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Abstract 

 
Terrorist nuclear attack is a potentially devastating threat to homeland security. It is increasingly 
important to have the capability to intercept illicit nuclear materials entering the country and to 
monitor for nuclear threats emerging from within. This article describes a variety of approaches 
to sensor management in a multi-institution project on nuclear detection, which is based at 
Rutgers University and supported by the US Department of Homeland Security Domestic 
Nuclear Detection Office in collaboration with the US National Science Foundation. These 
approaches revolve around formulating the related problems using precise mathematical 
language and then developing tools of the mathematical sciences to solve them. The article 
provides an overview and summary of the project.  In so doing, it touches on four themes that 
have emerged as the areas of greatest emphasis in the project: 1) methods to exploit data from 
radiation sensors and shipping manifests for classification and decision making; 2) ways to 
optimize sequential decisions in layered inspection processes; 3) detection using a fleet of mobile 
radiation sensors; and 4) data sampling strategies for nuclear detection.  
 
1. Introduction 
 
The effective use of sensors for nuclear and radiological detection requires choosing the right 
type of sensor, putting it in the right place and activating it at the right times.  It also involves 
interpreting the results of sensor alarms and making decisions that balance various types of risk 
and uncertainty based on those results. This article describes a variety of approaches to sensor 
management for nuclear detection that revolve around formulating the related problems using 
precise mathematical language and then developing tools of the mathematical sciences to solve 
them. It emphasizes a variety of approaches to sensor management in a multi-institution project 
on nuclear detection, which is based at Rutgers University and includes Princeton University and 
Texas State University-San Marcos. 
 
The nuclear and radiological materials whose detection is of particular concern are radiation 
dispersion devices (RDDs) – more commonly known as dirty bombs – and special nuclear 
materials (particularly highly enriched uranium and weapons-grade plutonium) that could 
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provide the fissile material for a nuclear weapon.  Throughout this paper, we will use the generic 
term “nuclear detection” to include detection of any radiation-emitting material of concern. 
RDDs could potentially contain a number of different radionuclides, some of which are used 
commercially, so the RDD threat is less specific than special nuclear materials and harder to 
differentiate from benign sources of radiation such as those from medical procedures or naturally 
occurring radioactive materials like the clay found in pottery and kitty litter.  The need to 
distinguish true threats from commonly occurring benign sources and background sources of 
radiation is a particular challenge in nuclear detection [GEH03]. 
 
Nuclear detection arises in a variety of different contexts that pose overlapping, but sometimes 
quite different, research challenges. This paper aims to provide an overview of several problems 
arising in the following settings for nuclear and radiological detection: 
 
Border crossings – At borders, vehicles move through radiation portal monitors (RPMs) that 
provide passive, non-intrusive screening for the presence of nuclear and radiological materials. 
In this setting, we have brief contact with all entering vehicles and can detain them for further 
inspection when alarms occur.  Here, the emphasis is on preventing nuclear materials from 
entering the country, so detection is the main priority and false alarms are tolerated as a natural 
consequence [GEH03].  Typically, inspection at borders is a layered process and all alarming 
vehicles are subject to further scrutiny in subsequent layers which can include passing the 
vehicle through another RPM, screening with handheld radioactive isotope identification devices 
(RIIDs), or manual inspection of the vehicle.  Each progressive level of scrutiny introduces 
additional delay and inspection cost.  Since all RPM alarms are followed with further inspection, 
new methods can potentially reduce false alarm rates through enhanced analysis of sensor data at 
each layer and by optimizing the choice of which inspections to perform next.   
 
Ports of Entry – At seaports and other ports of entry, we have huge numbers of shipping 
containers that must be screened, and this must be done in a way that mitigates risk without 
introducing excessive delays and the ensuing disruptions to commerce.  As at borders, we have a 
layered inspection process that includes passive radiation monitoring and manual inspection of 
containers, but we also have more stringent testing capabilities using gamma radiography, as 
well as pre-port information on arriving ships and the cargo they contain. As containers arrive, 
we must decide which containers to inspect more carefully, and we need to do this without 
causing excessive disruption to port operations.  For a particular detection technology, we have 
to identify the best method for assessing the risk of a container and perhaps the sequence of 
screening tests to apply. 
 
Special events – At special events such as a major concert in a city park, a political rally, or a 
large festival or parade, there may be no existing infrastructure and possibly no restricted points 
of entry.  In such cases, there is a need to locate a system of sensors to provide maximal 
protection. Here, we can consider the development of methods to determine where to locate 
sensors so as to optimize detection, as well as routing strategies to efficiently patrol an area or 
venue. 
 
Urban settings – Major metropolitan areas present attractive targets, but cover large geographic 
areas that may be difficult to monitor and/or patrol.  They present many of the same challenges 
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as special events, but on a grander scale – both in terms of geographic area and duration. Here 
we discuss methods to use either stationary or moving detectors (e.g., in vehicles) with fixed or 
random routes. At special events and in urban settings, radiological sources may be contained 
within moving vehicles or carried by people, introducing the added challenges of detecting 
devices and materials in transit, typically without the ability to choose whom to screen.  If an 
event is detected, there will be a delay while response measures are enacted and this introduces 
the problem of identifying and tracking the source vehicle or person.  
 
This paper touches on four themes that have emerged as the areas of greatest emphasis in several 
projects related to inspection and nuclear detection that we are involved in.  The primary 
research thrusts we consider in this paper are: 1) methods to exploit data from radiation sensors 
and shipping manifests for classification and decision making; 2) ways to optimize sequential 
decisions in layered inspection processes; 3) detection using a fleet of mobile radiation sensors; 
and 4) data sampling strategies for nuclear detection.   
 
2.  Analysis of Manifest and Sensor Data 
 
Detection of nuclear materials entering the US currently relies on two important sources of data.  
One is the radiation sensors that are deployed at all major border crossings and ports of entry to 
scan containers entering the US and the other is documents submitted to US Customs and Border 
Protection (CBP) prior to a shipping container entering the US.  Challenges in our project have 
included obtaining and understanding the information that these sources provide; identifying 
how we might make greater use of these data throughout the inspection process; and building 
models to support enhanced decision-making based on these data.      
 
2.1 Manifest Data.  Customs information is collected at overseas points of embarkation using a 
variety of customs forms, including a ship’s manifest and bill of lading. Recently, there has been 
increasing emphasis by US CBP on improving the quality of customs data resulting in new, more 
stringent requirements that accurate manifest information be submitted at least twenty-four hours 
before cargo is loaded onto a US-bound vessel. Prior to arrival at US ports, CBP does screening 
based on such data to determine whether the shipment poses a risk.  Identifying mislabeled or 
anomalous shipments through scrutiny of manifest data is one step in a multi-layer inspection 
process for containers arriving at ports [WWB06]. Enhancing capabilities to extract information 
from such data may prove useful in screening for radioactive and nuclear materials.    
 
