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1 Introduction

Individuals have distinctive ways of speaking and writing, and there exists a long
history of linguistic and stylistic investigation into authorship attribution. In recent
years, practical applications for authorship attribution have grown in areas such as
intelligence (linking intercepted messages to each other and to known terrorists),
criminal law (identifying writers of ransom notes and harassing letters), civil law
(copyright and estate disputes), and computer security (tracking authors of com-
puter virus source code). This activity is part of a broader growth within computer
science of identification technologies, including biometrics (retinal scanning, speaker
recognition, etc.), cryptographic signatures, intrusion detection systems, and others.

Automating authorship attribution promises more accurate results and objective
measures of reliability, both of which are critical for legal and security applications.
Recent research has used techniques from machine learning [3, 10, 13, 31, 50], mul-
tivariate and cluster analysis [24, 25, 8], and natural language processing [5, 46] in
authorship attribution. These techniques have also been applied to related prob-
lems such as genre analysis [4, 1, 6, 17, 23, 46] and author profiling (such as by
gender [2, 12] or personality [38]).

Our focus in this paper is on techniques for identifying authors in large col-
lections of textual artifacts (e-mails, communiques, transcribed speech, etc.). Our
approach focuses on very high-dimensional, topic-free document representations and
particular attribution problems, such as: (1) Which one of these K authors wrote
this particular document? (2) Did any of these K authors write this particular
document?

Scientific investigation into measuring style and authorship of texts goes back
to the late nineteenth century, with the pioneering studies of Mendenhall [36] and
Mascol [34, 35] on distributions of sentence and word lengths in works of literature
and the gospels of the New Testament. The underlying notion was that works by
different authors are strongly distinguished by quantifiable features of the text. By
the mid-twentieth century, this line of research had grown into what became known
as “stylometrics”, and a variety of textual statistics had been proposed to quantify
textual style. The style of early work was characterized by a search for invariant
properties of textual statistics, such as Zipf’s distribution and Yule’s K statistic.

1



Modern work in authorship attribution (often referred to in the humanities as
“nontraditional authorship attribution”) was ushered in by Mosteller and Wallace
in the 1960s, in their seminal study The Federalist Papers [37]. The study exam-
ined 146 political essays from the late eighteenth century, of which most are of
acknowledged authorship by John Jay, Alexander Hamilton, and James Madison,
though twelve are claimed by both Hamilton and Madison. Mosteller and Wallace
showed statistically significant discrimination results by applying Bayesian statis-
tical analysis to the frequencies of a small set of ‘function words’ (such as ‘the’,
‘of’, or ‘about’), as stylistic features of the text. Function words, and other simi-
lar classes of words, remain the most popular stylistic features used for authorship
discrimination. As we shall see below, reliance on a particular representation (e.g.,
function words) can lead to misplaced confidence in subsequent predictions.

Other stylometric features that have been applied include various measures of
vocabulary richness and lexical repetition, based on Zipf’s studies on word frequency
distributions. Most such measures, however, are strongly dependent on the length
of the text being studied, and so are difficult to apply reliably. Many other types
of features have been applied, including word class frequencies [2, 18], syntactic
analysis [5, 46], word collocations [45], grammatical errors [27], and word, sentence,
clause, and paragraph lengths [3, 33]. Many studies combine features of different
types using multivariate analysis techniques.

One widely-used technique, pioneered for authorship studies by Burrows [8], is to
use principal components analysis (PCA) to find combinations of style markers that
can discriminate between a particular pair (or small set) of authors. This method
has been used in several studies, including [5]. Another related class of techniques
that have been applied are machine learning algorithms (such as Winnow [30] or
Support Vector Machines [11]) which can construct discrimination models over large
numbers of documents and features. Such techniques have been applied widely in
topic-based text categorization (see the excellent survey [42]) and other stylistic
discrimination tasks (e.g. [2, 26, 46]), as well as for authorship discrimination [3,
13]. Often, studies have relied on intuitive evaluation of results, based on visual
inspection of scatter-plots and cluster-analysis trees, though recent work (e.g. [3,
12, 13]) has begun to apply somewhat more rigorous tests of statistical significance
and cross-validation accuracy.

