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ABSTRACT

Mathematical Clustering or Cluster Analysis is a field which endeavors to ”classify”. More precisely,
given a discrete data set, this set is classified into groupings, or clusters. The criteria for what makes
a ”good” set of such clusters vary, however in general we want similar data points to be made part
of the same cluster, and data points assigned to different clusters should have some important
features distinguishing them.

The basics notions and definitions of clustering are introduced, as well as key algorithms
used in the field, including the notion of a ”hierarchical” algorithm. The first chapter provides
an overview of the field as well as an introduction to ”Agglomerative” hierarchical algorithms;
the second chapter describes ”Divisive” hierarchical algorithms; and the third chapter introduces
Sequential clustering algorithms.

A section of print References is provided for further exploration, as well as as a section of Web
References Cited (with full URLs), and additionally an online page, ”Online Resources for Further
Exploration” is available from the DIMACS page with sections on Tutorials, Sample Applications,
Researchers with Expertise, and Software.
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0 Preface

Our intended audience for this module are students at the freshman and sophomore level taking
a General Education or Liberal Arts mathematics class. Accordingly, only a minimal, high-school
background in mathematics is assumed. It is likewise assumed that most of these students will not
major in the mathematical sciences, while recognizing that a many will enter fields which utilize
mathematical thinking and tools.

Hence, our dual goals are that the minority which may enter a field in the mathematical
sciences will be encouraged by this module to explore clustering beyond this initial introduction,
and that all students expand their mathematical and analytical thinking skills, and appreciation
for the usefulness and relevance of mathematics – particularly mathematical modeling.

Philosophically and pedagogically our aims are to foster through examples, applications, and
references an appreciation that mathematics

i is alive: that there is active, current research going on

ii is useful : that this research concerns questions that people, including non-mathematicians,
very much care about

iii is interesting (as suggested by the gallery of examples) and

iv is a creative process that non-specialists, including non-mathematicians, can engage in, and
gain an appreciation for.

The intent is also to motivate and possibly entice the more mathematically inclined minority
of Liberal Arts students (after having us whet their appetites with this module) to consider further
mathematical explorations, be they in clustering, or in the broader world of mathematics. May
you find mathematical adventure for your classroom in the pages that follow!

1 Overview and Agglomerative Clustering

1.1 Introduction

Suppose you are taking a university class which includes a long-term project as an assignment. You
are to work in small groups on this project, and most of your group meetings will be held outside
of class. Your professor, being kindhearted and thoughtful, wishes to choose group assignments in
a fair way which will help you be successful.

Pause for reflection: At a non-residential university, what factors should the professor consider?
(before reading on, stop here and take a moment to make up your own list of important factors).

One of the most natural criteria your instructor might use is geography, namely where you
and your classmates live, and more precisely, how far apart you live from one another. By “far
apart” we mean something more involved than distance, however. For example, it takes more time
to travel 5 miles on a small road than on a fast highway. Other complicating issues are that parking
costs may vary, and that the time spent waiting to switch from one bus or subway line to another
depends on how many such switches are required. For our purposes, we will assume overall travel
costs have been determined for getting from one student’s home to that of a classmate’s.
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[Comment: some students may be familiar with the Triangle Inequality for distances:
that the sum of the lengths of two sides of a triangle is greater than or equal to the
length of the third side. It must be cautioned however that in this example, the Triangle
Inequality does not hold since you will be using travel costs rather than simply physical
distances. The general case in ’clustering problems’ discussed in this module is that the
Triangle Inequality will not hold; it will hold only in special cases of clustering].

Since your groups will need to meet many times outside of class, it would be a good idea
to choose project groups (or ’clusters’) in such a way that students who are in the same group
live relatively “close” together (or at least not too “far” apart) in terms of the overall travel costs
between pairs of students in the same group.

Now let’s consider how your instructor might go about selecting project groups according
to this criterion. Put yourself in the role of the instructor and think about how you might best
accomplish the task of selecting the groups.

To be concrete, let us suppose that five students in class have chosen the same topic, but
that project groups can only have two or three members each. Let’s say that the five students are
named Anna, Brian, Chris, Deborah, and Ethan, to whom we will refer by their first initials: A,
B, C, D, and E.

Your task is to divide this set of five students into two project groups. Since groups with
more than three or fewer than two members are not allowed, it follows that you need to create, out
of the initial set of five students, two project groups: one group with two members, and one with
three members.

1.1.1 Matrix Matters: Visualizing our data

Suppose now that the travel costs between the respective dorm rooms or apartments of our five
students are as indicated in the following chart (Table 1):

Student
A 0 1 8 5 4
B 1 0 10 6 7
C 8 10 0 2 9
D 5 6 2 0 3
E 4 7 9 3 0

Travel cost to: A B C D E

Table 1: Travel costs between pairs of students

Notice the diagonal line of zeros in our chart: this is because the travel cost from A to A
(that is, our “travel cost” if we start at Anna’s place and our intended destination is also Anna’s
place) is zero: clearly, we don’t need to travel at all in this case! Similarly, the table has a 0 for
the travel cost from B to B, C to C, and so on. Notice that rows are listed in the same order as
columns, and that this natural ordering is the reason behind the zeros always lying on a diagonal
as we’ve noticed. In fact, there are other patterns in the above chart.

Pause for reflection: Before reading on, can you describe in writing what other patterns you
see?
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An important feature in the chart is its symmetry. Notice that there is a mirror-like aspect to
the arrangement of numbers in our chart: it has two symmetric halves, separated by the diagonal
of zeros we’ve observed. Do you see it? Furthermore, can you say and then write down in precise
terms what this symmetry is, explaining in precise terms why this symmetry is present? Before
reading on, take a moment or two to carefully describe this symmetry (Suggestion: thinking in
terms of rows versus columns may help).

What we’ve found in the chart is more than just a visually pleasing pattern however; just
as there was a reason and interpretation behind the diagonal of zeros (the travel cost incurred if
your starting point and destination are the same, is zero), likewise there is a reason and a physical
interpretation behind the symmetry of two complementary halves in our table of travel costs.

Pause for reflection: What interpretation of the table of travel costs explains specifically this
symmetry?

Suppose we use the notation dCD to represent the travel cost from Chris’ place to Deborah’s.
According to our chart, dCD=2. Making the reasonable assumption that in our case travel routes
and their associated costs are the same in both directions, the travel costs from Chris’ place to
Deborah’s place is equal to that from Deborah’s place to Chris’ place. It follows that in our
notation, dCD = dDC

[Comment: to avoid unnecessary complications at this point, we assume travel distances
are equal in both directions. For towns with one-way streets one would have often had
dxy �= dyx where dxy is the driving distance from x to y ].

Similarly, we know that dAB = dBA and so forth. If you look at how the rows and columns
are arranged and find the pair dAB and dBA on the chart, and similarly locate the spots where the
pair dCD and dDC are located, you will have found the pattern behind the mirror symmetry. What
is the general rule for this pattern?

1.1.2 Noticing more general patterns

To see more general patterns, we need to be able to talk about an arbitrary pair of students. To
do this, let’s suppose our five students are numbered 1, 2, 3, 4, and 5 in some ordering, so that if
i and j are any two of these five integers, then we can speak of “student i and student j” without
having to choose specifically to refer to “students A and B” or “students D and C” for example. In
other words, while symbols such as “A” and “B” were just abbreviations for names (Anna, Brian,
etc), the indexes like i and j are variables: they can vary over ranges of numerical values capable
of representing any student. This way we can look for patterns that exist between an arbitrary
collection of students. In fact, we can say the following.

Given that dij is the travel cost of going from the ith student’s home to the home of the jth
student (here i and j represent the indexes of two students among any group of students – not
necessarily a group of exactly five students), then the symmetry we have noticed can be expressed
by the equation dij = dji. Furthermore, we have one such equation for each pair of different indexes
i and j (we already separated off the case when i = j).

Similarly, we can express the pattern of zeros along the diagonal by the set of equations
dii = 0; there is one such equation for each i , that is, one such equation for each student in the
group.

Since dij = dji for each pair of indexes i and j, and since dii = 0 for each i, we can streamline
our chart: no essential information will be missed if we omit the diagonal entries (we know those
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must be zero), nor if we include only one of the chart’s two symmetric halves. This leaves us
with the following simplified chart of travel costs between students (we keep the blank A-row and
E-column to maintain symmetry and readability):

Student
A
B 1
C 8 10
D 5 6 2
E 4 7 9 3

Travel cost to: A B C D E

Table 2: Travel costs between pairs of students

1.1.3 Forming Student Groups: who goes with whom?

Now let’s return to our original question: what is the best way for breaking up this collection of
five students into two separate project groups, one having two members, and the other with three?
Since we’re now back to dealing with exactly five students rather than attempting to understand
the general case, we can again represent the students by their first initials (A, B, C, D, and E). As
you will see below, we will use brackets to denote groupings of students together. We will proceed
to group the students together into “clusters” – tentative candidate groupings for what the project
groups might be – in a series of steps.

Initially, no student is assigned to be “in the same group as” any other student. Therefore,
initially we start with five individual students, each grouped (with brackets) as a single-person
“cluster”: [A], [B], [C], [D], and [E]. This initial set of five students, each belonging to their own
one-person cluster is represented in set notation as: {[A], [B], [C], [D], [E]}. Our goal is to end up
with two project groups, one with two students, and one with three. For example, we might end
up with project groups represented by [A,D] and [B,C,E], which would be the set of two clusters:
{[A,D], [B,C,E]}.

Since the only criterion we have to work with at this time is travel cost, we would like to
group students together who live close to each other in the sense of their being a lower travel cost
between such students. If you look at the chart you will notice that Anna and Brian live 1 travel
cost unit apart, and also that no other pair of students have a lower mutual travel cost.

So one reasonable first grouping (or clustering) of students would look like this:

First Clustering: { [AB], [C], [D], [E] }
A set of four tentative clusters make up this clustering.

This means that Anna and Brian are to be in the same group, and that the other students
are not yet presently assigned to be “together with” anyone else. Until we further examine the
chart for more information, it’s not clear what the final project groups – that is, what the final
clustering – might be. We could end up with {[AB], [CDE]}, but the final clustering might also be
{[ABC], [DE]} or {[ABE], [CD]}, or {[ABD], [CE]}

Pause for reflection: Are there any other possibilities? How can you tell? How hard would it be
to answer questions of this sort if instead of dealing with five students, we had 10? 30? In other
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words, given a larger initial set of students, and supposing two students are grouped together, with
the rest being as yet ungrouped, can you see that the number of choices for final project groups
(even restricting each final project group to 2 or 3 members, say) becomes rather large? Chose a
size of initial number of students (e.g. 6, 7, or larger) and try to answer, or estimate, how many
possible choices there would be for final project groups.

Now examine the chart again, and notice that the next smallest travel cost between two
students is 2, which is the travel cost between C and D. Our eagerness to find pairs of students
such that the travel costs between them is as small as possible suggests we may want to adopt the
following reasonable method : we will “cluster together,” at each step, those two students who are
closest in travel costs.

Notice that what we are actually combining are the groups of these two students, since each
student is technically a one-person group. This is an observation we will shortly use when we need
to generalize our rule to a method of combining a student with a “cluster” (grouping) of other
students. In any case, if we adopt our rule as it stands, then our next clustering will be:

{[AB], [CD], [E]}.