Early in 2008, we obtained manifest data that provides information on cargo entering US ports 
over several days.  The raw data include over 30,000 records, which were parsed to create a 
database for use by various teams on our project.  Each manifest contains 120 attributes that 
include information about the shipper, consignee, notify party, and the shipment itself.  Shipment 
data include size, weight, export codes (for hazardous materials, products covered by tariffs, 
etc.), and a physical description of the cargo manually entered by an inspector.  Some of the 
manifest information is contained in free-form text while the rest is categorical or numeric.  It is 
our observation that there is considerable leeway in the level of information provided, as well as 
little structure or commonality in the text fields.  These issues present challenges and introduce 
uncertainty that must be dealt with when using this data for screening.    
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As noted in [WWB06], the Automated Targeting System (ATS) of US CBP is already using 
manifest information to classify containers as being either “trusted” or “untrusted”, but it may 
have difficulty in correctly classifying a container transporting nuclear material via a trusted 
shipper. The work of McLay et al [MLN09] suggests that effective prescreening, such as that 
based on manifest data, can be an important component of cargo screening when there are 
limited screening resources. 
 
The Canada Border Services Agency (CBSA) is also using information available in shipping 
documents to classify containers according to risk [HOZ] and to improve their inspection process 
[HCS09].  Like the US CBP, CBSA has an automated system that assigns risk scores to indicate 
the likelihood that a container entering the country has undesirable contents.  In recent work, 
Hoshino et al [HOZ] have looked for ways to improve the existing system by explicitly taking 
into account the facts that 1) the problem is inherently unbalanced with only a very small fraction 
(roughly 2%) of containers being deemed dangerous; and 2) the likelihood of finding a 
dangerous container seems to vary with time. To deal with these issues they propose a two-stage 
approach that first fits a baseline classifier without considering time and then applies a time 
adjustment factor that results in substantially improved performance.  In other work [HCS09], 
Hoshino and CBSA colleagues have developed user-friendly classification methods to predict 
the presence of fumigants to reduce the time and expense of chemical testing of every marine 
container referred for further inspection. 
 
Our project includes several studies that leverage classification algorithms and apply them in the 
context of shipping manifest data.  We describe some relevant activities in the remainder of this 
subsection.   
 
Bayesian Binary Regression.  Our project is leveraging anomaly detection methods developed 
for the intelligence community to look for anomalies and general trends in manifest data. We 
have begun applying Bayesian LASSO logistic regression using the Bayesian binary regression 
(BBR) software developed at DIMACS [GLM07, MGLF05] to help analyze manifest data. In 
particular, we used the following logistic regression model to analyze and discover the potential 
associations between the risk status (Y) and the origination/destination and contents of the cargo, 
as well as the history of the shipping company, etc. (covariates X’s): 
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In this model, Yi = 1 if the ith container is selected for further inspection and Yi = 0 if it is not.  
The Xi,j’s represent the values of  covariates, as well as possible interactions among covariates, 
associated with the ith container.  Bayesian logistic regression finds the maximum a posteriori 
(MAP) estimate of the parameter vector α = (α1, …, αm)t  under a Laplace prior distribution. This 
approach can effectively deal with the large number of covariates/fields extracted from manifest 
data, as well as the sparsity of the data.  From the manifest data, we identify the covariates and 
interactions among them with statistical significance. This information can help us build a 
predictive model to assign risk scores to incoming containers.  
  
The response variable of risk status is not available in the manifest data. Nevertheless, we 
performed a variety of simulation studies based on the manifest data to determine the 
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effectiveness of Bayesian LASSO regression and the BBR software in such an application. 
Specifically, we selected a small set of covariates from the manifest data (such as port of origin, 
cargo contents, etc) and hypothesized a regression relationship between the risk status and the 
selected set of covariates. We assumed this relationship to be the “true” model and based on this 
assumed relationship, we simulated the risk status (Y) for each container.  Now, pretending that 
we did not know the assumed relationship, we applied the BBR algorithm and LASSO 
regression using the simulated risk status and all covariates associated with the containers from 
the manifest data. Most of the time, the BBR and LASSO regression could identify the selected 
set of covariates as significant contributors to container risk status, and the predicted risk scores 
were consistent with simulated risk score from the assumed “true” model [CCX09].  This 
suggests that the proposed logistic model/BBR approach could indeed provide an effective tool 
for processing information in the manifest data.  
 
Higher-order Naïve Bayes. In another area of research, project member Bill Pottenger and his 
students are applying a higher-order naïve Bayes (HONB) algorithm [GLP09] to classify 
shipments in the manifest data using the hazardous material export code as the class.  In 
theoretical work, they are developing a novel approach to learning that exploits relationships 
between attribute/feature values across different shipment manifests. In empirical work, they are 
selecting nominal classes within the manifest data that result in the most useful models.   
 
The underlying assumption in many traditional machine learning algorithms is that instances are 
independent and identically distributed (i.i.d.). Such models are called “first-order” because in 
general they only leverage relationships between attributes within instances (e.g., co-occurrence 
relationships), and do not leverage connections that link attributes from different instances. 
These critical independence assumptions that are made in traditional machine learning 
algorithms prevent them from going beyond instance boundaries to exploit latent “higher-order” 
relations between instances. Work in our project moves beyond instance boundaries to exploit 
the latent information captured in higher-order co-occurrence paths between instances within a 
dataset. The algorithms being developed leverage implicit co-occurrence relationships between 
attributes in different instances or manifests. Pottenger and his team believe that algorithms 
leveraging higher-order associations between different attributes of each shipment will allow for 
more precise identification of anomalous shipment data, especially when such algorithms are 
part of an online learning environment.  The related work in the project assumes that descriptions 
of products such as “IKEA home furnishings” will be more likely to match with certain container 
types or ports of departure than will other products; thus, anomalies may be discoverable in 
manifests that do not observe similar associations. Higher-order naïve Bayes is especially useful 
considering the online nature of the manifest data, which implies sparsity during initial model 
learning. 
 
