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S. Bundy

Discrete Mathematics

Some of the most important problems of the social
and behavioral sciences are concerned with arrange-
ments, designs, patterns, sequences, schedules, and
assignments. These are among the fundamental noti-
ons dealt with by discrete mathematics (dm). This
article describes some of the tools of dm—digraphs,
graphs, signed and marked graphs, partial orders,
rankings, combinatorics—and their applications.

1. What is Discrete Mathematics?

John Kemeny made the following distinction. Many
problems of science deal with quantities so large that it
is natural to assume that they are dense, continuously
distributed, and that all real numbers can be used to
measure them. Centuries of development of ‘con-
tinuous mathematics’ have given us extremely power-
ful tools for handling these kinds of problems. Other
problems are so small that we can deal with all the
possible cases by hand. These are truly ‘finite’ prob-
lems. Some of the most important problems, however,
fall in between: not big enough to assume density,
continuity, etc., but not small enough to allow us to
consider all cases. These are, for the most part, the
problems with which discrete mathematics (DM)
deals. Because increasingly powerful computers are
allowing us to replace computations by hand, it is
becoming increasingly feasible to deal with problems
of DM. This explains, in part, why DM has be-
come perhaps the fastest growing field of modern
mathematics.

Many of the basic problems of the physical sciences,
dealing with time, mass, velocity, etc., are of the first

kind. So are many problems in the biological sciences.
However, many problems of the social and behavioral
sciences fall in the middle ground described by
Kemeny. The tools of DM are especially relevant here.
For an elementary introduction to DM, see Kolman et
al. (1999) and Roberts (1984).

2. Digraphs

A digraph is a pair (V, A) where V is a set called the set
of �ertices and A is a set of ordered pairs from V called
the set of arcs. Throughout, we shall assume that V is
a finite set. Usually, arcs (x, x), known as loops, are
not permitted or disregarded, and we shall disregard
them. Typically, we represent a digraph geometrically
by letting the vertices be points and including a
directed line from x to y if (x, y) is in A. The arcs in a
digraph are used in social and behavioral science
models to represent relations among the vertices.
Thus, (x, y) `A can mean that x is preferred to y, x is
louder than y, x influences y, etc.

Suppose (V, A) is a digraph with arcs representing
‘preferred to.’ Then an ordinal utility function can be
thought of as a function f that assigns a real number
f (x) to each x in V so that for all x, y `V,

(x, y) `A% f(x)" f(y). (1)

Similarly, if arcs represent ‘louder than,’ then a
function satisfying Eqn. (1) might measure loudness.
If a function satisfying Eqn. (1) exists, then the digraph
is asymmetric in the sense that if there is an arc from x
to y, then there is no arc from y to x, and transiti�e in
the sense that if there are arcs from x to y and y to z,
then there is an arc from x to z. It is also negati�ely
transiti�e in the sense that if there is no arc from x to
y and no arc from y to z, then there is no arc from x to
z. It turns out that asymmetry and negative transitivity
of the digraph are together sufficient for the existence
of a function satisfying Eqn. 1 (see Roberts 1976). An
asymmetric, negatively transitive digraph is called a
strict weak order.

Digraphs provide precise mathematical language
for expressing concepts in the social and behavioral
sciences. For instance, let us say that vertex y is
reachable from vertex x if there is a sequence of
vertices x
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are arcs. The notion of reachability is important in
sociology in the study of communication networks. If
an arc in the digraph means that x can communicate
directly with y (not necessarily a symmetric rela-
tionship in the sense that (x, y) `A! (y, x) `A), then
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reachability means that it is possible for x to initiate a
message to y. There is then interest in minimum-size
sets of vertices that can reach all others (so-called
�ertex bases). In large digraphs, it is often very
important to represent them geometrically in such a
way that their structural properties become clear. We
might wish to find another digraph on the same vertex
set with the same reachability properties and a
minimum number of arcs. This idea arises in the area
of data analysis called interpreti�e structural model-
ing (see Warfield 1976). The drawing of digraphs so
as to visualize the information they contain in useful
ways has become a major research field known as
graph drawing.

