most important” mean?)
Then we find the second-most important location. And so on. This approach
has been explored by researchers at the Institute for Defense Analyses. It uses a
“steepest ascent method” that doesn’t guarantee an “optimal” or best solution but
in practice gets close to optimal. Students could try this out by overlaying a map
of New York City or Washington, DC with bioterrorism sensors, each of which has
a circle around it representing area in which it can detect pathogens. One can see
how few sensors can cover the region “almost” completely.

Problems of locating facilities (fire houses, garbage dumps, etc.) are classical
problems in the field of the mathematical sciences known as operations research.
Often, these problems are defined on networks with vertices and edges and with
differing distances along edges. Users u1, u2, . . . , un are located at vertices. One
approach is to locate the facility at vertex x chosen so that sum of distances to
users is minimized. Thus, we want to minimize

∑

i d(x, ui), where d(x, ui) is the
distance between x and ui. Consider for example the network of Figure 14, where
the vertices are places for users or facilities and every edge has the same distance,
1, as indicated. If d(x, y) = length of shortest route from x to y, then, for example,
d(a, c) = 2. Given users at f = u1, b = u2, and c = u3, where do we place
a facility to minimize the sum of distances to the users? A simple calculation
shows that if x = a, then

∑

i d(x, ui) = 1 + 1 + 2 = 4, while if x = b, then
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∑

i d(x, ui) = 2 + 0 + 1 = 3. By calculating the same sums for other values of x,
we find that x = b is an optimal location for the facility. An alternative approach
is to locate the facility at a vertex x chosen so that the maximum distance to one
of the users is minimized. If x = d, then maxi d(x, ui) = 2 while if x = e, then
maxi d(x, ui) = 3. By similar calculation, we find that with this notion of best
location, there are three optimal locations, a, b, and d. Your students could solve
similar location problems on other networks. (For a general reference on facility
location problems, see for example Drezner and Hamacher [2004].)

Figure 15. Given users at f , b, and c, the location that minimizes
the sum of the distances from the location to the users is given by
vertex b. The three locations that minimize the maximum distance
to one of these users are a, b, and d.

This version of classical facility location is too simplified for bioterrorism sensor
location. We don’t have a network with vertices and edges; we have points in
a city. Sensors can only be at certain locations (limited by size, weight, power
source, hiding place, and perhaps by the biological and physical characteristics
of the viruses or other pathogens being collected). We need to place more than
one sensor. Instead of “users,” we have places where potential attacks take place.
Potential attacks take place with certain probabilities. Wind, buildings, mountains,
etc. add complications. The type of biological agent used in an attack determines
speed of spread, vertical and horizontal height above the ground, etc., etc. It would
make for a good exercise to ask your students to suggest such complications.

The Pattern Interpretation Problem (PIP) can also lead to interesting class-
room activities. It will be up to the decision maker to decide how to respond to an
alarm from the sensor network. If a goal is to minimize false alarms, one approach is
to use redundancy. We could require two or more sensors to make a detection before
an alarm is considered confirmed. We could require the same sensor to register two
alarms: The bioterrorism sensor known as “Portal Shield” requires two positives for
the same agent during a specific time period. We could place two or more sensors
at or near the same location and require two proximate sensors to give off an alarm
before we consider it confirmed. Perhaps your students could suggest other ways
in which redundancy could be used. Note that redundancy has drawbacks such as
cost and delay in confirming an alarm. We need mathematical methods to analyze
the tradeoff between lowered false alarm rate and extra cost/delay

Another approach to the PIP involves decision rules. Existing sensors come
with a sensitivity level specified and sound an alarm when the number of particles
collected is sufficiently high – above threshold. An alternative decision rule is to



30 FRED S. ROBERTS

sound an alarm if two sensors reach 90% of threshold, three reach 75% of threshold,
etc. These rules could be formulated precisely in the language of mathematics and
some examples illustrating such decision rules could make for interesting exercises.
Biology students could collaborate with Mathematics students in designing these
rules. For instance, could 75% of threshold have no biological significance while 90%
does? Most likely, the answers to these questions are: We don’t know or we think
that 75% is dangerous with probability p while 90% is dangerous with probability
p′ > p. This will then lead to questions of the meaning of probability estimates and
to risk assessment. Ah, but I could go on and on.

11. Closing Comments

Smallpox has taken me far afield. While my interest in and excitement about
ecological models and DNA-RNA has continued, indeed grown, smallpox has gotten
me into activities I never would have dreamed of less than a decade ago – using my
background and skills to address problems of public health, the spread of disease,
protection against bioterrorist attacks, climate change, and the cost of health care.
There is a wide variety of topics that arise from the interconnections between the
biological and mathematical sciences. So many of these are appropriate for high
school students in both Biology and Mathematics classes. Introducing students
to such topics should prepare them for a new world in which the traditional lines
between disciplines are increasingly fuzzy, in which new careers are developing
and new educational opportunities are opening up, in which it is incumbent upon
us to understand Mathematics so as to understand Biology, and in which it is
incumbent upon us to teach our students the value of Mathematics for so many
applied problems that affect our world and their lives. Bringing the bio-math
interface into the high schools is not going to be easy, but the rewards for doing so
will be great.
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