Results obtained on benchmark corpora [GLP09] show that higher-order naïve Bayes generates 
more accurate models on sparse data than first order naïve Bayes classifiers, especially with 
small training sets.  Extensive experiments on several data sets from different domains support 
this conclusion. However, it remains to be determined in future project work whether the 
classification models point to anomalous shipments that would be identified as “high risk cargo” 
by inspection domain experts. 
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2.2 Radiation Sensor Data. Detecting nuclear materials at borders and seaports relies on data 
from the radiation portal monitors that are deployed at all major ports to scan vehicles and 
containers entering the country [GEH03]. At present, there are roughly 1100 radiation portal 
monitors installed and they inspect approximately 90% of the containers and vehicles entering 
the country [W08].  Much of the nation’s commercial life depends on the contents of these 
containers that are carried on the roughly 57,000 trucks, 2,500 aircraft, and 580 sea vessels 
entering the US each day. Given this volume of cargo, there are two competing priorities in 
inspection: 1) to process cargo quickly so as not to cause congestion and resulting disruptions to 
commerce and 2) to prevent entry of any illicit nuclear or radiological material. To meet these 
dual objectives, CBP has adopted a multi-layer approach for inspection, which consists of a 
“routine” inspection followed by a more stringent inspection of containers that were identified as 
suspicious during the routine inspection. Wein et al [WWB06] describe the current layered 
approach and consider how to optimize an 11-layer security system that includes shipper 
certification, container seals, the ATS system, passive and active radiation testing, and manual 
inspection to improve detection. Our project is developing approaches for making decisions 
during routine screening.  
 
Statistical Learning. As trucks at border crossings move though portal radiation sensors, the 
portal captures the energy spectrum every tenth of a second across a range of channels going 
from low frequency to high frequency.  It can be 256 channels or coarser bands consisting of 
frequency counts in only 5 non-overlapping, exhaustive bands corresponding to channels 0-5, 6-
10, 11-40, 21-80 and 81-256, respectively [KR86]. Project member Siddhartha Dalal formulated 
a Bayesian learning approach for modeling the energy emitted by an unknown source and 
classifying it as belonging to one of K defined classes [DH09]. These classes would include 
radioactive materials of high concern, such as high energy Uranium, depleted Uranium, 
Plutonium, Cobalt-57, and Barium-133, as well as benign materials that may be common sources 
of emission such as medical waste or kitty litter. 
 
Denote by Z = (R1, ...., R5) the observed radiation counts in the 5 non-overlapping channels from 
the training set of the portal radiation sensors data.  Dalal and Han [DH09] assumed that the total 
count N = R1+ R2 +…+ R5 given a class C = c, c = 1, 2, …, K, follows a Poisson distribution. 
Furthermore, they assumed that, given total count N = n in class C = c, the observed radiation 
counts Z = (R1, ...., R5) follows a multinomial distribution. Based on these Poisson process and 
multinomial models – both of which are conventional assumptions for this type of count data – 
they were able to derive the following classification rule from Bayes formula: 
 

P{C = c|Z = (r1, ...., r5)} ∝ P{N = n|C = c} P{R1 = r1, ...., R5 = r5) |N = n, C = c}P{C = c}. 
 
Here, (r1, ...., r5) are observed radiation counts in class c in the training data, n = r1+ r2 +…+ r5 
and P{C = c} can be estimated by the fraction of containers of class c in the training set.   
 
This classification model can be used to develop a scoring model that assigns a risk score to each 
new container. A potential risk scoring model [CCDX09] could be 
 
s* = ∑ acP{C = c|Z* = (r1*, ...., r5*)} 
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where: (r1*, ...., r5*) is the radiation sensor reading of a new container; ac is the average risk 
score of the class c computed from the training data and classification model; and the sum ∑ is 
over all c = 1, …, K classes. We can use this predictive model to assign a risk score to each 
incoming container. This will give us a likelihood that the new container has nuclear or illicit 
material so further investigation can be conducted accordingly. 
  
Machine Learning. In a second study using radiation sensor data, project members Bill 
Pottenger and Jason Perry have begun to apply machine learning techniques to analyze gamma-
ray spectra generated by CZT-based handheld detectors to see whether they could distinguish 
non-threat sources of radiation from possible threat materials.  One way to cast this problem as a 
machine learning problem is to train a set of classifiers to identify the presence of any gamma-
emitting radioisotopes from a predetermined library, as above. However, another approach may 
be necessary to build a robust real-world solution for distinguishing threat-from non-threat 
isotopes. For instance, in security applications, very specific types of accuracy may yield 
practical advantages for reducing false alarms.  One example would be a mechanism to provide a 
very high confidence level in detecting known non-threat isotopes such as Technetium-99m 
(Tc99m) – the most common medical isotope and one which would generally not present a 
threat. A system to accurately discern Tc99m as the radiation source could safely indicate when 
no further inquiry is necessary. At the same time, the system must be sensitive to a wide variety 
of other known and unknown radioisotopes, so that no potential sources of threat are missed. 
These, in turn, must be distinguished from fluctuations in the natural radioactive background, in 
order to minimize false alarms. This requires both an optimal framing of the machine learning 
problem and a very finely-tuned classification system which takes advantage of all available 
data. 
 
In initial investigations using data obtained data from a CZT-based hand-held detector, Perry 
[Per09] formulated a three-class classification problem with classes corresponding to: 1) 
presence of Tc99m; 2) presence of other known and unknown isotopes; and 3) all natural 
background radiation conditions. Using Support Vector Machines (SVMs) for classification, his 
experiments showed that the single-isotope Tc99m class is distinguishable from the other classes 
of isotopes with near-perfect accuracy.  However, separating the class with all other isotopes 
from the normal background noise and detector anomalies is much more difficult and requires 
further study. 
 
Statistical Change Detection and Identification. Project members Savas Dayanik, Warren 
Powell and Kazutoshi Yamazaki have developed new online statistical change detection and 
identification rules to identify pattern changes in sensor readings that indicate the presence of 
either hazardous materials or a malfunctioning of the sensor [Po07, DPY08].  We envision these 
procedures operating in real time as vehicles or containers are scanned through portals or other 
sensing devices.  The algorithms are designed to make diagnoses within a prescribed low level of 
false alarms and to work with sensing devices that have only a small amount of associated 
computational capability.  In general, the method models a set of potential “disruptions” that 
include a variety of sensor failure modes and detection events corresponding to detection of 
different materials.  The methods analyze sensor readings and both determine when to sound an 
alarm and identify the suspected alarm trigger (i.e. the failure mode or material detected).   
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A typical change detection and identification rule consists of a pair of an alarm delay (the 
difference between the time that some disruption first occurs and the time that the algorithm 
declares an alarm) and a diagnosis rule. Because observations are collected sequentially over 
time, optimal rules are typically the solutions of a dynamic program in a Bayesian framework 
[DGP08, DG09]. Unfortunately, optimal solutions are often not in closed form, and due to the 
curse of dimensionality of state space, their numerical implementations require large computing 
power and memory. Therefore, a classical dynamic programming approach to the change 
detection and identification problem does not easily lead to online optimal rules that can be run 
on devices with limited associated computational capability. However, it is possible to develop 
simple nearly optimal decision rules by combining dynamic programming and renewal theory for 
stochastic processes, which is the methodology adopted by Dayanik et al [DPY08]. 
 