Understanding the structure of communication
networks is aided by considering strong components,
maximal sets of vertices each two of which are
reachable from each other.Many large social networks
have some huge strong components. This is the case in
telephone call digraphs where the vertices are tele-
phone numbers and arcs correspond to calls between
them, and in scientific collaboration digraphs where
an arc means that x collaborates with y (a symmetric
relationship). Similar results are being found for pages
on the World Wide Web, with arcs corresponding to
references from one page to another, and the results
seem to suggest that totally new models are needed to
explain how large social networks are formed. (For a
basic introduction to such digraph concepts as reach-
ability, vertexbasis, strongcomponent, etc., seeHarary
et al. 1965 and Roberts 1976. For more on social
networks, see Degenne and Forse 1999.)

3. Partial Orders

If (V, A) is a digraph, its symmetric complement is the
digraph (V, B) where

(x, y) ` [B% (x, y) aA & (y, x) aA]

If there is an f satisfying Eqn. (1), then the
digraph (V, B) is transitive. If A corresponds to
preference, then B corresponds to indifference. Argu-
ments against the transitivity of indifference were
made by the economist Armstrong in the 1930s and
even earlier by Karl Menger in the nineteenth century.
Similarly, in psychophysics, if A corresponds to
‘louder than,’ then B corresponds to ‘equally loud’ and
this might not be transitive. Arguments against tran-
sitivity of B often involve thresholds: x and y might be
within threshold and so sound equally loud, y and z
might be within threshold and so sound equally loud,
but x and z might not be within threshold.

This kind of argument led Luce in 1956 to introduce
a different model for utility of loudness judgments:

(x, y) `A% f (x)" f (y)δ (2)

where δ is a fixed positive constant measuring thres-
hold or just noticeable difference. Luce and also Scott

(1958) and Suppes gave necessary and sufficient con-
ditions for a digraph to have a function f satisfying
Eqn. (2), conditions defining a semiorder. Semiorders
are transitive digraphs. They are also very important
examples of a second fundamental concept of DM, a
partial order, an asymmetric, transitive digraph.
(Sometimes this is called a strict partial order and the
term partial order is reserved for the digraphs that are
transitive, reflexi�e [(x, x) `A for all x], and anti-
symmetric [(x, y) `A & (y, x) `A%x¯ y].) Partial
orders arise in numerous applications in the social and
behavioral sciences (see Partial Orders).

If f satisfies Eqn. (2), then consider the real interval
J(x)¯ [ f (x)®δ}2, f (x)δ}2]. Suppose that when J
and J« are two real intervals, JB J« means that every
point of J is to the right of every point of J«. Then Eqn.
(2) can be rewritten as

(x, y) `A% J(x)B J«(y) (3)

We can think of J(x) as a range of fuzziness about f (x).
If these intervals have different lengths, then the
digraphs defined by Eqn. (3) are called inter�al orders,
another important class of partial orders. The term
interval order is due to Fishburn in 1970, but the
concept was anticipated by Norbert Wiener in 1914.
For more about semiorders, interval orders, and a
variety of partial orders, see Fishburn 1985 and
Trotter 1992.

4. Graphs

If a digraph (V, A) is symmetric, we call it a graph.
Replacing each pair of arcs (x, y) and (y, x) by an
unordered pair ²x, y´, we can think of a graph as a pair
(V, E ) where E is a set of unordered pairs from V.
Elements of E are called edges. Geometrically, the
vertices are represented as points and if ²x, y´ `E, then
we connect x and y by an undirected line. The
symmetric complement of a digraph, of course, is a
graph. The symmetric complement of a semiorder is
called an indifference graph or a unit inter�al graph.
The name comes from the case where A corresponds to
preference. The symmetric complement of an interval
order is called an inter�al graph. Interval graphs have
a huge number of applications in archaeological
seriation, developmental psychology, ecology, mol-
ecular biology, data retrieval, scheduling, etc. (see
Roberts 1976).