Since single-member groups are not allowed, we are not done yet. Ethan (student E) needs
to be placed into one of the two other groups: either together with Anna and Brian (the [AB] group
or cluster) or together with Chris and Deborah (the [CD] cluster).

Since the rule defined by our method only tells us which students to put together, we need
to expand it in order to decide where to place Ethan. Expanding on our observation above, we can
expand our rule to be: “find the two students (not in the same cluster) such that the travel cost
between them is least, and combine the groups to which these students belong”.

After all, we started by finding the smallest two numbers in the chart (the “1” and “2”), so
it’s reasonable to look for the next smallest travel cost, which is 3. This is the value of dDE, which
is the travel cost between Deborah and Ethan. Thus, if we put Ethan into the [CD] cluster, that is,
into the same group with Chris and Deborah, then at least one of Ethan’s groupmates (Deborah),
will have travel costs to Ethan as small as possible. Thus, we have now arrived at the following
clustering of students into two project groups:

{[AB], [CDE]}

According to this method we’ve created, the teacher would have Anna and Brian form one
project group, and would declare Chris, Deborah, and Ethan to be a second group. We can now
draw the following diagrammatic sequence to represent the stages of the process we used to arrive
at the final project groups:

{ [A], [B], [C], [D], [E]} → {[AB], [C], [D], [E] } → { [AB], [CD], [E] } → { [AB], [CDE] }

Is there more to this story? Should we now, pleased with this result, march into our professor’s
office and declare that we have solved all of their problems of assigning student project groups?

One point to notice is that sequence in the diagram above is not be the only possible order
in which the groups can be formed. Had we a tie, say, dAB = dCD = 1.5, then the second stage
would have been either as above, or {[A], [B], [CD], [E]} (the first stage would still be {[A], [B],
[C], [D], [E]}).
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Exercise: Had the chart of travel costs been the same as above except that dAB = dCD = 1.5,
draw a complete diagram for the rest of the process for each of the two possible “second steps”.
Would they both end with the same final choice for groups?

Note: It turns out that for algorithms different than the one just used, one does not always arrive
at the same final choices for groups, when ties create several avenues for the “next step.” There are
many ways to handle “ties” of this type. One possibility would be to simply arbitrarily choose one of
the tied values and treat it as the larger of the two (by flipping a coin, for example). For simplicity,
in this module we will, from this point on, always assume that all of the travel costs between pairs
of students are different from one another, and thus avoid this complication in our overview of
examples and methods. See the list of references for more general treatments of clustering which
include such situations. In particular, see section 3.2.6 in [JD].

As we see next, even with this simplification, there are other questions and doubts that arise
upon closer consideration of the methods we have used so far for choosing project groups.

1.1.4 Did we choose wisely? A Second Look

Our stepwise agglomeration , that is gathering together, of the initial set of five separate students
into larger clusters, was a step-by-step process which created partitions of the five-student set
with fewer and fewer “pieces”. That is, there were fewer clusters at each step (at each successive
clustering ) as the size of some of the clusters increased, and this process certainly ended as it was
supposed to: our final clustering consisted of exactly two clusters, one having two students, and
other having three students.

If this were the only requirement, there would be no room for improvement. Recall however
that we were also interested in the travel costs between the students, which we wished to minimize
in some reasonable sense. Since the meetings of the project groups take place outside of class, at
student homes, we wanted to spare our students from having to make “expensive” trips – in terms
of time, money, and other factors measured by the travel costs – as they went about having their
frequent meetings with fellow project group members.

With regard to this criterion, our method certainly yielded in some sense a reasonable answer:
Anna and Brian, who have the lowest mutual travel cost, are in the same group, and furthermore,
Chris and Deborah, who have lower mutual travel costs than any other pair other than Anna and
Brian, are also clustered into the same project group. Finally, we put Ethan in Chris’ and Deborah’s
project group, because the travel costs between Ethan and Deborah is less than for any other pair
besides Anna and Brian, and Chris and Deborah. What could be better? But wait! Why does
Ethan have a frown on his face? And Chris doesn’t look too happy either.

Pause for reflection: Why the frowns? Consider carefully the information we have. What do
you think the problem might be?

The travel cost between Chris’ place and Ethan’s is 9, the second highest pairwise travel cost
of all the travel costs between pairs of students(*). Thus when meetings are held at Chris’ house,
Ethan has a difficult trek to make, and similarly when meetings are held at Ethan’s, the travel cost
for Chris is equally large!

[Comment: Notice that the travel costs from Chris to Ethan (9) is greater than the
sum of the travel costs from Chris to Deborah (2) plus the travel costs from Deborah
to Ethan (3). This might happen, for example, if there is a time cost such as switching
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between two modes or lines of public transportation when one tries to get from Chris
to Ethan via an intermediate stop at Deborah. Thus it is now clear that the Triangle
Inequality does not hold for this example since, as you may recall from Euclidean geom-
etry, the triangle inequality states that given three points A, B, and C, then dist(A,C)
≤ dist(A,B) + dist(B,C). That is, the distance from A to C is less than or equal to
the sum of the distance from A to B, plus the distance from B to C. When dissimilari-
ties do represent distances, then the set of dissimilarities have this additional, “triangle
inequality” property: di,k ≤ di,j + dj,k, that is, the dissimilarity between Oi and Ok

is less than or equal to the sum of the dissimilarity between Oi and Oj added to the
dissimilarity between Oj and Ok. In general, however, the matrix of dissimilarities need
not have this property, because underlying dissimilarities need not represent distances.
For example, molecules A and B might be judged by chemists to have dissimilarity 5,
and molecules B and C might be judged to have dissimilarity 1, but the dissimilarity
between molecules A and C might be 8 – greater than 5+1]

This does not mean that we should automatically throw out all of the preceding work. Nor
that we should throw out the informal algorithm , or procedure, which we used to guide our stepwise
formation of clusterings of students.

But let’s think about the problems created for Chris and Ethan which arose from our above
algorithm, which we came up with “on the fly.”< Do these problems suggest alternative criteria
we might use in our clustering procedure? For example, why not try to minimize how “bad” a trip
between any two members of the candidate project group would be, when we consider lumping
students together to form larger project groups? Might this be a goal worth adopting?

[Comment: in general, when solving a problem, we might get different solutions or
answers – different final clustings in this case – depending on the goal(s) or objective(s)
we adopt]

If we proceed with this modified goal in mind, some interesting differences arise in how our
ultimate clusters (project groups) turn out: we get a different sequence of clusterings, and more
precisely, we get a different final clustering of the 5 students.

To see this, we follow this new criterion and observe what happens. Initially, we would still
cluster Anna and Brian together:

{ [A], [B], [C], [D], [E]} → {[AB], [C], [D], [E] }

This is due to “1” being the cost of the least costly trip between any two students. Next, we
still cluster Chris and Deborah together since “2” is the next least costly trip. So, as before, we
have the following sequence of clusterings:

{ [A], [B], [C], [D], [E]} → {[AB], [C], [D], [E] } → { [AB], [CD], [E] }

Now things become more interesting. The next smallest travel cost is “3” and is between
Deborah and Ethan. However as we saw, the travel cost between Chris and Ethan is 9 – pretty
bad. Can we do better? With so many possible combinations, where do we even begin? How might
we proceed?

Our idea is to try to make the “worst” trip be the least costly one we can manage – to see
how low a travel cost we can arrange for such a worst trip, while still finding ourselves able to
arrive at a final clustering. Under our rules, this means being able to arrive at one cluster (project
group) with three students, and another with two.
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So far we have Anna and Brian assigned to be in the same group, and Chris and Deborah are
assigned to be in the same group. Suppose we wish to require that the “worst” trip have travel cost
no more than 3. Would this work? Clearly not, since adding Ethan to Chris and Deborah’s group
would fail to meet this requirement (Ethan and Chris are 9 travel cost units apart), nor could we
add Ethan to Anna and Brian’s group (Ethan is 4 and 7 units away from them, respectively). And
since four member groups are not allowed, we don’t need to consider the possibility of merging
[AB] with [CD].

Next, rather than giving up, we relax our requirement a bit. Suppose we try to require that
the “worst” trip be no more than 4 travel cost units. We still can’t add Ethan to either of the two
member groups – can you explain why not? Next, we try 5 for the “worst allowable trip”. Why
doesn’t this work? And why does 6 not work either?

Not giving up, we now try to make 7 the “worst allowable trip”. Now, we can add Ethan
to Anna and Brian’s group, since Ethan lives 4 units away from Anna, and 7 units – just barely
fitting within our requirement – from Brian. Thus the worst travel cost for any member of this
proposed group would be 7.

Notice that under our new criterion, deciding whether to have Ethan join Anna and Brian’s
group, or to have him join Chris and Deborah’s group is not a difficult choice – we would not be
tempted to add Ethan to Chris and Deborah’s since as we noticed earlier, Ethan and Chris live 9
travel cost units apart, so the “worst trip” for a proposed group of [CDE] would not be 7 units or
less.

Thus our new clustering criterion is this: “at each step, minimize how bad [in travel cost]
the ’worst possible trip’ is within a proposed project group”. As we just saw, under this second
clustering procedure we get a different sequence of clusterings than the one created by our first
method; namely, we get the following sequence of clusterings:

{ [A], [B], [C], [D], [E]} → {[AB], [C], [D], [E] } → { [AB], [CD], [E] } → { [ABE], [CD] }

Thus we have ended up with a different final set of clusters (final clustering): [ABE] and
[CD]. We are now better able to provide our instructor with algorithms for creating project groups,
depending on what goals are considered most important. We have two methods or algorithms,
which we created using ad hoc methods – in other words, by “following our noses” and intuition
rather than by using a systematic approach and analysis. Our two methods seem decent, however
we would certainly feel more confident in them if we had a better sense of what other types of
clustering outcomes are possible, and if we had a better feel for “the lay of the land” for methods
of clustering. Is there are more careful, systematic way to think about it?

In the following sections, we will give more formal, that is more careful and precise definitions
of the concepts we’ve already encountered, and of algorithms for clustering an initial set of elements,
such as students, into a collection of groups, called clusters, such as project groups for students.
But first, let’s slow down for a moment to take a brief first look at the overall enterprise we have
embarked on: the field of cluster analysis.

1.1.5 Is there Method in our Madness?

The attentive student might wonder at this point which of the above two methods of clustering the
five students is the “right” one. Unfortunately there is no single, simple answer to this question.
In fact, you might start to wonder just how many possible methods there are besides the two we
stumbled upon. When looking at a clustering problem, do we just try to discover (make up?) new
criteria for each new application that arises, with each criterion or method leading to a different
solution? And in our opening example, should we search for a third method, a fourth, and so on,
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leading to a large number of possible clusterings, none of which we can say with any confidence is
“the right one”?

These questions are indeed fundamental to understanding the field of clustering. While we
cannot answer all of them in full detail here(*), several general remarks can be made at this point.

[Comment: we encourage interested readers to further investigate these issues. For
suggested reading, see the References.]