Their methods [DPY08,Yam09] seek to find an alarm time and an identification rule such that 
the decision risk associated with any potential “disruption” is below a specified threshold (which 
is an adjustable model parameter) and the detection delay is minimized.  The specific types of 
risk considered include the risk associated with a real nuclear event whose detection is missed or 
delayed, risks from investigating false alarms, and misdiagnoses of detected real disruptions. 
Precise solution of this problem would require solving a constrained stochastic optimization 
problem to find a rule that would concurrently minimize for each of the potential disruptions, and 
it is unclear whether this would even have a solution.  Therefore, Dayanik et al [DPY08] studied 
the optimal asymptotic performance as the bounds on allowable decision risk converge to zero. 
Results show that, for small allowable decision risk, the minimum expected detection delay over 
all admissible rules can be attained by a common admissible rule that can exploit recursive 
equations to minimize the need for computational power that may be lacking with small sensing 
devices. The result is a simple, computable policy that determines when a signal change has 
occurred and determines the cause of the change (i.e. the sensor failure mode or material 
detected) in the presence of noisy readings from sensors that may fail due to aging or operational 
stress. This policy closely approximates an optimal policy [Yam09], but is much easier to 
compute, potentially allowing it to be used in real time.  
 
2.3 Combining Data Sources. Together, sensor data and manifest data provide terabytes of data 
on millions of containers and their contents. While methods have emerged to analyze each set of 
data separately (including the methods that we have described), efforts to combine these data for 
more powerful capabilities for detecting illicit nuclear material are still relatively new. Methods 
for combining such data hold the promise of considerable improvement in detection. Recently, 
we obtained an additional month of manifest data that are coordinated with radiation detection 
data that we also hope to attain. Such data – linking radiation sources, manifest data, and 
radiation portal readings – would be used to provide a rich source of training data for building a 
classifier for specific ports of entry.  Our future work will study how to combine manifest data 
with sensor data in our statistical and machine learning methods.  For instance, we will study 
how to compare materials claimed on the manifest with those identified in classification using 
radiation sensor data to identify potential anomalies.  In addition, we will investigate how we can 
use manifest information to inform the classification task itself in order to improve accuracy.   
For instance, such methods could include information from the manifest to determine which 
materials to consider when defining the K classes in Dalal and Han’s model [DH09].  Our aim is 
to use these combined methods for more powerful decision-making capabilities during the 
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routine screening process, enabling us to more definitively identify suspicious containers and 
reduce delay of benign containers.  Along these lines, researchers at Lawrence Livermore 
National Laboratory [LLNL07] have developed a Context-Aware Nuclear Evaluation System 
(CANES), which combines data from multiple types of sensors (such as RPMs and RIIDs) with 
context data that includes information on distance from source and type of conveyance and 
applies machine-learning algorithms for threat assessment.   
 
3. Optimizing Sequential Decision-making Strategies for Inspection 
 
In addition to analyzing the sensor data itself, another aspect of sensor management is deciding 
which tests to apply to incoming cargo and in which order to apply them in light of practical 
considerations such as budgets on inspection time and/or cost.  To date, several researchers have 
studied paradigms for modeling and optimizing container inspection at ports [SS03, WWB06, 
BEK08, Ram08, CR09, ESX09, AMM06, MMR07, MMR09].  Rather than focusing on making 
a decision based on given sets of data (as in Section 2), the emphasis here is on determining the 
sequence of tests to apply to optimize the inspection process.  
 
At ports of entry, we envision a stream of entities arriving for inspection and a decision maker 
having to decide how to inspect each one.  This includes deciding which to subject to further 
inspection and which to pass through with only minimal levels of inspection. Viewed this way, 
the process becomes a sequential decision making problem. Sequential decision making is an old 
subject, but one that has become increasingly important as traditional methods for making 
sequential decisions fail to keep pace with problem scale. Enumerative algorithms for optimizing 
port-of-entry inspection rapidly come up against the combinatorial explosion caused by the many 
possible alternative inspection strategies.  Moreover, methods must incorporate practical 
considerations – such as sensor error – which introduce uncertainty into the models.  Work on 
these topics is being conducted as part of several other projects that are closely aligned with ours 
and have some overlapping participants. In particular there is another nuclear detection project 
based at Rutgers and led by Endre Boros and Paul Kantor, and there are several projects on port-
of-entry inspection also based at Rutgers. These projects are developing approaches that bring 
into the analysis many of the complications – such as sensor error – that arise from practical 
considerations.   
 
In the port of entry inspection projects (see [BEK08] for an overview), the project teams are 
building on the initial approach to the port-of-entry inspection problem taken by Stroud and 
Saeger [SS03], who studied a case that involved different potential tests (we will call them 
sensors) for deciding whether a cargo contains illicit material.  Four such tests currently in use 
are evaluation of ships manifests, passive radiation signatures, radiographic images, and induced 
fission.  All of the tests have costs associated with them, including the cost of a reading 
indicating illicit material when there is none (a false positive), the cost of a reading indicating 
there is no illicit material when there is (a false negative), time costs of using the sensor, delay 
costs of waiting for the sensor, and fixed cost of equipment, labor, etc. For each sensor the 
readings for cargo containing illicit material (positives) and readings for cargo not containing 
illicit material (negatives) are random variables.  The model Stroud and Saeger created assigns 
an output of 0 (absence of illicit material) or 1 (presence of illicit material) for each sensor.  In 
general, n sensors will yield a string (vector) of 0’s and 1’s of length n, and can be modeled with 
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a binary decision tree (BDT).  Stroud and Saeger developed enumerative methods to find the 
binary decision tree of sensors that would minimize total cost of inspection. The problem 
becomes intractable already for n = 4 if one relies on brute force methods since the number of 
possible trees expands rapidly, but Stroud and Saeger were able to extend their method to n = 4 
by making some assumptions about the types of decision functions captured by the BDT. 
However, their method is not feasible for higher values of n.  
 
The project teams built on this initial approach, making the models and algorithms better suited 
to address inspection issues that might arise in practice. For instance, the heuristics developed 
will need to be able to scale up to perhaps 20 or more of sensors.  Furthermore, there are several 
interdependent aspects of port-of-entry inspection that need to be explored in tandem [BEK08].  
Some of them are: 
 
• Developing simulation models of inspection stations as one part of an operating port.  These 

models can be used to assess the efficiency and effectiveness of security field operations, aid 
decision makers in quantifying the trade-off between security goals and their attendant costs, 
provide feedback for devising improved operations, as well as to provide estimates for some 
of the cost parameters (such as delays) used in some of the optimization models. 