Indifference graphs and interval graphs are special
cases of intersection graphs, graphs whose vertices
correspond to sets and which have an edge between
two vertices if and only if the corresponding sets have
a nonempty intersection. There are many important
open research questions concerning intersection
graphs. For example, characterizing intersection
graphs where the sets are unit squares in the plane, a
long-standing open problem, is relevant to judgments
of indifference when there are two dimensions to the
alternatives being compared.
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Social networks are often graphs since the under-
lying relation defining the arcs is often symmetric. In
this case, the strong components are simply called
components. The components often consist of sets of
vertices each two of which are joined by an edge. Such
a set of vertices is called a clique; if an edge between x
and y means that they are friends, then a clique is a set
of individuals each two of which are friends. Surpris-
ingly enough, it is computationally difficult to find the
largest clique in a graph.

If (V, E ) is a graph, its complement is the graph
(V, F ) where ²x, y´ `F% ²x, y´ ¡E. We often seek to
partition the vertices of a social network into cliques.
In the complement, this problem corresponds to
partitioning the vertices into sets with no edges joining
vertices within the same set. Such sets are called
independent sets. The problem of partitioning the
vertices of a graph into independent sets is equivalent
to one of the most important problems in graph
theory, the graph coloring problem. A coloring of a
graph is a function f that assigns a color f (x) to each
vertex x so that ²x, y´ `E! f (x)1 f (y). The sets of
vertices of a given color form independent sets. Graph
coloring has many important applications. In a typical
application, individuals who dislike each other must
be assigned to different tasks or time schedules or
groups. Disliking defines the edges while the colors
correspond to the tasks, schedules, or groups. The
theory of role assignments in sociology, sometimes
known as the theory of role colorings, is closely related.
While the subject of graph coloring is an old one,
going back to the famous ‘four color problem’ of the
nineteenth century, it is a very lively area of research
today with important modern variations on graph
colorings motivated by practical applications. An
example is the list coloring problem, where a list of
acceptable colors (tasks, time schedules, groups) is
given at each vertex and the color assigned to a vertex
must be chosen from its list (see Roberts 1984 for an
introduction to graph coloring and Kratochvı!l et al.
1999 for the list coloring problem).

5. Signed and Marked Graphs

In some applications of graph theory, it is useful to
classify edges as  or –. We then speak of a signed
graph. One of the most fascinating applications of
signed graphs is as a model of balance in small group
sociology. A group of people is called balanced if it
works well together, lacks tension, etc. Cartwright and
Harary (1956) and Harary (1954) made this concept
precise as follows. Let the vertices of a graph be
individuals in the group, an edge mean they have a
strong relationship, and the sign distinguish between
a positive relationship (such as likes, associates with,
agrees with, stimulates) and a negative relationship
(such as dislikes, avoids, disagrees with, inhibits). If
(V, E ) is a (signed) graph, a circuit or cycle is a
sequence x

"
, x

#
,…, x

l
of distinct vertices so that t& 3,

²x
t
, x

"
) is in E and for i¯ 1,…, t®1, ²x

i
, x

i+"
´ is in E.

There is a lot of evidence to show that a small group is
balanced if and only if in the corresponding signed
graph, every circuit has an even number of – signs. If
the latter holds, we call the signed graph balanced. The
same notion was introduced into the economics
literature by Morishima in 1952. Characterization of
balanced signed graphs was first given by a ‘structure
theorem’ by Harary (1954). Later, Maybee and
Maybee, Harary and Kabell, and Hansen gave linear
time algorithms for determining whether a signed
graph is balanced. Notions of balance theory have
found applications in a variety of areas, including the
study of ‘social justice,’ social inequalities, inter-
national relations, and the analysis of multiparty
political systems. Since not all systems are totally
balanced or totally unbalanced, ways to measure the
degree of balance are important and remain a subject
of research today (for an introduction to balance
theory, see Taylor 1970 or Roberts 1976).

In some applications, it is useful to put signs on the
vertices of a graph rather than on the arcs. Such
marked graphs arise in the study of social networks,
where we think of vertices as individuals who either
tell the truth ( sign) or lie (– sign), and where we
trace messages through the network. Beineke and
Harary called a marked graph consistent if every
circuit has an even number of – signs, a concept
analogous to balance in signed graphs. Surprisingly, it
is mathematically very difficult to characterize con-
sistent marked graphs. In spite of a lot of work on this
subject, a complete understanding of what marked
graphs are consistent remains elusive.