First, the reader should understand that researchers in the field of cluster analysis do not
proceed by means of random, ad hoc methods invented on the spot. How then are methods chosen?
Part of the answer is that, as we shall see, one can approach the question of “what criteria are
important?” in a more systematic and precise manner. This more precise notion of “what is
important” in terms of criteria can then aid in selecting an appropriate method of clustering. For
example, the teacher might decide that, in the interest of fairness, the “average ability” (suitably
defined) of any one group should not differ too sharply from that of another project group. Or, a
professor might want diversity of student backgrounds within each group. Any criterion, that is,
any given and carefully defined choice of desired properties of the clustering, can serve as an aid
for choosing among different possible clustering methods, and even for identifying new clustering
algorithms.

Different applications and contexts, in which we are clustering things other than students,
lead to other natural criteria. For example, suppose that a country, state, or province has enough
funds in its budget to build 10 new hospitals in a given region. Where should the hospitals be
located? One can obtain data as to where people live, including the population densities in different
areas. And one can make an assessment of the degree of need in any one area (perhaps with a
greater percentage of older citizens) versus another. These and similar data then form the basis
from which more mathematically precise clustering criteria, and ultimately, clustering algorithms,
can be created by researchers.

Still other applications arise in industry (where should factories and outlets be built, given
consumer preferences and population concentrations?), psychology (given a set of a dozen “scores”
from different personality tests, which individuals should be clustered as being of similar “type”? or
which sets of personality tests should be clustered as “measuring similar qualities”?), transportation
(where should airports be located? How do we “cluster” customer transportation demands into a
manageable number of flights and connecting flights?), sociology (who tends to mingle with whom
during a social gathering, in a cafeteria, or other location or event?), chemistry (e.g. molecular
classification into clusters of “similar” molecules, see references in [1], biology (see [2] and [3] for
clustering in the taxonomic classification of species as well as genetics [4], ecology [5], phylogenetic
algorithms [6], and even the internet [7]. For example, how can a software program “cluster
together” web sites into groupings so that two web sites in the same group (cluster) are likely to
be equally interesting and useful – or likely to be equally uninteresting – to the user? (see [CP] in
references section). For additional applications, such as image processing, see chapter 5 of [JD].

With this overview in mind, we are now ready to delve more deeply into the world of clus-
tering. As promised, we begin by making our definitions more precise.

1.1.6 Defining our Terms

To be able to sharpen our analysis, we need to be able to put the objects and relations we have
been studying into clearer focus, and this is why we need more precise definitions. In the following
collection of definitions, modeled after [HJ], each newly defined term is put in italics .
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First, we need to know what we wish to “cluster”. Thus, we need to start with some under-
lying set; for example, the underlying set in the prelude’s opening example was the initial set of 5
students. Such an underlying set in a clustering problem is called the sample . Since the elements
of the set are quite often objects rather than people, we will usually use the capital letter O for the
sample set, and its elements or objects will be denoted with subscripts, for example:

O = {O1, O2, O3, O4, O5}

might denote the underlying set (or sample) in our opening example. In general, we may
have in the sample O any number of objects (also called entities ), and if there are N objects, then
we write:

O = {O1, O2, O3, ... , ON−1, ON}.

Here O1 is the “first object,” O2 the “second,” and so forth, while ON−1 is the “second to
last,” and ON is the last of the N objects in the sample being considered. However, the ordering
itself is generally unimportant. Its usefulness is simply to allow us to give different names to the
different objects, so we can speak unambiguously about which object is clustered together with
which: for example, O2 being clustered together with O8 rather than O3 with O5.

In order for the clustering of the objects in our underling sample to be performed in a way that
is not arbitrary, this sample must also come with some way of measuring how “alike” or else, how
“dissimilar” any two objects are. When our “objects” were the students in the opening example,
the dissimilarity between two objects (students) which we used was the travel cost between their
homes.

In other applications, the numerical dissimilarities between objects can have a different mean-
ing. An example is when we are trying to cluster communities into sub-regions or districts, so that
one clinic may be built for each district, with each one being considered a cluster. For such an
application, dissimilarities might be travel costs in dollars, or in time, between the communities, or
actual distances between the communities needing medical care, or some other numerical measure
of how different the communities are from one another. Or perhaps a complex measure is created
by doctors, statisticians and others, taking into account age distributions, income distributions, the
effect of the number of high-speed highways on getting an ambulance to and from a community,
and so forth.

One important thing to keep in mind is that dissimilarities need not be distances in the usual
sense of distance between geographical places (think of the phrase “distant relatives” for some of
your cousins). As we have seen, they come from a wide variety of “measures” which are used when
experts in a given field have solid evidence suggesting the measure reasonably captures critical
differences between objects in the sample. Other examples of measures of similarity/dissimilarity
between elements of a set include the differences in base pairs between strands of DNA , measures
of “closeness” between species and their anatomy, and differences between the chemical properties
of molecules. In general however, regardless of the application, when we speak of the dissimilarity
between two objects, we are speaking of a positive number , for dissimilarities are represented as
numerical values.

The set of dissimilarities between all possible pairs of objects in a sample is normally given in
the form of a matrix. This is just a two-dimensional table whose rows correspond to the elements
of O, and whose columns likewise index the elements of O. This table or chart is then filled with
numbers: the number in the 2nd row and 3rd column is labeled d2,3 and represents the dissimilarity
between the 2nd and 3rd objects in O. That is, the dissimilarity between O2 and O3 is d2,3 and
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generally, the dissimilarity between Oi and Oj is written di,j . This matrix of dissimilarities taken
as a whole is called the dissimilarity matrix for the sample O.

All of this should have a rather familiar ring to it: the chart in our five-student opening
example was nothing but a dissimilarity matrix for our (rather small) sample set of five elements
of O, and the “objects” in O were just the students (and as before, we will assume that our
dissimilarity matrix contains no ties ).

Furthermore, from our opening example it’s clear that the matrix of dissimilarities will have
two crucial properties: di,i = 0 for any i (the dissimilarity when we compare Oi with itself is zero),
and for any pair of indexes i and j, di,j = dj,i (the dissimilarity between Oi and Oj is identical
to the dissimilarity between Oj and Oi). Finally, we also require in our definition of a proper
dissimilarity matrix that di,j ≥ 0. This means that dissimilarities cannot be negative. After all,
the dissimilarity, that is the degree of difference between two objects cannot be less than “nothing”
–”nothing” meaning that no differences exist– and so cannot be less than zero. Note that if our
sample space O has n elements, then our dissimilarity matrix will be an n by n matrix.

The reader should note that all clustering methods depend critically on the matrix of dis-
similarities. Such dissimilarities are based either on distances, or on non-distance “proximities,”
meaning degrees of qualitative closeness or similarity between objects. It is emphasized in [JD]
for example that “unless a meaningful measure of..proximity, between pairs of objects has been
established, no meaningful cluster analysis is possible. The proximity matrix is the one and only
input to a clustering algorithm” (emphasis added. Note that, whether we think of the entries of
the matrix as expressing levels of “dissimilarity” or levels of “similarity”/”proximity,” are two sides
of the same coin, just as “how big is it?” or “how small it is?” are two ways of looking at a
measurement like “size is 4 feet”).

The next logical step, with our underlying sample set O and the matrix of dissimilarities now
fleshed out, is to give a precise definition of clusters. A cluster C is just a subset of O. For example,
if O = {O1, O2, O3, O4, O5}, then C = {O3, O5} might be a cluster.

Thus C1 = {O1, O2, O3} and C2 = {O4, O5} can correspond to the two clusters (project
groups) into which the five students were divided in our first attempt, each Ci being a cluster.
Notice however that when we started with the original set O of five students, what we were after,
and what we desired as “the answer” was neither the cluster C1 nor the cluster C2. Rather, it was
the collection of these two clusters, which together told us how the original group of students was
to be divided, which we were after.

A clustering (used synonymously with partition, see [JD]) is a collection of disjoint subsets
(that is, a collection of disjoint clusters) into which the given set O can be divided. More precisely,
we have the following definition.

A partition of a given set O is a collection of (nonempty) subsets {C1, C2, ...CM} such that:

1. If i does not equal j, then Ci and Cj are disjoint; that is, they do not have any elements of
O in common. In mathematical notation, we write Ci

⋂
Cj = Θ, where Θ denotes the empty

set.

and such that also:

2. Every element in O belongs to one (and by the preceding property, necessary to only one) of
the clusters. In terms of sets, this means that O is equal to the union of the all the clusters
in the partition. In mathematical notation this is written:

O = C1

⋃
C2

⋃
...

⋃
CM
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A clustering method is then a rule which, given any initial sample set O along with an
associated matrix of dissimilarities {di,j}, tells us how to produce, perhaps through a sequence of
steps, a clustering {C1, C2, ...CM} as its final output. Here, the number of clusters in the ultimate
clustering, M, depends both on the sample O, and on the dissimilarity matrix we are given in each
instance.

Finally, a clustering algorithm is a mathematically precise step-by-step procedure for imple-
menting a clustering method. It is written as if in a hypothetical programming language (that is,
it’s written in what computer scientists call pseudo-code), such that were it run on a computer,
and given the set O and the matrix {di,j} as inputs, it would produce the clustering determined by
the method as its output. In practice, the pseudo-codes given for various clustering algorithms in
research articles are used as guides for writing actual computer programs (written in a variety of
existing computer languages) which implement the algorithm.

At last we have at set of specific and precise definitions! Still, you may wonder what lies
inside the “black box” of such clustering algorithms. In the next section, we will look at the inside
workings of two of the most common clustering algorithms. In fact, as we will see, these precise
algorithms will put our first two “ad hoc” methods in a new light.

1.2 The Missing Links:

Introducing two common clustering algorithms
It is important to observe that the process of applying our first informal, ad-hoc algorithm

to the five-student example produced more than a single, final clustering. Rather, it produced a
sequence of clusterings, culminating only in the last step with the clustering which determined a
possible set of students project groups:

{ [A], [B], [C], [D], [E] } → { [AB], [C], [D], [E] } → { [AB], [CD], [E] } → { [AB], [CDE] }

We can view this process as a sequence of four partitions (four clusterings) of O:

P1 → P2 → P3 → P4

Furthermore, notice that there is a definite relationship among these four successive cluster-
ings; at each clustering, the clusters it consists of are “the same as or bigger than” those making
up the preceding clustering. More precisely, the clusters in succeeding clusterings (partitions) are
gotten by taking the set-theoretical unions of clusters which had made up preceding clusterings. A
sequence of clusterings having this property is said to be a sequence of nested clusterings.

Clustering algorithms which produce not merely a final clustering from the initial set O, but
a sequence of nested clusterings are, in fact, quite natural, since we might be interested in more
than just “the last” clustering such an algorithm produces. For example, if the professor in the
five-student example later decides that one and two member groups are acceptable, the second to
last clustering, { [AB], [CD], [E] }, might be the best choice for assigning student project groups.
Therefore, the entire four-step output P1 → P2 → P3 → P4 is useful, and it’s up to the professor
to decide which of the four Pi – that is, which of the four clusterings – is the one to be used for
assigning project groups.

In general, a clustering algorithm which produces a nested sequence of clusterings is called a
hierarchical clustering algorithm. This is because it produces a “hierarchy” of possible clusterings:
a sequence is produced, starting with clusterings which have a large number of clusters (each
containing a relatively small number of objects), and proceeding to clusterings which are made
up of a small number of clusters (each of which contains relatively many objects). Hierarchical
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algorithms which proceed in this order, i.e., which proceed from a large number of ’small’ clusters,
to a small number of ’large’ clusters, as opposed to the opposite order, are called agglomerative (In
Chapter 2 we will introduce the “other kind” of hierarchical clustering algorithms, called divisive).