 
• Studying the sensitivity of optimal and near optimal trees to the input parameters [AMM06].  

As input parameters such as the costs of false positives and false negatives, the costs of 
delays, etc., are estimated with more or less accuracy, one wants solutions whose sensitivity 
to changes in these parameters is known and tolerable.  Team studies led by Saket Anand, 
David Madigan, and Fred Roberts [AMM06] show that the optimal inspection strategy is 
remarkably insensitive to variations in the parameters needed to apply the Stroud-Saeger 
method. An important research challenge is to understand why. 

 
• Developing new computational approaches that are inexpensive, scalable, and able to 

incorporate various cost factors with enough flexibility to include future technologies. Such 
approaches are based on efficient search heuristics [MMR07, MMR09, BEK08], linear 
programming [BFK09], and dynamic programming [GWB08] and are now able to address 
problems involving many more sensors in very little time.  In related research, Concho and 
Ramirez-Marquez [Ram08, CR09] have used evolutionary algorithms to optimize a decision 
tree formulation of the inspection process. Their approach is based on the assumption that 
readings rj by the jth sensor are normally distributed, with a different distribution depending 
on whether the container in question is “bad” or “good.” Thresholds tj are used to determine 
outcomes of inspections, with a container declared suspicious by the jth sensor if rj > tj.  
Here, the cost function used depends upon the number of sensors used and the cost of 
opening a container for manual inspection if needed, but does not take into account the cost 
of false positives or false negatives, which is a key feature of the work in [SS03], [AMM06], 
[MMR07], and [MMR09].  

 
• Investigating the optimum threshold levels for sensor alarms so as to minimize overall cost as 

well as minimize the probability of not detecting hazardous material [AMM06, BEK08, 
ESX09, MMR07, MMR09].  Zhu et al [ZLY09], in work extending that of Elsayed et al 
[ESX09], consider sensor measurement error independently from the natural variation in the 
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container attribute values. They model situations when measurement errors exist (and are 
embedded) in the readings obtained by the inspection devices and use a threshold model to 
identify containers at risk for misclassification. They study optimization of container 
inspection policies if repeated inspection of at-risk containers is part of the process. 

 
• Exploring use of sensors with many possible outputs categories. Boros, Kantor and their 

colleagues [BFK09], in a parallel nuclear detection project, used a large-scale linear 
programming model approach and considered more container classifications than just the bad 
or good. They demonstrated the value of a mixed strategy applied to a fraction of the 
containers. They then added budget constraints to the problem in [GWB08]. 

 
Several other authors have also considered ways to optimize and improve layered screening 
systems that include some of the above aspects. Wein et al [WWB06] consider several of the 
above issues in a detailed study on how to optimize the inspection strategy for detecting nuclear 
weapons (or their building blocks) at ports.  In so doing, they develop operational models and 
make specific recommendations on which key uncertainties are most important to resolve, how 
to improve the existing screening process, as well as how to most effectively utilize new 
technologies. McLay et al [MLN09] develop a linear programming model for screening cargo for 
nuclear materials at ports of entry. Their approach defines a framework for determining alarms 
when there are limited screening resources. Jacobson et al [JKK06] look at baggage screening at 
airports and compare 100% screening with one type of screening device with screening with a 
second device when the first device says a bag is suspicious. They calculate costs and benefits of 
the two methods.   
 
4. Managing Static and Mobile Sensors 
 
In some cases, such as ports and border crossings, entering vehicles are funneled through 
checkpoints that provide natural locations for radiation sensors. Even in these cases, practical 
considerations arise because of differing sensor operating characteristics – different sensors have 
different capacities for inspection over a given time and vary in cost and performance. Wein et al 
[WLCF07] consider the spatial location of radiation portal monitors at overseas ports to improve 
detection (which depends on scan time) without creating bottlenecks that would create excessive 
congestion in the port.  Jacobson et al [JMV05] consider the problem of deployment of baggage 
screening devices at airports, formulating it as an integer programming problem that takes into 
account various practical complications.  
 
In less structured settings, such as urban environments, desirable locations are less obvious and 
need to be determined in other ways.  In our project we have explored two different scenarios.  
The first is a variant of more traditional static sensor location problems that require locating 
sensors to respond to a set of uncertain events.  In this case, we assume that we are placing 
sensors in a set of fixed locations to minimize the risk of missing a threat.  Typically, an implicit 
assumption is that locations for these sensors must be chosen judiciously because they are too 
expensive to locate “densely” over the area to be covered.  In this way, sensor placement 
problems are closely related to well-studied facility location problems in the optimization 
literature [KH79, KH79a, M90].  However, the sensor placement problem has sources of 
uncertainty that are not part of the traditional facility location problem. In sensor placement, it 
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makes sense to consider environments where events to be monitored occur with low probability. 
Thus, the locations that we need to “cover” have considerable uncertainty yielding stochastic 
versions of more traditional problems.  These stochastic variants appear to be significantly more 
complex and are not yet well studied.   
 
Dimitrov et al [DGM08] locate sensors along a transportation network using a stochastic 
interdiction model.  Here the scenario is that a smuggler needs to get from a given origin to a 
given destination in the network and the “interdictor” needs to locate sensors to minimize the 
probability that the smuggler can reach the destination without detection.  They envision this 
problem arising in border protection.  Another complication that arises in sensor networks is 
sensor error. Neidhardt et al [NLK08] consider optimizing the positioning of error-prone sensors 
to monitor an area.  Their placement strategy seeks to reduce error by of having areas “covered” 
by multiple sensors in an “equitable” fashion through use of a minimax objective.   
 
Wein and Atkinson [WA07], Atkinson and Wein [AW08] and Atkinson, Cao and Wein 
[ACW08] develop a detection-interdiction model to assess the efficacy of deploying a ring of 
sensors to protect an urban area from attack with various types of nuclear devices. Their models 
assume that an adversary is attempting to drive an already-assembled nuclear device into an 
urban area to maximize expected damage, while a defender combines use of a ring of radiation 
sensors and a fleet of interdiction vehicles to prevent penetration into the city. Their studies 
consider sensor errors resulting in missed detections and false alarms that occupy interdiction 
vehicles.  
 