2 Representation

Document representation provides the central challenge in author attribution. Fea-
tures should capture aspects of author style that persist across topics. Traditional
stylometric features include function words, high-frequency words, vocabulary rich-
ness, hapax legomena, Yules K, syllable distributions, character level statistics, and
punctuation. Much of the prior work focuses on relatively low-dimensional repre-
sentations. However, newer statistical algorithms as well as increases in computing
power now enable much richer representations involving tens or hundreds of thou-
sands of features.

Don Foster’s successful attribution of “Primary Colors” to Joe Klein illustrates
the value of idiosyncratic features such as rare adjectives ending in “inous” (e.g.,
vertiginous) or words beginning with hyper-, mega-, post-, quasi-, and semi-. Our
own work focuses on word-endings and parts-of-speech in addition to the classical
function words.

On key challenge concerns the notion of a “topic-free” feature. The stylometry
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literature has long considered function words to be topic-free in the sense that the
relative frequency with which an author uses, for example, “with,” should be the
same regardless of whether the author is describing cooking recipes or the latest
news about the oil futures market. We know of no prior work that defines the
topic-free notion or formally assesses candidate features in this regard.

3 Bayesian multinomial logistic regression

Traditional 1-of-k author identification requires a multiclass classification learning
method and implementation that are highly scalable. The most popular methods
for multiclass classification in recent machine learning research are variants on sup-
port vector machines and boosting, sometimes combined with error-correcting codes
approach. Rifkin and Klautau provide a review [40].

In contrast, we turned to polytomous or multinomial logistic regression because
of its probabilistic character. Since this model outputs an estimate of the proba-
bility that the input belongs to each of the possible classes, we can easily take into
account the relative costs of different misidentifications when making a classification
decision. If those costs change, classifications can be altered appropriately, without
retraining the model.

Further, the Bayesian perspective on training a multinomial logistic regression
model allows training data and domain knowledge to be easily combined. While this
study looks at relatively simple forms of prior knowledge about features, in other
work we have explored incorporating prior knowledge about predictive features,
and hierarchical Bayesian structures that allow sharing information across related
problems (e.g. identifying an author’s work in different genres).

To begin, let x = [x1, ..., xj , ..., xd]
T be a vector of feature values characterizing

a document to be identified. We encode the fact that a document belongs to a
class (e.g. an author) k ∈ {1, ..., K} by a K-dimensional 0/1 valued vector y =
(y1, ..., yK)T , where yk = 1 and all other coordinates are 0.

Multinomial logistic regression is a conditional probability model of the form

p(yk = 1|x,B) =
exp(βT

k x)∑
k′ exp(βT

k′x)
, (1)

parameterized by the matrix B = [β1, ..., βK ]. Each column of B is a parameter
vector corresponding to one of the classes: βk = [βk1, ..., βkd]T . This is a direct
generalization of binary logistic regression to the multiclass case.

Classification of a new observation is based on the vector of conditional prob-
ability estimates produced by the model. In this paper we simply assign the class
with the highest conditional probability estimate:

ŷ(x) = arg max
k

p(yk = 1|x).

In general, however, arbitrary cost functions can be used and the classification cho-
sen to minimize expected risk under the assumption that the estimated probabilities
are correct [14].

Consider a set of training examples D = {(x1,y1), . . . , (xi,yi), . . . , (xn,yn)}.
Maximum likelihood estimation of the parameters B is equivalent to minimizing
the negated log-likelihood:

l(B|D) = −
∑

i

[∑

k

yikβT
k xi − ln

∑

k

exp(βT
k xi)

]
, (2)
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Since the probabilities must sum to one:
∑

k p(yk = 1|x,B) = 1, one of the vectors
βk can be set to βk = 0 without affecting the generality of the model. This is in fact
necessary for maximum likelihood estimation for B to be identifiable in a formal
sense (whether or not in practice identifiable for a given data set). This restriction
is not necessary for identifiable in the Bayesian approach, and in some cases there
are advantages in not imposing this restriction, as we will discuss.