Both of the algorithms which we’ll consider in this section are hierarchical; in fact, they will
both be agglomerative. Informally speaking, such agglomerative algorithms proceed by building
the clusters “from the ground up” with set-theoretical unions.

More precisely, in such algorithms one first starts with one extreme clustering (partition of O),
namely the clustering in which each object forms its own one-object cluster. Then, as the algorithm
proceeds, clusters are merged to form larger clusters, until the last clustering (the final partition
of O) is reached. This last clustering is the other extreme; it is the single-cluster clustering in
which all objects are placed into one cluster. Of course, this cluster is necessarily the cluster which
contains all the objects: O itself. Giving a precise definition of such an agglomerative clustering
algorithm turns out to be rather straightforward, as we are about to see.

1.3 Single and Complete Linkage: the Inside Scoop

1.3.1 Single Linkage

As we have just seen, an agglomerative hierarchical clustering method begins with the partition
(clustering) P1 = {{O1}, {O2}, ..., {ON }}. Thus, P1 = {C1, C2, ..., CN}, where C1 is the single
object cluster {O1}, C2 is the single object cluster {O2}, and in general Ci = {Oi}.

The single linkage algorithm defined in this section, and the complete linkage method dis-
cussed in the next section, are agglomerative hierarchical methods of clustering (henceforth referred
to more briefly as agglomerative algorithms or agglomerative methods). Therefore, under these al-
gorithms we start with P1 = {C1, C2, ..., CN}, where Ci = {Oi}. In successive steps, each of these
algorithms merges clusters together, until the last clustering Pq is arrived at, namely Pq = {C1}
where C1 = O = {O1, O2, ..., ON}, the single cluster containing all objects.

An agglomerative algorithm is determined by its method of joining or agglomerating clusters
together. Put differently, the differences between any two agglomerative methods, and in particular
between the single and complete linkage methods, lie in the different criteria which specify which
clusters are to be merged at each step.

Before describing the criteria used for these two algorithms, it is important to note that the
contents of the ith cluster Ci are not fixed, but depend on the stage of the clustering algorithm.
For example, if A, B, C, D, and E correspond respectively to O1, O2, O3, O4, and O5, then we may
view the now familiar sequence of four clusterings:

{[A], [B], [C], [D], [E]} → {[AB], [C], [D], [E]} → {[AB], [CD], [E]} → {[AB], [CDE]}

As our sequence of clusterings P1 → P2 → P3 → P4 and we may write them in the notation:

{C1, C2, C3, C4, C5} → {C1, C3, C4, C5} → {C1, C3, C5} → {C1, C3}
For example, at the first stage, in P1, we have C1=[A] and C2=[B], but in the second stage

the (single member) clusters [A] and [B] are merged together to form the new cluster C1=[AB] in
P2 (we have chosen an obvious renaming scheme for the Ci to minimize relabeling of indexes).

In the implicit but omitted last step, P5={[ABCDE]} and we have a single cluster, C1=[ABCDE].
In the above, it was our knowledge of this particular case – knowing that we seek student project
groups having either two or three members – and not a formal “rule for stopping” which made it
clear that P4 was the cluster to examine. The general algorithm, as noted, produces a full spectrum
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of clusterings, one for each stage: from the fine extreme where Ci = {Oi} to the coarse extreme
with just one C1 = {O1, ...ON} .

[Comment: A somewhat more complex and more general notation is often used, in
which Cij is the jth cluster in the ith clustering, as in [JD]. In such cases commas are
added when necessary to avoid ambiguity: since C112 could mean the 12th cluster in
the first clustering or the 2nd cluster in the 11th, one adds a comma and writes either
C1,12 or C11,2. We will maintain the simpler notation Ci in this exposition, with the
understanding that the ith cluster this represents will depend on which clustering, that
is, on which step in the clustering algorithm we are].

Now, what criterion does the single linkage method use for merging two clusters together?
Actually, both the single linkage and complete linkage methods progress from the clustering Pi to the
clustering Pi+1 by merging together those two clusters which are “closest together”; the difference
between the two algorithms is in how the term “closest clusters” is defined. More precisely, the key
is how the “dissimilarity” between two clusters (not merely between two objects) is defined.

Under the single linkage procedure, the dissimilarity between two clusters Ci and Cj is defined
to be the smallest dissimilarity between any two objects, one of which must lie in Ci, and the other
in Cj (as before, we assume there are no “ties” in the dissimilarity matrix). This measure of
dissimilarity between Ci and Cj can be computed as follows:

1. First, consider all pairs of objects, one of which lies in Ci (call it Ok), and the other lies in
Cj (call it Ol)

2. Second, look up the dissimilarity between the two objects in each such pair (if the two objects
are Ok and Ol then this dissimilarity is the number dk,l), and lastly

3. Find the smallest of all of the dissimilarities found in step 2, and declare this number to be
the dissimilarity between Ci and Cj .

Hence we are taking the minimum of all the possible dissimilarities (numbers) dk,l as k and l
range over all possible indexes for which it holds that Ok ∈ Ci and Ol ∈ Cj. Using “SL” to denote
“single linkage,” in mathematical notation we have the SL-dissimilarity between clusters Ci and
Cj, written dissimilaritySL(Ci, Cj) or dSL(Ci, Cj) which is defined by:

dSL(Ci, Cj) = minimum{dk,l}
where the minimum runs over all indexes k and l such that Ok ∈ Ci and Ol ∈ Cj. In explicit

mathematical notation, this is:

dSL(Ci, Cj) = minimum{dk,l} over all k,l such that Ok ∈ Ci, Ol ∈ Cj

or more concisely:

dSL(Ci, Cj) = min
Ok∈Ci,Ol∈Cj

{dk,l}

Our definition can be rewritten in set-builder notation since the set of values in whose mini-
mum we are interested is {dk,l|Ok ∈ Ci, Ol ∈ Cj}
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[Comment: Recall that if A is a set and P is a condition which might be satisfied by
some of the elements of A, then S = {x ∈ A|P} stands for a subset of A, namely, for
the set of all elements in A to which condition P applies. For example, if Z represents
the integers, then S = {n ∈ Z|2n + 3 = 5} is the set of all integers which satisfy the
given equation, while the set of all integers which are multiples of 3 may be written as
S = {n ∈ Z|n = 3k for some k ∈ Z} that is, the set of all integers which can be written
as three times some other integer].

Thus we have:
dSL(Ci, Cj) = Min{dk,l|Ok ∈ Ci, Ol ∈ Cj}

A pseudo-code algorithm implementing single linkage is therefore:

1. Initialization: begin with P1 = {{O1}, {O2}, ..., {ON }}. This defines Pn when n=1.

2. To obtain Pn+1 from Pn, merge Ci and Cj together for the pair of indexes i and j for which
dSL(Ci, Cj) is smallest.

3. If the resulting partition (i.e., clustering) is Pn+1 = {O}, then stop. Otherwise, increase n
by 1 and then return to step 2.

Exercise: Convince yourself that the single linkage method applied to the opening example of the
five students yields precisely the clustering hierarchy we initially obtained,

{ [A], [B], [C], [D], [E]} → {[AB], [C], [D], [E] } → { [AB], [CD], [E] } → { [AB], [CDE] }

At which stage, having the desired groupings, we could have the algorithm halt; if allowed to
complete the algorithm would end with { [AB], [CDE] } → { [ABCDE] }. After you’ve convinced
yourself, write a clear explanation showing why this is so. Your exposition should be one which a
sceptical but fair fellow student would fully understand and be convinced by, and should include
explicit computations with dSL.

1.3.2 Complete Linkage

We proceed exactly as above, the only distinction being how the difference or “dissimilarity” be-
tween two clusters Ci and Cj is defined. For the complete linkage (CL) method, this is defined to
be not the minimum but the maximum of the dissimilarities between pairs of objects, one of which
belongs to each of the two clusters under consideration. That is, we define

dCL(Ci, Cj) = maximum{dk,l} over all k,l such that Ok ∈ Ci, Ol ∈ Cj

Or more concisely:
dCL(Ci, Cj) = max

Ok∈Ci,Ol∈Cj

{dk,l}

In set-builder notation this becomes just:

dCL(Ci, Cj) = Max{dk,l|Ok ∈ Ci, Ol ∈ Cj}

A pseudo-code algorithm implementing complete linkage is therefore:
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1. Initialization: begin with P1 = {{O1}, {O2}, ..., {ON }}.This defines Pn when n=1.

2. To obtain Pn+1 from Pn, merge Ci together with Cj for the pair i and j for which dCL(Ci, Cj)
is smallest (notice that what we are doing is taking the minimum among those “maximum
values” which go into the definition of dCL– make sure you understand this!)

3. If the resulting partition (clustering) is Pn+1 = {O}, then stop. Otherwise, increase n by 1
and then return to step 2.

Exercise: Convince yourself that the complete linkage method applied to the opening example of
the five students yields precisely the clustering hierarchy we obtained in our second attempt (with
our second ad hoc method), namely, that it would result in the sequence we obtained:

{ [A], [B], [C], [D], [E]} → {[AB], [C], [D], [E] } → { [AB], [CD], [E] } → { [ABE], [CD] }
followed by a final step, { [ABCDE] }. (We had halted before this final step during our second

ad hoc attempt, since we were initially merely exploring how to obtain 2- or 3- member project
groups). As in the preceding exercise, after you’ve convinced yourself, give a clear and rigorous
demonstration (including computations with dCL) which would convince a skeptical but fair fellow
student that the complete linkage algorithm would yield precisely this second clustering if applied to
the initial group of five students and matrix of dissimilarities. Note the parallel structure between
the Single Linkage and Complete Linkage algorithms above. See Algorithm 1 in [M] for a way of
informally describing a general agglomerative algorithm.

1.4 Getting Visual: Dendrograms

A threshold dendrogram is a way of depicting the clusterings in the order in which they are formed.
For example, if we represent

{ [A], [B], [C], [D], [E]} → {[AB], [C], [D], [E] } → { [AB], [CD], [E] } → { [AB], [CDE] }
→{[ABCDE]}

by

P1 → P2 → P3 → P4 → P5

when the associated threshold dendrogram would look as shown in Figure 1:
Here we have included together with the threshold dendrogram a vertical axis depicting each

level Pi.

[Comment: Although we shall not use this concept, a proximity dendrogram would
label the vertical axis according to the dissimilarity level at which the clustering first
occurs. For example, at a proximity of “1” only the [A] and [B] clusters merge in
the SL algorithm, so the location of P1 on the vertical axis could be labeled “1” since
allowing only mergings of clusters having distance less than or equal to 1 would result in
only [A] and [B] being merged. At higher levels, more clusters will have been merged,
and at a sufficiently high level, one is at the “top” of the dendrogram. For us, the
threshold dendrogram suffices, since in this, our basic example, the threshold levels are
just consecutive integers. The student interested in learning more about dendrograms
may consult some of the suggested readings in the references provided at the end]
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Figure 1:

Exercise: Draw a threshold dendrogram for:

{ [A], [B], [C], [D], [E] } → { [AB], [C], [D], [E] } → { [AB], [CD], [E] } →
{ [ABE], [CD] } → { [ABCDE] }

Note: you will want to re-order the students and use an “E, A, B, C, D” ordering instead of
“A, B, C, D, E” so that the lines of your diagram will not cross.