The second scenario that we explore in our project assumes that sensors are cheap and mobile.  
Under this basic paradigm, we examine the utility of locating sensors on vehicles such as taxis 
and police cars in an urban setting.  Here the problem is no longer locating sensors; it is 
developing the statistical capabilities to reconcile readings from multiple sensors that are moving 
and may be prone to errors.  Our project to date has emphasized this second scenario, with a 
focus on managing a “fleet” of mobile sensors. We are examining the viability of fleet-based 
sensing and addressing related statistical challenges in detection. Hochbaum [H09] and 
Hochbaum and Fishbain [HF09] have considered a similar fleet-based surveillance scenario, 
while Neidhardt et al [NLK08] have considered a two-level sensing system that includes a static 
network of sensors augmented with a mobile pool of opportunistic sensors, such as those on cell 
phones.  
 
4.1 Opportunistic Surveillance with Mobile Sensors 
 
We envision “opportunistic sensing” as one possible paradigm for sensing with vehicles.  In this 
case, we imagine vehicles (whether taxis, police cars, or some other “fleet”) that contain 
radiation sensors, but their movement is determined by activities other than surveillance, such as 
routine taxi pickups or police patrolling.  This paradigm features a network of mobile sensors 
operating relatively independently to provide surveillance of an area as an artifact of movement 
in performing other duties.  Such networks can operate in tandem with smaller, more carefully 
designed, static networks to provide additional coverage and corroboration of alarms (such as in 
[NLK08]), or they can operate independently.   
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To illustrate the concept, we envision installing small radiation detection devices, 
communication capabilities (through cellular networks) and global positioning systems (GPS) in 
taxis, police vehicles, fire trucks, and/or public transit vehicles to provide surveillance in major 
urban areas. Such networks aim to leverage technological advances in sensors and positioning 
systems, miniaturization of devices for sensing and communication, and the pervasiveness of 
human activity in dense urban areas.  Recent advances have made communication infrastructure 
nearly ubiquitous, while detection devices and positioning systems have become both 
economical and portable. Thus, large-scale deployment of a mobile sensor network is becoming 
feasible and affordable. The New York City police department is already using small sensors in 
vehicles and on officers [K09, Rig09] for radiological detection.  The idea of using massive 
networks of mobile sensors has been adopted and tested by the Radiation Laboratory at Purdue 
University, where they use a network of cell phones with GPS capabilities to detect and track 
radiation [Pur08].   
 
The movement and extensive coverage afforded by sensors in taxis is appealing because it could 
provide pervasive surveillance in dense urban areas, while devices placed on emergency 
response vehicles or police cars could offer greater control to investigate suspicious regions and 
allow the possibility of including more powerful (and expensive) sensing capabilities on some 
vehicles. When vehicles equipped with sensors move within a certain range of a nuclear source, 
the radiation energy from the source will trigger the sensing devices to send an alarm notification 
and a GPS position to a central command center over a wireless network. This basic sensing 
paradigm has many attractive features. First, the random movement and extensive coverage of 
the vehicles provides constant surveillance for nuclear materials. Second, the mobile sensors do 
not need to be of high accuracy, since the failure of a small portion of them will not significantly 
hamper the effectiveness of surveillance coverage because of the sensors’ random movements. 
Next, the movements of the sensors will (in most cases) be difficult to predict by an adversary, 
and because of the number of sensors, difficult to tamper with.  Finally, because the sensors are 
mounted on vehicles, there are fewer size constraints and power consumption requirements. 
 
Such a mobile sensor network would likely be supplemented by stationary sensors to cover 
locations with sparse traffic, such as a large park in the city. The methods we have developed can 
easily be envisioned for such mixed networks by simply viewing the stationary sensors as parked 
vehicles. While our algorithm can be readily adapted to a variety of settings, we work under the 
following basic assumptions: 
• Nuclear sensors and Global Position System (GPS) tracking devices are installed on a large 

number of vehicles. 
• The sensors and GPS devices constantly send detection and location information to a central 

surveillance center. 
• Real-time tracking signals can be geolocated on a map of the area under surveillance. 
• Real-time analysis is done at the surveillance center using sophisticated statistical algorithms 

to identify potential locations of nuclear sources that appear as clusters of positive sensor 
readings. 

 
Because sensors are not always 100% accurate, there will potentially be false alarms and missed 
detections. Statistical methodologies have proven to be effective tools for detecting true signals 
against random errors.  Thus, a challenge that we began to address early in the project was that of 
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processing sensor network information to identify “positive clusters” among the sensor signals 
that are not due to either random chance or known background sources. Multi-cluster spatial 
classification methods are ideal for such tasks. Our research has explored two innovative 
multiple spatial clustering methods. The first method (due to Demattei et al [DMD06, DMD07]) 
is based on data transformation and a step regression model. It provides a formal statistical test 
of significance against background noise based on the premise that points within a “cluster” 
should be spatially closer to each other than positive signals outside the cluster that are due to 
random chance/error. The second approach is based on the recent Ph.D. thesis of Lynette Sun 
[Sun08].  By mimicking the process of typical sample data generation, Sun [Sun08] and Xie et al 
[XSN09] developed an intuitive procedure that introduces a latent modeling structure and uses 
formal likelihood inference to detect multiple clusters occurring simultaneously within a defined 
region or time window.  They apply model selection techniques to determine the number of 
clusters, and develop likelihood inference and Expectation Maximization/Markov Chain Monte 
Carlo algorithms to estimate model parameters, detect clusters and identify cluster locations. 
Their new method differs from the classical scan statistic in that it can simultaneously detect 
multiple clusters of varying sizes. This work is readily applicable to identifying clusters of 
vehicles with “positive” sensor readings for radiation.   
 
This latent model approach was adapted by team members Jerry Cheng and Minge Xie to the 
context of nuclear surveillance.  The method is flexible and able to accommodate a variety of 
extensions that make it well suited to the nuclear detection problem.  The key idea is to use 
statistical notions of clustering, where a “cluster” involves an unusually large number of 
events/alarms clumping within a small region of time, space, or locations in a contiguous 
sequence (suggesting a moving source).   Our methods are using modified versions of the 
traditional statistical method using scan statistics. The idea is to scan the entire study area and try 
to locate region(s) with unusually high likelihood of incidence. For example, one would use the 
maximum number of cases in a fixed-size moving window or identify the diameter of the 
smallest window that contains a fixed number of cases. Early work in our project demonstrated 
the applicability of this method to detecting clusters of positive radiation sensor readings from 
taxis.  Cheng and Xie also performed simulations for both spatial classification methods under 
scenarios that include stationary and moving sources.  Results of these preliminary simulations 
suggested that the proposed approach can effectively filter noise and background radiation 
sources to detect nuclear materials placed in a metropolitan area.  For some details of the 
approach, see [CXR09]. 
 
