THE FINITE BASIS PROBLEM

SIMON THOMAS, RUTGERS UNIVERSITY

Let \mathcal{C} be a class of structures. (For example, \mathcal{C} could be the class of countably infinite graphs.) Then a *basis* for \mathcal{C} is a collection $\mathcal{B} \subseteq \mathcal{C}$ such that for each $C \in \mathcal{C}$, there exists $B \in \mathcal{B}$ such that B embeds into C. The *Finite Basis Problem* asks whether \mathcal{C} has a finite basis. In this talk, we shall begin by solving the Finite Basis Problem for the cases when:

- C = the class of countably infinite graphs;
- C = the class of countably infinite linear orders;
- C = the class of countably infinite partial orders;
- C = the class of countably infinite groups.

Then we shall consider the more challenging cases when C is the class of uncountable graphs or uncountable linear orders.