Exercise: Create your own dendrogram on a five (or more, if you wish) element set. Then convert
it into the equivalent sequence of clusterings.

1.5 Getting Graphical

It turns out that there are useful connections between clustering and a branch of mathematics
called graph theory . You may recall that in mathematics the term graph refers to an object which
can be represented as a set of points together with a set of line segments between some of these
points.

[Comment: A graph in this sense is, of course, not the same as the notion in algebra of
the graph of a function which visually represents a relationship of the form y=f(x)]

In a graph, the points are called vertices while the line segments are called edges . The set
of vertices together with the set of edges which connect some of them, jointly constitute the graph.
Just as the sample set is often given a label “O” similarly a graph as a whole is often labeled with
a capital letter such as “G” (if there are two or more graphs, then “G” and “H” may be used to
label them, or else, “G1“ and “G2“ etc). The vertices of the graph are typically depicted as points,
or as circular nodes . For example, a graph G might look like the image shown in Figure 2:

Note that the edges which are depicted as dashed lines are regular edges, and the dashed-
line style is merely used to visually indicate one straight line segment (i.e., edge) being “behind”
another edge without the two edges crossing or “touching”.
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Often there are names or labels which we wish to associate with the vertices, with the edges,
or with both. Take our opening example and our five students Anna, Brian, Chris, Deborah, and
Ethan, to whom we usually refer by their abbreviations A, B, C, D, and E. We might schematically
represent these five students, and the travel costs between any pair of them, by using figure 3:

Note of caution: the edges in this graph are abstract representations of relationships between
vertices , e.g. of the travel costs between pairs of students, as given by their respective labels. Thus
the visual length of the edges as they are ’drawn’, and whether they are drawn straight or curved
(or “crossing”), etc, do not represent any meaningful features of the situation we are modeling,
any more than does the geometrical arrangement of where each vertex in the graph is placed when
we draw the graph – we could have depicted vertices B and C on the right instead of on the left,
for example. The graph only tells us: “there are five vertices with these labels, and there are the
following edges between vertices, coming with their corresponding labels as marked”. (In the rare
situations in mathematics when a readers needs the lengths of edges to perfectly equal their labels
in the drawn graph, a special note to the reader would indicate that this was done).

In the graph above, non-mathematical information could have been used to label edges, e.g.,
“Bus route #2” or the like. A graph such as this one, in which mathematical quantities are used
to label the edges – in our case, these mathematical quantities are the travel costs between two
students – are sometimes called weighted graphs since each edge’s label can then be thought of as
a “weight”.

1.5.1 At the Threshold of Something New

Now suppose you are considering a clustering problem having elements labeled Ok for k between
1 and N, and with dissimilarity indexes di,j for the dissimilarity between Oi and Oj . A threshold
graph associated with a clustering problem is a weighted graph whose vertices are the objects and
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whose edges represent all the dissimilarities that are less than or equal to some fixed level. For
example, a threshold graph with threshold 5 would have one vertex for each object, and its edges
would correspond exactly to those dissimilarities that are less than or equal to 5. A notation often
used for the threshold graph with threshold v is G(v). Figure 4 depicts in six parts the threshold
graphs for our opening five student example, as v ranges from 1 to 6:

Exercise: Draw G(v) for v = 7, 8, 9, and 10. What is G(11)? What does G(0) look like? G(-1)?
Can G(v+1) differ from G(v) by more than one edge? For example, under what circumstances, if
any, would two or more edges to be needed to augment G(1) into the larger G(2)? Can you give
an example? (Remember: even though we are assuming “no ties,” the values of the dissimilarity
matrix, and thus the labels of the threshold graph, need not be integers!)

1.5.2 Some More Graphical Terminology

We are almost ready to put this framework from graph theory into use: we will be able to create
algorithms which use graphs and which turn out to correspond to methods of clustering. In order to
define these algorithms however, we need to review just a few more definitions from graph theory.

[Comment: these properties of graphs can describe arbitrary graphs without any clus-
tering context; their applicability is not restricted to threshold graphs].

The connected components of a graph G may be defined as the “islands” (or “pieces”) G is
composed of, where two vertices are part of the same island (piece) if one can walk from one to
the other using edges. Thus imagining the threshold graphs above to be bird-eye views, we see
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that G(1) has four connected components: each of C, D, and E are components, while the segment
between A and B forms a single, fourth component. G(2) has three components, G(3) has two
components, while G(v) for any v greater than or equal to 4 has just one component.

A graph is complete if an edge exists between every pair of vertices. For example, each of
the two graphs in Figure 5 represent a complete graph with four vertices:

B F

E

H

G

A

C D

Figure 5:

Here as previously, one of a pair of crossing edges is depicted as a dashed line to aid in telling
apart the edges, though this is of course not strictly necessary.

A complete graph with three vertices looks like a “triangle” while a complete graph with two
vertices is just an edge between two vertices. A complete graph with five vertices is a “pentagram”,
as depicted in Figure 6.

Finally, let H be a subgraph of G, that is, a subset of G – a sub-collection of vertices and
edges – which itself is a graph, so that if e is any edge of G included in H, then the endpoints of e
must be in H as well. Then a clique in a graph G is a subgraph H which is complete; that is, such
that any two vertices in the subgraph are connected by an edge which is included in that subgraph,
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i.e., by an edge which has been declared as belonging to H in the definition of H. For example, any
two vertices joined by an edge define a two-element clique, while in the graph show in Figure 7 the
vertices B, C and D along with the three edges connecting them constitute a clique, and similarly
with vertices C, D and E as a set.

A

B C

F

ED

Figure 7:

A clique with four elements can also be found in Figure 7, and its vertices are C, D, E, and
F.

[Comment: those interested in a good source of more definitions and examples may
want to explore [8] and [9]].

1.6 Clustering Algorithms Revisited: Graphical Versions

With these definitions, it’s now surprisingly easy to define the following two algorithms which use
graphs, and which turn out – as you will verify – to give us precisely the single linkage and complete
linkage clustering algorithms we have discovered and found useful under our original framework for
looking at clustering problems.

Graph-theoretic Single Linkage algorithm (GSL)

Step 1: Begin with the disjoint clustering which places every object in its own separate
cluster, i.e., for each Oi ∈ O, one forms the cluster Ci = {Oi}. Define the variable k and
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initialize its value to zero. [Notice that the clustering defined in step 1 can be arrived at by
defining the connected components of G(k) – that is of G(0) since currently k =0 – to be the
clusters].

Step 2: Increase the value of k by 1.

Step 3: Using the threshold graph G(k), redefine the current clustering by letting each
component of G(k) represent a cluster. If there is only one cluster, then stop. Otherwise, go
to step 2.

Graph-theoretic Complete Linkage algorithm (GCL)

Step 1: As before, let k =0 and let the initial clustering be the one implied by the threshold
graph G(0).

Step 2: Increase the value of k by 1.

Step 3: Using the threshold graph G(k), redefine the current clustering to correspond to the
cliques in G(k). That is, whenever two clusters from the previous stage clustering, form a
clique in G(k), they are merged into a single cluster. If there is only one cluster, then stop.
Otherwise, go to step 2.

To better understand the workings of Step 3, consider the threshold diagrams G(i) in the
subsection, “At the Threshold of Something New” above. Starting at stage G(2) one has the
clustering {[AB], [CD], [E]}, and this clustering remains the same through G(3) and G(4).

Even when the algorithm looks at G(5) in Step 3, this same clustering is maintained. This is
because although the nodes for [A], [D], and [E] can be seen as a “clique,” the algorithm only tests
whether the set-theoretic unions (combinations) of existing clusters are cliques in the new G(k).
Yet clearly while one cannot obtain [ADE] by combining existing clusters. Similarly, the algorithm
maintains the same clustering {[AB], [CD], [E]} even after examining G(6). However, upon looking
at G(7), Step 3 of this algorithm would merge [AB] and [E] to obtain, {[ABE], [CD]}.

[Comment: See [JD] for more details on these graph-theoretical algorithms]

Recall that we are excluding “ties” in the dissimilarity matrix. With the dissimilarities being
distinct, nothing is changed by assuming further that the values are all integers. Thus, only a single
edge is added each time k is increased by 1.

Exercise: Perform the algorithm GSL on the opening example of our five students and show that
the resulting final clustering is the same as that given by the single linkage algorithm. In fact,
show more: show that the entire series of nested clusterings is the same as for the single linkage
hierarchical clustering algorithm. Do this by including and referring to each of the threshold graphs
and indicating at each step (in writing or pictorially) what the connected components are, and what
the resulting clusters are for each level of clustering (that is, at each threshold level).

Exercise: You have just shown that GSL gives the same results as the original single linkage
method in one particular case, namely for the opening example of five students. Now give a rigorous
argument indicating why GSL will give a nested series of clusterings which is always identical to
that given by the single linkage algorithm. As always, your logical argument should be precise and
detailed enough to convince a skeptical (but fair minded) fellow student. Suggestion: Think about
what the connected components are, and what their role in GSL corresponds to in the original
algorithm. Then construct and spell out a detailed argument.
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Exercise: Perform GCL, the second of the two graphical algorithms above, on the opening example
of our five students and show this time that the resulting final clustering is the same as that given
by the complete linkage algorithm. Now prove more: that the entire series of nested clusterings is
the same as for the complete linkage hierarchical clustering algorithm. Do this by including and
referring to each of the threshold graphs and indicating at each step (in writing or pictorially) what
the cliques are, and what the resulting clusters are for each level of clustering.

Exercise: You have just shown that GCL gives the same results as the original complete linkage
method in one particular case: for the opening example of five students. Now give a rigorous
argument indicating why GCL will give a nested series of clusterings which is always identical to
that given by the complete linkage algorithm. Suggestion: Think about what the cliques are, and
what their role in GCL corresponds to in the original algorithm. Then write out your detailed
argument which would convince a skeptical but fair-minded fellow student.

Question: Can you suggest a reason why the complete linkage method is appropriately named?
(Suggestion: review the definition of a clique).

Remark: If one changes the specific numbers in the dissimilarity matrix, one says that the rank
order is unchanged if the relative sizes of pairs of entries remain unchanged (e.g., if the original
number in the third row, second column, is bigger than the original number in the fourth row, first
column, this remains true for the new numbers). You may have noticed that only the “rank order”
the entries (numbers) in the dissimilarity matrix matters. Keeping the rank order, while modifying
the specific numbers will produce the same output by SL and by CL, in other words. You may
wish to prove that the output of SL (and likewise of CL) is invariant under an “order preserving
bijection” changing the entries of the dissimilarity matrix. Consult with your instructor if you need
help in defining an “order preserving bijection”.

2 Divisive Clustering

Suppose that a group of 15 boys is to be separated into three groups to work on a certain project.
The person in charge of doing this has decided to simply group the boys based on where they live
so that their parents can carpool. Following the basic methods examined before we would have to
go through many steps in order to get down to only three groups.