6. Rankings and Combinatorics

Strict weak orders, that is, asymmetric, negatively
transitive digraphs, are sometimes called rankings. We
can rank the vertices from top to bottom, with ties
allowed. Rankings arise in the theory of voting, group
consensus, and social welfare. There are situations
where just knowing a voter’s first choice candidate
does not give us enough information to find an
appropriate winning candidate. It can be useful to
have each voter provide a ranking of the candidates.
Then we need a rule that provides a winning ranking.
If such a rule is defined for every possible combination
of rankings, we call it a group consensus function or
social welfare function (SWF).

The theory of SWFs goes back at least to the
eighteenth century (in the work of Marie Jean Antoine
Nicolas Caritat, Marquis de Condorcet, and of Jean-
Charles de Borda), but had its modern impetus in the
economic modeling of Kenneth Arrow. Arrow listed
some reasonable axioms we might require of an SWF
and showed that there was no function satisfying these
axioms. Arrow’s Impossibility Theorem has been
modified, replicated, and applied in a myriad of ways
since then. A few general references on group con-
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sensus are Campbell 1992, Kelly 1988, and Roberts
1976, 1989.

Modern applications of SWFs and notions of group
consensus put a great deal of emphasis on compu-
tational tractability of rules for determining the
winning consensus. Bartholdi, Tovey, and Trick,
Wakabayashi, and others showed that there are voting
rules that are computationally intractable, that is,
where it is extremely difficult to compute the winner of
an election (see Roberts 1989). They also pointed out
that sometimes computational intractability is useful,
as when we wish to make it difficult to manipulate the
outcome of an election such as by adding voters,
declaring candidates ineligible, etc. Computational
tractability becomes an issue when there are large
numbers of voters or candidates. This is the case in
applications of theories of group consensus to meta-
search on the Internet, that is, combining the results
of different search engines, and to such e-commerce
applications as collaborati�e filtering where the rank-
ings of different individuals among alternative movies,
books, or restaurants are combined to produce an
automated ranking as a recommendation to a given
user of a system. Important open questions about
SWFs arise in such applications, including issues of
learning and adapting through repetition.

If a ranking does not allow ties, we sometimes talk
about a strict simple order or a permutation. Strict
simple orders are also important in applications such
as models of power in voting situations. Suppose
different ‘players’ (such as states in the US Electoral
College or owners of shares in a company) have
different numbers of votes. Imagine adding players to
a ‘coalition’ one at a time until enough votes are
obtained to ‘win.’ The player whose votes throw a
coalition over from losing to winning is called pi�otal.
One measure of the ‘power’ of a player in such a
situation is the probability that the player is pivotal if
a coalition is formed at random. This is known as the
Shapley �alue. There are a variety of other interesting
power measures that, like this one, have come out of
the theory of cooperative games (see Fudenberg and
Tirole 1991 and Roberts 1976). The Shapley value can
be calculated by counting the number of permutations
of the players in which a given player is pivotal and
then dividing by the number of permutations of the
players. In large games, this becomes a compu-
tationally intractable problem. To solve it in special
cases, one has to solve counting problems.

The counting problem, involving finding the
number of permutations, combinations, and other
mathematical objects, is a fundamental problem of the
branch of DM known as combinatorics. The Shapley
value has been calculated for various governmental
bodies such as different legislatures, the UN Security
Council, and the US Electoral College. Yet, new
computational procedures for calculating it are very
much required. This is especially important in light of
the many uses of the Shapley value in cost allocation

problems such as fairly sharing the cost of telephone
systems, airports, libraries, and multicast trans-
missions of movies.

In conclusion, discrete mathematics is finding many
new and unexpected applications in the social and
behavioral sciences. At the same time, the social and
behavioral sciences are one of the important stimuli
for the development of this rapidly growing field of
mathematics.

See also: Bayesian Graphical Models and Networks;
Graphical Models: Overview; Partial Orders; Ranking
Models, Mathematics of; Social Network Models:
Statistical
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