In the first phase of our project, we emphasized use of taxis in radiation detection. Our 
subsequent discussions with law enforcement suggested reluctance to depend on the private 
sector (e.g., taxis) in surveillance. As the project progressed, our emphasis therefore shifted from 
considering taxis as the primary type of sensing vehicle to police cars or a combination of taxis 
and police cars.  This concept employs the police vehicles in a manner similar to our initial ideas 
about taxis, but it explores use of smaller fleets, with possibly less random movement, and 
perhaps higher-quality sensing equipment. A central focus of more recent work has been to 
compare taxi-based “coverage” to police car “coverage” through simulation studies. This line of 
investigation aims to determine how many police cars might be enough to get sufficient 
“coverage” of a region when the police cars contain sensing devices but, as with taxis, their 
movement is directed toward normal police activity, not radiation detection.  
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As part of our efforts, project members Jerry Cheng, Fred Roberts, and Minge Xie applied 
statistical power analysis to determine the number of vehicles required to provide adequate 
coverage for surveillance of a given network [CXR09]. They developed a model and carried out 
a large number of simulations to gain intuition and assess detection power under a variety of 
different assumptions.  
 
The simulations performed so far follow the same basic paradigm but systematically vary one or 
more of the parameters of interest.  The surveillance area in our testing consists of a 4000 ft by 
10000 ft. area, roughly equal to the area of the roads and sidewalks of Mid/Downtown 
Manhattan. In this phase of the work, we have disregarded the street network and simply 
consider that a specified number of vehicles are randomly located in the area at a particular 
“snapshot” in time. At the next time period, the vehicles are again randomly located in the region 
to correspond with a new “snapshot” in time. The parameters that we may adjust from one 
experimental run to the next include: the number of vehicles; the effective range of a sensor; and 
the rates for false positives and false negatives. In these experimental runs, we consider a 
stationary radiation source, placed randomly in the surveillance area.   
 
We conducted a large number of experiments using this basic framework. For example, in one 
model, we assumed the effective range for a detector to be150 ft., a false positive rate of 2%, and 
a false negative rate of 5%, and we varied the number of vehicles (i.e. sensors). (We realize that 
this range may be beyond most presently-used detectors, but wanted to concentrate on 
methodology and relative comparisons, and we are experimenting with shorter ranges as well, as 
noted below.) We then ran at least 200 simulations for each number of vehicles and determined 
whether the source was detected. For each number of vehicles, this gave us an estimate of the 
“power,” which is defined to be the probability of detecting a source for a single random 
placement of the vehicles (i.e. a single time period). In this model, we found that 4000 vehicles 
were needed to get even 75% power. With 2000 vehicles, the power was about 30%. To give this 
some perspective, we note that the New York City Police Department has 3000+ vehicles in 76 
precincts in 5 boroughs, but at any given time only about 500 to 750 would be in the streets of 
Mid/Downtown Manhattan.  
 
Of course, in practice, we would monitor the alarms over a period of time, not just at a single 
instant.  To reconcile readings from several “snapshots” over time we may wish to use some 
decision rule such as: detection if a majority of the times there is an alarm; detection if at least 
once there is an alarm. The number of time periods is another variable that needs to be 
considered. It is not hard to show that if the statistical power is sufficiently high and majority 
rule detection is used, then with sufficiently many time periods, the detection probability can be 
increased significantly. We are currently exploring various rules for detection over time. 
 
We also conducted studies in which we vary the effective range of a sensor.  Given current 
technology, the range of a sensor may actually be closer to 25ft. than it is to the 150 ft. assumed 
in the experiment that we just described.  However, since our project is intended to look beyond 
today’s capabilities, we wondered: what would happen if we had a better detector, say with an 
effective range of 250 ft.? In an experiment similar to the previous one but with a sensor range of 
250 ft., 2000 vehicles yielded 93% power.  
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There are other aspects of our model that need to be modified when the sensing vehicles are 
police cars as opposed to taxis.  In particular, the assumption of random movement is less 
appropriate for police cars, since they will tend to remain in their own region/precinct, and they 
won’t move around as randomly or as frequently as taxis. We did a very simple study that 
attempted to make movement slightly more realistic by dividing the region into 20 equal-sized 
precincts. (There are 22 police precincts in Manhattan.) Next, we placed k police cars randomly 
within each precinct. When we assumed that the number of police vehicles in each precinct is 25 
– making for a total of 500 police vehicles – and assumed that each detector has a 250 ft. range, 
then our simulations estimated the power at 35%.  This is not very good and is not significantly 
different than when the same number of vehicles is allowed to roam throughout the region. In 
other studies, we varied other parameters such as the false positive and false negative rates. We 
have also investigated hybrid models that involve a mixture of police cars and taxis.   
 
We are implementing a variety of extensions to make our models more realistic, including: more 
complex hybrid models of taxis and police vehicles with different movement models; hybrid 
models that include some stationary detectors; hybrid models with more powerful detectors in 
police vehicles; more realistic movement models; moving sources; multiple sources; fusing 
information from multiple time periods. We are especially interested in exploring hybrid models 
that include police cars and taxis that have different models for movement and possibly sensors 
of differing capability.  In work with graduate student Tsvetan Asamov, we recently introduced a 
street network with more realistic models for movement of vehicles, and we plan to use this in 
future studies.   
 
A mobile sensor nuclear threat detection problem is also studied in [H09]. Here, the goal is to 
identify a small area in the region of interest that has a high concentration of alarms. The paper 
separates the two goals of small area and high concentration of alarms, which can be conflicting, 
and introduces a weighting factor for balancing the contribution of the two goals. In contrast to 
our work to date, this work has a specific model of a region as a network with streets and 
assumes vehicles move along streets, the paper formulates the problem of finding an “optimal” 
area as a mathematical programming problem and presents a polynomial time algorithm for 
solving it. The study is extended in [HF09] with discussions of false alarms, simulations, and 
methods of aggregating results over time to improve the algorithm’s performance. 
 