Exercise 1 Using an agglomerative method each step combines two previous clusters so that there
is now one fewer cluster than before. If you start with 15 boys and want to have three clusters,
how many steps will it take using an agglomerative method?

In light of the amount of work needed to use these old methods for this problem it might
be easier to use a method called divisive clustering. In agglomerative methods we start with each
object in a separate cluster and combine clusters at each step. Divisive clustering will do the
opposite – start with all the objects in one cluster and divide a cluster into two smaller clusters
at each step. Thus, in this particular example we would start with all 15 boys in one cluster, split
this cluster into two sub-clusters, and then split one of those sub-clusters again to form three total
sub-clusters. This requires only a two step process.

Let us actually demonstrate using a smaller example, where our goal is to form two clusters.
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Example 1 Suppose that five boys have measured how far it is between their houses and the results
are listed below:

Student:
Bob
Jim 1.3
John 3.2 2.5
Matt 2.9 2.7 0.7
Steve 3.5 4 2.2 1.6

distance to: Bob Jim John Matt Steve

If we would like the maximum distance between any two boys in the same group to be as
small as possible, and we don’t wish to use an agglomerative method, then we see that we would like
Jim and Steve to be in different groups because they live the farthest away from one another. We
will follow this type of reasoning to build up the two groups. Once we have finished, we will have
divided the entire group into two smaller groups. So, since we wanted Jim and Steve in different
groups, we start with

Group 1 {Jim} Group 2 {Steve}

The next largest distance is between Bob and Steve, so we would also like them to be in
different groups. This means that Bob and Jim should be in the same group.

{Jim, Bob} {Steve}

Continuing on in this way we see that John and Bob are the next farthest apart. So, we
should put John in the group with Steve.

{Jim, Bob} {Steve, John}

Next, Bob and Matt should be in different groups, so we also put Matt in the group with
Steve and John.

{Jim, Bob} {Steve, John, Matt}

Everyone is now in a group so we are done. We have formed two groups with Matt, Steve,
and John in one group and Bob and Jim in the other. The largest distance between any two boys
in the same group is 2.2 miles between John and Steve.

We can see from this example a method that we might follow to form groups of this kind.
However, there are some potential difficulties that did not arise in this example. Let us examine a
similar situation. This time we will simply refer to the boys by the letters A to E.

Example 2
Starting as before, C and D are the farthest apart so we should put them in different groups.

{C} {D}

The next farthest apart are D and E . If we also put them in different groups this means that
C and E must be in the same group.
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A
B 8
C 7 1
D 5 3 10
E 2 4 6 9

A B C D E

{C, E} {D}

Next, A and B should be in different groups. However, it is not clear how to decide which
group to put A in. So, we will wait, and simply keep in mind that we plan to put these two in
separate groups.

{C, E, A or B} {D, B or A}

Here we write A or B in one group and B or A in the other to indicate that we will either
choose the first option both times (A in the first group and B in the second) or the second option
both times (B in the first group and A in the second).

Next A and C should be separated so this tells us that we should choose the second option
listed above. Thus, the two groups are {C , E, B} and {D, A}. So, we see that sometimes we must
wait to determine exactly which group to put certain elements in. In a larger example, this type
of problem may happen several times and be very difficult to keep track of.

Another potential difficulty arises in the following example, which is quite similar to the last
example.

Example 3

A
B 5
C 6 1
D 8 3 10
E 2 4 7 9

A B C D E

Again we start by placing C and D in separate groups.

{C} {D}

Also, we need D and E in different groups so that once again C and E are together.

{C, E} {D}

This time the next largest distance is between A and D . So, we put A in the group with C
and E .

{C, E, A} {D}
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Now comes the interesting step. According to the pattern we have followed we should next
put C and E in separate groups. This is not possible unless we change the work done so far. In
a situation like this, we leave the groups as previously determined. (In fact, we can conclude at
this point that the largest difference between members of the same group will be 7, the distance
between C and E .) We then continue on as before. We would like A and C to be in different
groups. This is again not possible, so we skip to the next pair to be considered. We would like A
and B to be in different groups. This works if B is put in the group with D .

{C, E, A} {D, B}

Note that we quit as soon as all five elements are assigned to groups. So, our final groups
are A, C, E and B, D .

Sometimes we will want to have more than two groups. If this is the case we can repeat the
procedure described above a second time on one of the newly formed groups.

Example 4 Let us consider our original example of 15 boys. Suppose the distances between their
houses are given below.

A
B .6
C .6 4.0
D 5.5 .1 .5
E .8 9.2 8.0 .0
F .7 7.4 .2 .3 6.4
G 5.3 .1 .0 6.2 .5 .4
H .5 5.4 5.1 .7 8.3 6.5 .2
I .0 8.1 7.5 .8 4.1 5.6 .4 8.4
J 6.0 .8 .0 4.9 .0 .3 4.2 .3 .9
K .7 6.9 7.3 .8 .4 9.5 .2 5.7 .7 .7
L 6.1 .5 .9 4.3 .8 .2 3.0 .9 .1 5.0 .6
M .9 6.3 4.4 .3 7.2 6.6 .9 7.0 9.0 .0 8.6 .4
N .2 .0 8.7 .5 4.5 5.8 .7 7.6 4.7 .0 .9 .6 7.1
O .6 7.7 6.8 .6 4.8 4.6 .9 6.7 5.2 .7 .8 .5 8.9 5.9

A B C D E F G H I J K L M N O

After going through the process described above once, we have the groups {A, D, G, J, L}
and {B, C, E, F, H, I, K, M, N, O}. Since we wish to have three groups we will now divide one of
the groups again. As we are trying to minimize the distances within groups we look at the largest
distance between two boys in the same group. Boys E and K live 14.4 miles apart and are in the
same group. So, we will split the second group into two by following the same procedure as before.
The result of this process is the groups {B, C, H, K, M } and {E, F, I, N, O}. Putting these two
groups with our other group from the first step we see that we have successfully separated the boys
into three groups: {A, D, G, J, L}, {B, C, H, K, M } and {E, F, I, N, O}. The largest distance
between any two boys in the same group is now 8.6 miles. (Note: We were very lucky that the
groups ended up equal in size. There is nothing about this process that will guarantee this sort of
result.)
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3 Divisive Clustering - Theory (Optional)

In order to give a specific algorithm for the method used in the previous section we need several
facts from graph theory. Hence, we will begin this section with a brief introduction to the necessary
concepts from graph theory. Recall from the introductory section on agglomerative methods the
definition of a graph, which we formalize here via set theory.

Definition A graph is a pair where V is a set and E is a set of pairs of elements of V . The elements
of V are called vertices and the elements of E (which are pairs of vertices) are called edges. If a
pair of vertices forms an edge, those two vertices are said to be adjacent.

Example 1 If V = {A, B, C, D, E} and E = {{A, B}, {A, C}, {B, D}, {C, D}, {D, E}} then
G = (V, E ) is a graph that can be represented by dots and line segments, as in Figure 8:

E

C

A B

D

Figure 8:

Definition A graph is said to be connected if for any two vertices, v and w , there is a sequence of
vertices v = v1, v2, . . . , vn = w such that each is an edge. In other words, a graph is connected if
there is a path through the graph which passes through all its vertices.

Example 2 The graph in example 1 is connected (e.g. E, D, B, A, C is an appropriate path) but
the graph in Figure 9 is not.

Definition A cycle is a sequence of vertices {v1, v2, . . . , vn} such that each {vi, vi+1} is an edge
and also {v1, vn} is an edge.

Example 3 In the graph in example 1 the vertices A, B, D, C form a cycle.

Definition A tree is a connected graph with no cycles.

Example 4 The graph in example 1 is not a tree because it contains a cycle. The graph in example
2 is not a tree because it is not connected. The graph in Figure 10 is a tree.
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Definition A weighted graph is a graph together with a weight function which associates to each
edge a real-valued weight.

Example 5 The graph in Figure 11 is the graph from example 1 with a weight function shown to
make it a weighted graph.

Definition Let G = (V,E) be a weighted graph. A maximal weight spanning tree of G is a tree
on the same set of vertices as G with E′ ⊆ E such that the sum of the weights of the edges in E′

is as large as possible.

Example 6 In Figure 12 we show the maximal weight spanning tree of the weighted graph in
example 5.

Maximal weight spanning trees can be found by a fairly simple algorithm. Let G be the
initial graph and H be the graph that is being constructed.

1. Begin H with all vertices of G and no edges.

2. Let{u, v} be the edge of G with the largest weight that has not been considered.
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3. If adding the edge {u, v} to H will not complete a cycle, add that edge to H .

4. Repeat steps 2 and 3 until H is connected.

We give now a brief informal proof that this algorithm does what it claims to: We can see
that our tree is maximal weight by noting that at each step we add the edge with the largest weight
that will not complete a cycle. If a different edge were added, we would have to delete an edge that
has a larger weight. This would only reduce the total of the weights. Further, we note that if H
is not yet connected it must be possible to add and edge without completing a cycle. This is true
because if the H is not connected there must be two vertices, say u and v, that are not connected.
Adding edge {u, v} would therefore not complete a cycle.

Example 7 Consider the weighted graph G in Figure 13.
The maximal weight spanning tree will be built up as in Figure 14.
Next the side weighted 5 must be skipped because it would cause a cycle through B, C , and

E. So the final maximal spanning tree is as shown in Figure 15.
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To wrap up our excursion into graph theory, we also need the concept of a graph coloring.
To color a graph we assign a color to each vertex in such a way that if two vertices are adjacent,
then they are assigned different colors. It is easy to see that a tree will require only two colors. To
color a tree we simply start at any vertex and assign it a color. All vertices adjacent to this vertex
are assigned the second color. All vertices adjacent to these are given the first color again. We
continue this pattern until all vertices are colored. We can never “come back” to a vertex already
colored and require it to be a different color because there are no cycles in a tree.

Example 8 The tree from example 4 can be colored as shown in Figure 16.
Now, recall that we began all of this graph theory as an aid to understanding the algorithm

for divisive clustering illustrated in the previous section. Let us now give that algorithm.

Algorithm for divisive clustering:

1. Given a set of elements with a dissimilarity (or “distance”) function, form a complete,
weighted graph as described below:

(a) Consider each of the original elements as a vertex
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(b) Include all possible edges (so the graph is complete)

(c) Define the weight of an edge to be the dissimilarity of the vertices

2. Find a maximal spanning tree of the weighted graph.

3. Color the maximal spanning tree.

4. Divide the original set so that all vertices of the same color are in the same part.

Note that with this algorithm we do not have partial, or tentative, groups along the way as
we did when following our intuitive idea of divisive clustering in the previous section. At step 4
above the entire group is divided into two groups all in one step.

Example 9 Using the same data as from example 2 in the previous section we have

A
B 8
C 7 1
D 5 3 10
E 2 4 6 9

A B C D E

Applying the algorithm, we build the maximal spanning tree as show in figure 17. (Note
that, in practice, we need not actually draw the original weighted graph, or even use all of the
vertices at the start.)

Then coloring the tree gives the final tree as in Figure 18
Hence, the two groups are {A, D} and {B, C, E} as we saw before.
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4 Sequential Clustering

The clustering procedures described above assign all the given entities to clusters. This completeness
is necessary in many applications – see, for example, [JD]. However, there are a lot of problems
where we do not have to build a complete partition of a given set O. Thus, in problems of image
recognition we are to single out only some images-clusters off the background. For instance, let
a space shuttle rotate around Mars and look for an invisible (“sleeping”) landing device. A radar
is scanning the surface and a computer program analyses this picture, pixel by pixel, and tries to
combine raw elements in meaningful clusters, using the algorithm prescribed. After discovering a
possibly human-made structure of straight lines and circles, the computer can quit its search over
the surrounding area, at least temporarily.

In this section, following P. Hansen, B. Jaumard, and N. Mladenovic [HJM], we consider a
corresponding paradigm of cluster analysis, called sequential clustering. In sequential clustering
we do not initially assign all the objects to single-element clusters as in agglomerative clustering,
and we do not initially split O in two clusters as in divisive clustering. Rather, we look for a
most naturally separated (in a precisely defined sense) subset of the initially given set O, and
designate it as the first cluster C1. Then we remove C 1 from O and repeat this procedure starting
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with the set-difference1 O\C 1. The algorithm stops when the last set-difference exhibits no relevant
internal structure (or it is empty). This approach is useful in many instances, for example, in image
recognition [MAM]. Moreover, unlike the hierarchical clustering, this approach does not a priori
impose a definite structure, such as a hierarchy of partitions, on the clustering being constructed.

First, we derive an algorithm of sequential clustering in a naive way, applying it to the very
first example from another module in this series [K].

Example 1. Consider a set of eight entities O = {O1, O2, O3 O4, O5, O6, O7, O8} and their
dissimilarity table:

O1 O2 O3 O4 O5 O6 O7 O8

O1 0
O2 5 0
O3 10 8 0
O4 7 12 1 0
O5 22 28 9 4 0
O6 27 23 19 14 11 0
O7 25 17 3 2 16 15 0
O8 13 6 26 21 18 20 24 0

Table 3: The dissimilarity table for the model example

The graph in Figure 19 gives a partial representation of this example. The vertices here corre-
spond to the entities and the weights of the edges (not all of them are shown) are the dissimilarities
between the entities. Certainly, there are many ways to draw these graphs manually. However,
algorithm, presented later on, eliminates this arbitrariness. Here, we have tried to draw the edges
shorter if they carry smaller dissimilarities. This allows us to inspect the initial configuration
visually:

O2 5 O1

6 O5

13 18 4
O8 9

27 8 O4 2 O7

1
20 3

19 O3

O6

Figure 19: Initial configuration. Some of larger dissimilarities (> 6) are not shown.

We immediately observe three nearby vertices O3, O4, and O7 and separate them in the
cluster C 1 ={ O3, O4, O7}. We do not include the vertex O5 in this cluster, since its distances

1Here ”\” denotes the set-difference, that is, A\B is the set of all objects which are in A but do not belong to B.
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from O3 and O7 are considerably larger than those within C 1. We will return to this issue later.
Removing C 1 from this graph, we get a configuration in Figure 20, where a few more edges are
shown.

O2 5 O1

22
6 O5

13 18
O8

23 27 11

20
O6

Figure 20: Configuration after removing the cluster C 1

Observing the proximity of O1, O2, and O8 to each other, we may form another cluster C 2

= {O1, O2, O8}. Removing it, we arrive at Figure 21.
Finally, we can either combine the two remaining entities O5and O6 in a cluster C 3, or we

can leave them unassigned. It is interesting to compare our “naive” approach with other clustering
algorithms. For example, when the Single Link Algorithm is applied to the same example (see
[K]), the cluster C 1 emerges at the second level of clustering, the cluster C 2 appears at the fifth
level, and the entities O5 and O6 meet one another only at the last, seventh step, in the conjoint
clustering, when all entities are in one cluster.

Obviously, in this example we have made some “arbitrary” decisions. For example, at the
very first step we could have immediately removed a cluster Ĉ1 = { O3, O4, O5, O7} instead of
C 1. To avoid this arbitrariness, our decisions must be based on clearly stated criteria regarding the
proximity of entities. Such criteria may change from step to step, that is, the criterion we use to
choose the first cluster C 1, may differ from the criterion we use to find C 2, etc.; these criteria are
called local algorithms and are denoted by Ak, k = 1, 2,. . . . The following examples will show why
we may prefer using different local algorithms at consecutive steps in the same clustering problem.

Even if we separate just a one-element cluster at each step, the maximum number, s, of steps
can not exceed the number of objects in O less one, in symbols, s ≤ |O|−1. Hereafter, the notation
|X| stands for the number of elements in a set X. This number is also called the cardinal number
or cardinality of X. For example, the cardinal number of the set of all characters in the English
alphabet is 26, that is, |{a, b, c,. . . , x, y, z}| = 26. Hereafter, we denote by N the cardinal number
of a sample O, N = |O|, and by K the number of entities in a cluster C, K = |C|.

We also use the following standard notation. The writing a:= b means that a variable a
is assigned a value b. For example, if b = 3, then after executing the command a := b the new
value of a is 3, and this value does not depend upon the preceding value of a. Furthermore, we

11
O6 O5

Figure 21: Configuration after removing the clusters C 1 and C 2
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recall that the notation max{dl|l ∈ L} ≡ maxi∈l dl, where a dummy index l runs over the index
set L, and similarly min{dl|l ∈ L} or mini∈l dl, were introduced in the subsection Single and
Complete Linkage: the Inside Scoop. Thus, maxl dl means that among several given quantities dl

with different subscripts l, we look for (one of) the largest dl and denote it by max{dl|l ∈ L} or just
maxl dl. There may be several equal largest dl. If l stands for the indexes of elements Ol ∈ C of a
set C, we denote this maximum by max{dl|Ol ∈ C} and read this expression as “The maximum of
all of the quantities dl over all subscripts l such that Ol ∈ C.”

Formalizing our considerations, we arrive at the following formal procedure called a sequential
clustering algorithm. It is written in a so-called pseudocode format. In the following algorithm,
we gradually remove some entities from the original set O. At every step, S contains unassigned
entities, and C kis the cluster we remove from the set of remaining objects. The set R contains the
unassigned entities when the algorithm halts.

Sequential Clustering Algorithm. Given a finite sample O, its dissimilarity table, and a set of
local algorithms Ak, k = 1...|O| - 1.

1. Initialization. Set k := 0, S := O, and R := O.

2. Loop. Set k := k + 1.

Apply a local algorithm Akto the set Sto findC k.

If Ak fails, updateR:=S and End.
Else: record Ck and update S := S \C k.
End If

End Loop.

3. End.

Remark. We may need fewer than |O| − 1 local algorithms.
To apply this algorithm, we must specify local algorithms Ak. To this end, we have to take

into account both the specifics of the problem under consideration and the general philosophy of
cluster analysis, that is, getting reasonably homogeneous and wellseparated clusters. Here, a cluster
is said to be homogeneous if the dissimilarities between its elements are close to each other — of
course, the latter is not a precise definition of the homogeneity. In the same style, two clusters
are said to be well separated, if the dissimilarity for each pair of elements within either of these
clusters is less than any dissimilarity between an element in one cluster and an element in another
cluster. Appropriate local algorithms are often based on the concepts such as the diameter, radius,
and split of a set C ⊂ O. The diameter and the radius estimate homogeneity of clusters.

Definition 1. The diameter, d(C), of a set C ⊂ O is the largest dissimilarity between a pair of
entities of C, that is,

d(c) = max{{max dkl|Ol ∈ C}|Ok ∈ C}
or, which is the same,

d(C) = max{dkl|Ok ∈ C,Ol ∈ C}.
Before considering examples, let us note that the latter expression may look simpler, but the

former is simpler in calculations. The first formula defines the diameter as the reiterated maximum
of all the dissimilarities between pairs of objects in C. That means that initially we fix (“freeze”)
the first subscript k and calculate max{dkl|Ol ∈ C} with this fixed k; here Ol runs over all possible
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subsets of C. For example, if k=1, we calculate max{d1l|Ol ∈ C}. Then we fix next k and calculate
max{dkl|Ol ∈ C} with this new fixed k. Thus, if k=2, we look for max{d2l|Ol ∈ C}. This way, we
find as many numbers max{dkl|Ol ∈ C} as there are various values of the parameter k and then we
select the largest among these numbers max{dkl|Ol ∈ C}. Precisely this largest quantity is denoted
by d(C) = max{{max dkl|Ol ∈ C}|Ok ∈ C}.
Example 2. The graph in Figure 22 represents the very first example in our module — the five
students A, B, C, D, and E, denoted here by o1, o2, o3, o4, o5, and the distances between their
residences:

1
O1 O2

4
7 6

O5 10
5

3 8

O4

2
9 O3

Figure 22: Graph corresponding to the initial example.

Again, we can visually observe in the set O = {O1, O2, O3, O4, O5} two clusters: C 1=
{O1, O2} and C 2= {O3, O4, O5}. It should be noted that this clustering results also from the
single linkage clustering algorithm applied to O — see The Missing Links Section. But now we want
to proceed in a more systematic way using the sequential clustering paradigm. To this end, next
we calculate the diameters of these clusters. The set C 1 contains only two elements, therefore, for
both k = 1 and k = 2, max{d1l|Ol ∈ C} = max{d2l|Ol ∈ C} = 1 and d(C1) = max{{max dkl|Ol ∈
C1}|Ok ∈ C1} = max{l, l} = 1. Further, for C 2 we calculate max{d3l|Ol ∈ C2} = max{d3,4, d3,5} =
max{2, 9} = 9, max{d4l|Ol ∈ C2} = max{2, 3} = 3, max{d5l|Ol ∈ C2} = max{3, 9} = 9, and
finally d(C2) = max{3, 9, 9} = 9. In Section 1, we arrived at the same clustering and calculated
the same quantities in a quite different way, by making use of the Single Link Algorithm. To avoid
misunderstanding, it should be said that, unlike the definition of dissimilarity between two clusters
involving the repeated minimum, the definition of the diameter of a subset involves only one set
and uses the repeated maximum.

Pause for thought. Try to describe the Single Link Algorithm in terms of the diameters of
clusters.

It should be said again that Definition 1 can be written using one maximum: d(C) =
max{dkl|Ok ∈ C,Ol ∈ C}, which makes apparent the choice of the term diameter. However, we
often prefer the first formula, since we cannot avoid repeating symbols of maximum and minimum
in the two following definitions. The radius is the smallest maximum among all the dissimilarities
between pairs of objects in C.
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Definition 2. The radius of a set C ⊂ O is

r(C) = min{max{dkl|Ol ∈ C}|Ok ∈ C}.

Exercise 1. Prove or disprove that min{max dkl} = max{min dkl} for any rectangular table [dkl].
Let us reconsider Example 2 (Figure 22). For the same C 1 we again have max{d1l|Ol ∈

C1} = max{d2l|Ol ∈ C2} = 1. Thus, r(C1) = min{max{dkl|Ol ∈ C1}|Ok ∈ Cl} = min{1, 1} = 1.
It is worth noting that in our usual plane geometry the diameter of a circle is twice the radius.
However, it is not always the case in our current “discrete world” under exploration. It might even
happen that the radius and the diameter of a set coincide. Thus, the diameter of C2 (see above) is
three times its radius: r(C2) = min{3, 9, 9} = 3. Comparing this calculation with Figure 4, we get
a clearer understanding why this quantity is called the radius of a set. Obviously, the vertex O4

can be viewed as the center of the set C 2 and all the other vertices in C 2 are apart from O4 for at
most 3 units.