4.2 Randomized Surveillance Routing 
 
The previous “opportunistic” model considers a surveillance scenario in which we gain 
surveillance capability by exploiting the random movement of a large vehicle fleet.  Another line 
of research is to consider the case in which our fleet is not large enough to provide sufficient 
surveillance coverage by purely undirected movement.  In this case, the idea is to equip a certain 
number of vehicles with sensors and dedicate them to the task of performing surveillance within 
an area.  Unlike the previous case, the movement of these vehicles will be prescribed by some 
“controller”. This controller would like to find routes for the vehicles that are “efficient” in the 
sense that they cover the entire region quickly but also appear “unpredictable” to an adversary 
[New09].  In this case, we represent the region by a graph, where links correspond with streets 
and nodes correspond with locations.  For each vehicle, we would like to create a patrol route 
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that begins and ends at a designated location (e.g., police headquarters) and cannot be predicted 
by an adversary; yet, taken together, these routes cover the entire region efficiently.  These two 
properties of efficiency and unpredictability are seemingly at odds with each other.  Suppose for 
the moment that we have just one patrolman or patrol vehicle. An extremely efficient route 
would be a traveling salesman tour of the graph. However, given that it is very efficient, an 
observer knows that once a location is visited, it will not be visited again.  Moreover, if the 
vehicle drives the same route each day, an observer could predict exactly where it will be at any 
given time. On the other hand, the vehicle could be very unpredictable by moving totally at 
random. In this case, it may take a long time to cover the entire region, but an attacker would not 
be “safe” just because a node was recently patrolled. 
 
Clearly there is a tradeoff between efficiency and unpredictability, and Alantha Newman, a 
researcher on our project is trying to formalize this tradeoff by developing formal definitions for 
“unpredictability” and then defining a route optimization problem for selecting efficient routes 
that satisfy these formal definitions [New09].  Another approach that does not apply a strict 
definition for unpredictability but does exploit notions of randomness in surveillance [PPT+07] 
is the basis for surveillance at LAX airport. Here the approach is to consider surveillance to be a 
Bayesian game against an unknown adversary. Nonetheless, the ideas are similar: to find a 
tradeoff between an efficient assignment of inspection stations each day and one that is 
unpredictable. The problem is formulated as a game between an inspector and an attacker and 
mixed strategies are used to find good solutions. The methods have recently been extended to the 
Pittsburgh airport and are also being used to randomly assign federal air marshals to some of the 
flights between the US and Europe. 
 
5. Data Sampling Strategies for Sensor Data 
 
Sometimes when we have limited time or budget for data collection, it is advantageous to adjust 
our data sampling strategy in response to previously collected data.  The specific settings that we 
consider involve considerable uncertainty, where the underlying probability distributions are 
either unknown or changing through time.  Although we do not know the underlying 
distributions, we nonetheless have the ability to collect information through measurements to 
help us learn about the environment.  In this sense, we may view information collection as a 
sequential decision problem in which our objective is to learn about our environment.  There are 
a wide variety of practical decision-making settings in which a decision maker has the ability to 
collect a finite amount of information before he or she must render a decision.  Examples of 
applications in nuclear detection include determining when to subject people and containers to 
additional scrutiny, positioning sensors, and deciding when to introduce a new sensing 
technology.   
 
A number of practical adaptations of dynamic programming [Be57] techniques exist for finding 
near-optimal solutions to these types of sequential decision problems.  One such adaptation that 
project members Peter Frazier, Warren Powell and Savas Dayanik are exploring is the 
knowledge gradient policy which makes sampling decisions by maximizing the expected value 
of the sampled information according to a simple heuristic metric [FPD08].   The problems 
addressed typically involve three dimensions: 

1) the decision about what information to measure or collect; 
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2) the information that is observed when a measurement is made; 

3) the decision that is made after observing the new information. 
 
We refer to the first decision as the measurement decision w.  We represent knowledge about a 
problem using a vector nμ which captures the distribution of belief about a set of parameters 
after n measurements.  After a measurement decision is made, we make an observation (such as 
on the level of nuclear radiation) which was uncertain before the measurement.  Finally, we seek 
to make an economic decision which we denote by x.   
 
Letting 1nμ +  represent knowledge after n+1 measurements (which is a random variable before 
we have made our last observation), measurement decisions will have the fundamental structure 
of 
 ( ){ }1max max | ( )n

w xE F x wμ +  

We could avoid the measurement and take an action now that requires solving 
 ( )max | n

x F x μ  
The value of a measurement is called the knowledge gradient, and is given by 
 ( ){ } ( )1max max | ( ) max |KG n

w x xE F x w F x nν μ μ+= − . 

For the problem of deciding what to measure, we have been exploring a class of measurement 
policies we call knowledge gradient policies.  With this strategy, we choose the measurement w 
that yields the largest value of KG

wν  where 

 ( ){ } ( )1max | ( ) max |KG n
w x xE F x w F x nν μ μ+= − . 

This policy chooses the measurement that would be best if you were going to make a single 
measurement, but it has also been shown to be asymptotically optimal.  Not surprisingly, it has 
been found to work better than any other competing approaches for intermediate measurement 
budgets.  The knowledge gradient (KG) policy [FPD08] offers an easily implemented rule that 
tells us how to sample information on competing alternatives to learn which is best.  The initial 
version of the knowledge gradient policy applies in settings where the measurements are 
independent. The team later developed the Correlated Knowledge Gradient (CKG) [FPD08a] for 
determining how to collect information when measurements are correlated, as would occur when 
detecting nuclear radiation.  KG and CKG are provably optimal in certain special cases; have 
provable bounds on suboptimality in other cases; and are very easy to implement and use.    
 
As the project has progressed, the team has considered applying the KG method in more 
complicated settings, such as collecting information on a graph [RP09], possibly for moving 
sensors around a street network.  In sensor management decisions, our choice of what to measure 
(which changes our knowledge state) depends on where we are (our physical state).  A 
measurement at one physical state can affect decisions at other physical states.  The result is 
what we call “the information collecting shortest path problem”. The shortest path problem is 
fundamental to a wide range of optimization problems. [RT09]  For example, these might arise 
in the process of designing emergency response measures (e.g. how to evacuate New York City, 
or how to guide emergency response forces).  Often, the state of these networks is uncertain (e.g. 
travel times on links may vary), and it is necessary to collect information which may involve the 
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time-consuming process of dispatching people to 
collect it.  Given this, we would like to collect the 
most valuable information first. 
 
The immediate goal in this research is sensor 
management, where we have to move a physical 
sensor around the network to collect information.  
We found that an important stepping stone for this larger problem is the problem of determining 
which link in a network we should measure (without regard to the physical location of a sensor).  
For example, in the network depicted above, we show a probability density function on each link 
to describe our belief about the cost on that link.  The dark path represents what we currently 
believe is the shortest path, while the dotted link is one that we might consider measuring.  If we 
do measure this link, we may change our distribution of belief about the link based on the 
observed measurement.  The question is: which link should we measure?   
 
Project members Warren Powell and Ilya Rhyzov have explored this problem of information 
collection on a graph and have found that they can adapt an existing knowledge gradient method 
[FrPo08] to this new problem.  In computational testing they have found that for networks where 
the paths are not too short, the knowledge gradient works consistently quite well relative to 
competing techniques [RP09].     
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