The last definition of this section concerns the separation of a subset from other subsets —
the quantity to be defined measures how far a set C is ‘split off’ from the rest of the sample.

Definition 3. The split,s(C), of a set C ⊂ O is the smallest dissimilarity between a pair of entities,
one in C and another in O\C, that is,

s(C) = min{min{dkl|Ol �∈ C}|Ok ∈ C}.

It is worth repeating: the outer minimum is taken over all subsets belonging to C, while the
inner minimum is taken over all subsets that do not belong to C.

We continue studying the same example (Figure 22). For C 1, min{d1l|Ol �∈ C} = min{4, 5, 8} =
4 and min{d2l|Ol �∈ Cl} = min{10, 6, 7} = 6. Therefore, s(Cl) = min{min{dkl|Ol �∈ C1}|Ok ∈
C1} = min{4, 6} = 4. For C 2, we have min{d3l|Ol �∈ C2} = min{8, 10} = 8, min{d4l|Ol �∈ C2} =
min{5, 8} = 5, min{d5l|Ol �∈ C2} = min{4, 7} = 4, and finally s(C2) = min{8, 5, 4} = 4. In this
example, since we have exactly two clusters, s(C1) = s(C2).

Exercise 2. Suppose, in a problem we have exactly two clusters, C 1 and C 2. Is it always the case
that their splits are equal, s(C1) = s(C2)?

These three concepts — the diameter, radius, and split give rise to the following commonly
used local algorithms. We define three quantities, the minimum diameter, the minimum radius,
and the maximum split. In these definitions maximum or minimum is taken over all subsets C ⊂ O
containing exactly K entities, where a number K is to be the size of a cluster we desire to have:

A) Minimum diameter: dmin(O,K) = min{d(C)|C ⊂ O, |C| = K}
B) Minimum radius: rmin(O,K) = min{r(C)|C ⊂ O, |C| = K}
C) Maximum split: smax(O,K) = max{s(C)|C ⊂ O, |C| = K}.

We repeat that in each of these three definitions the extremum is taken over all K–element
subsets C ⊂ O, |C| = K, and only the specifics of a problem dictate our choice of K.

To illustrate these local criteria, we apply them to our Example 1. We start with the case
A), i.e., we want to minimize the diameters of removed clusters.

A) If we want to separate firstly only two entities in a cluster, we set K = |C| = 2. Obviously,
the smallest diameter among all 2–element subsets of O is 1, that is, dmin(O, 2) = 1, and this value
is attained if C = {O3, O4}. However, if at the very first step we want to remove three entities,
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that is, if we consider initially K = |C| = 3, then dmin(O, 3) = 3 and this value is attained if C =
C 1 = {O3, O4, O7}. Suppose, to proceed faster, we wish to start with K = 3.

After removing this C 1 = { O3, O4, O7} from O, if we apply the same algorithm with K =
3 to the set O\C 1, we obtain a cluster C 2 = {O1, O2, O8}, that is, we repeat the results of our
intuitive approach (see above). Suppose, however, that at the second step we realize that the next
three objects are not close enough for our purpose and we decide to change a local criterion. Let
us choose now K = 2. Then, since the object O4 was removed in a previous step,the recalculated
(with this new K ) minimal diameter is d(C2) = 5, where C‘2 = {O1, O2}. The configuration after
removing this = {O1, O2} from Onew = O\C 1 is shown in Figure 23.

O8 18 O5

20 11
O6

Figure 23: Configuration after removing the cluster C‘2.

Now we can either repeat a similar step with K = 2, or we can again change a local criterion
to K = 3, or we can leave the three remaining entities O5, O6, O8 unclustered. The decision, what
local algorithm to choose during the run of the sequential clustering algorithm, can be made only
after a consultation with an expert in the field where the problem arose. In the end of this section
we consider again Example 2, using sequential clustering, and we shall see why it may be useful to
change the value of Kas part of solving the same problem.

Exercise 3. Describe all clusters in this example, when we use all possible combinations of local
criteria based on the minimal diameter with K = 2, K = 3, and K = 4. That is, give an answer
consisting of the entire collection of clusters corresponding to each possible series of choices of K.

B) Let us now work the same example, using the minimum radius as a local criterion. If K
= 2, then clearly rmin(O, 2) = 1 and this value is attained at C = {O3, O4}. On the other hand, if
at the very first step we want to remove three entities, that is, we set K = |C| = 3, then, attained
at C 1 = {O3, O4, O7}, since

min{max{d3,l|Ol ∈ C1},max{d4,l|Ol ∈ C1},max{d7,l|Ol ∈ C1}} = min{3; 2; 3} = 2

and no other three-element subset has the radius 2 or less. If we continue to use the criterion
with K = |C| = 3, then the next three-element cluster to be removed is C 2 = {O1, O2, O8} with
the minimal radius rmin(O \ C1, 3) = r(C2) = 6. Therefore, we arrive at the same clustering as in
A).

Exercise 4. Describe all clusterings in this example, that is, give an answer consisting of the entire
collection of clusters, when we use all possible combinations of local criteria based on the minimal
radius with K = 2, K = 3, and K = 4.

C) We now apply the maximum split as a local criterion. Unlike the cases A) and B), where
we looked for densely tied clusters, here we look for relatively disengaged clusters. If K = 2, there
are two twoelement subsets with the same maximal split, smax(O, 2) = 6. One of these two clusters
is {O1, O2}.
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Exercise 5. Verify that s({O1, O2}) = 6 and find another cluster with the same maximal split
s = 6.

Removal of either such cluster leads to different clusterings and only by knowing the specifics
of the problem, can we decide which cluster is to be removed first. For instance, if we remove C 1

= {O1, O2}, we get the configuration in Figure 24.

O8 18 O5 4 O4

24 9
26 1 2

20 11 O7

3
O6 19 O3

Figure 24: Configuration after removing C 1 ={O1, O2}. Not all edges are shown

The next maximum split with K = 2 is s(C2) = 11, where again C 2 = {O6, O8}. Removing
C 2, we arrive at the configuration in Figure 25.

O5 4 O4

9
1 2

O7

3
O3

Figure 25: Configuration after removing C 2 = {O6, O8}

Here, the maximum split with K = 2 is smax(O‘ \ C2) = s(C3) = 3, where O‘ = O \ C1 and
C 3 = {O3, O4}. Removing C 3, we arrive at the final configuration (Figure 26) that can be viewed
as a cluster C 4 = {O5, O7}. Otherwise, we can leave these two entities unassigned to any cluster,
if these entities are irrelevant for our analysis. We see that using a local criterion based on the
maximum split leads to a clustering completely different from the cases A) or B).

O5 16 O7

Figure 26: Configuration after removing C3 = {O3, O4}.

Exercise 6. Describe all clusterings in this example, that is, give an answer consisting of the entire
collection of clusters, when we use all possible combinations of local criteria based on the maximum
split with K = 2, K = 3, and K = 4.

Example 2 Revisited. We discuss Example 2 again using now the local criterion A), that is,
we strive to minimize the diameters of the clusters. Since in this problem only two-element and
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three-element clusters are acceptable, we start with the value K = 2. So the very first cluster is
anew C 1= {O1, O2} with d(C1) = 1. In the set O\C 1= {O3, O4, O5}, a twoelement cluster with
the smallest diameter is C 2= {O3, O4} with. Again, since only two-element and three-element
clusters are acceptable, we must assign now the fifth element O5 to either C 1 or C 2. Thus, we
have to reconsider a local algorithm. We apply now the same criterion A) but with the value K
= 3, that is, we have to calculate the diameters of two possible threeelement subsets: C‘ 1= {O1,
O2, O5} or C ‘2= {O3, O4, O5}. Since d(C‘1) = 7 is less than d(C2) = 9, the resulting clustering
is { C ‘1, C 2}, where C ‘1= {O1, O2, O5}, C 2= {O3, O4}, and we arrive at the same clustering
as before.

In practice, it makes sense to calculate the minimum diameter or radius or the maximum
split for K = 2, 3, . . . , until an increase of K results in an increase of the diameter or radius, or in
a decrease of the split.

Answers to Exercises
Exercise 1. Yes, the statement is true.
Exercise 2. Yes, the statement is true.
Exercise 3. We consider only the case when at the first step K = 4 and at the second step
K = 2. Then dmin(O, 4) = 12, with the corresponding cluster C1 = {O1, O2, O3, O4}. Next,
dmin(O \ C1, 2) = 11, with C2 = {O5, O6} and C3 = {O7, O8}, d(C3) = 24.
Exercise 4. With the same values of K = 4 at the first step and K = 2 at the second step, we
have rmin(O, 4) = 4 with C1 = {O3, O4, O5, O7}, next, rmin(O \ C1, 2) = 5 with C2 = {O1, O2},
and finally, r({O6, O8}) = 20.
Exercise 5. Another cluster is {O6, O8}, with s({O6, O8}) = 6.
Exercise 6. Again, with the same parameters K = 4 at the first step and K = 2 at the second
step, we have smin(O, 4) = 7 with C1 = {O1, O2, O6, O8}, smin(O \ C1, 2) = 2 with C2 = {O3, O4}
and C3 = {O5, O7}; or (see Exercise 2) C2 = {O5, O7} and C3 = {O3, O4}.
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[MA-M] R. López de Màntaras, J. Aguilar-Mart́ın, Self-learning pattern classification using a sequen-
tial clustering technique, Pattern Recognition, Vol. 18 (1985), No. 3/4, 271-277.

[Murt] F. Murtagh, A Survey of Recent Advances in Hierarchical Clustering Algorithms. The Com-
puter Journal, Volume 26 Number 4 (1983).

42



Web references cited

[1] http://obelia.jde.aca.mmu.ac.uk/multivar/ca.htm

[2] http://grain.jouy.inra.fr/ggpages/DEM/Polymorphism/Waite/Barley dend.gif

[3] http://taxonomy.zoology.gla.ac.uk/rod/posters/images/dendrogram.gif

[4] http://216.239.57.100/search?q=cache:w91ypUXPCXoC:www.nature.com/cgi-taf/DynaPage.taf

[5] http://www.findarticles.com/cf dls/m2120/8qy 80/58517866/p1/article.jhtml

[6] http://www.biotech.unl.edu/oldroot/biocomp/gcghelp/growtree.html

[7] http://www.isse.gmu.edu/ snoel/First

[8] http://dmoz.org/Science/Math/Combinatorics/Graph Theory/References/

[9] http://directory.google.com/Top/Science/Math/Combinatorics/Graph Theory/References/

43


	Table of Contents
	Abstract
	Preface
	Chaoter 1 Overview and Agglomerative lustering
	Section 1.1 Introduction
	Section 1.2 The missing links
	Section 1.3 Single and complete linkage clustering:the basic setup
	Section 1.4 Getting visual: dendrograms
	Section 1.5 Getting graphical
	Section 1.6 Clustering algorithms revisited: Graphical versions
	Chapter 2 Divisive Clustering
	Chapter 3 Divisive Clustering - Theory (Optional)
	Chapter 4 Sequential Clustering
	References
	Web References Cited