As with any statistical model, we must avoid overfitting the training data for a
multinomial logistic regression model to make accurate predictions on unseen data.
One Bayesian approach for this is to use a prior distribution for B that assigns
a high probability that most entries of B will have values at or near 0. We now
describe two such priors.

3.1 Types of priors

Perhaps the most widely used Bayesian approach to the logistic regression model
is to impose a univariate Gaussian prior with mean 0 and variance σ2

kj on each
parameter βkj :

p(βkj |σkj) = N(0, σkj) =
1√

2πσkj

exp(
−β2

kj

2σ2
kj

). (3)

By specifying a mean of 0 for each Gaussian, we encode our prior belief that βkj

will be near 0. The variances of the Gaussians, σkj , are positive constants we must
specify. A small values of σkj represents a prior belief that βkj is close to zero,
while larger value represents less confidence in this. In the simplest case we let
σkj equal the same σ for all j, k. We assume a priori that the components of B
are independent and hence the overall prior for B is the product of the priors for
its components. Finding the maximum a posteriori (MAP) estimate of B with this
prior is equivalent to ridge regression (Hoerl and Kennard, 1970) for the multinomial
logistic model. The MAP estimate of B is found by minimizing:

lridge(B|D) = l(B|D) +
1

σ2
kj

∑

j

∑

k

β2
kj . (4)

Ridge logistic regression has been widely used in text categorization, see for example
[52, 29, 51]. The Gaussian prior, while favoring values of βkj near 0, does not favor
them being exactly equal to 0. Absent unusual patterns in the data, the MAP
estimates of all or almost all βkj ’s will be nonzero. Since multinomial logistic
regression models for author identification can easily have millions of parameters,
such dense parameter estimates could lead to inefficient classifiers.

However, sparse parameter estimates can be achieved in the Bayesian framework
remarkably easily. Suppose we use double exponential (Laplace) prior distribution
on the βkj :

p(βkj |λkj) =
λkj

2
exp(−λkj |βkj |). (5)

As before, the prior for B is the product of the priors for its components. For typical
data sets and choices of λ’s, most parameters in the MAP estimate for B will be zero.
Figure 1 compares the density functions for the Gaussian and Laplace distributions,
showing the cusp that leads to zeroes in the MAP parameter estimates.

Finding the MAP estimate is done by minimizing:

llasso(B|D) = l(B|D) + λkj

∑

j

∑

k

|βkj |. (6)
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Tibshirani [48] was the first to suggest Laplace priors in the regression context.
He pointed out that the MAP estimates using the Laplace prior are the same as
the estimates produced by applying lasso algorithm [48]. Subsequently, the use of
constraints or penalties based on the absolute values of coefficients has been used
to achieve sparseness in a variety of data fitting tasks (see, for example, [15, 16, 20,
49, 44]), including multinomial logistic regression [28].

In large-scale experiments with binary logistic regression on content-based text
categorization we found lasso logistic regression produced models that were not only
sparse, but systematically outperformed ridge logistic regression models [19].

The lasso approach is even more appealing with multinomial logistic regression.
A feature which is a strong predictor of a single class will tend to get a large βkj

for that class, and a βkj of 0 for most other classes, aiding both compactness and
interpretability. This contrasts with the ridge, where the βkj for all classes will
usually be nonzero. This also suggests we may not want to automatically set βk

to 0 for a “base” class as is usual in maximum likelihood fitting. If all classes are
meaningful (i.e. not “other” class) then the model will be more understandable if
all classes are allowed to have their distinctive features.
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Figure 1: The density of the Laplace and Gaussian (dashed line) distributions with
the same mean and variance.

3.2 Algorithm

3.2.1 Algorithmic approaches to multinomial logistic regression

A wide variety of algorithms have been used for fitting the multinomial logistic
regression model, and we discuss only a few results here.

Several of the largest scale studies have occurred in computational linguistics,
where the maximum entropy approach to language processing leads to multinomial
logistic regression models. Malouf [32] studied parsing, text chunking, and sentence
extraction problems with very large numbers of classes (up to 8.6 million) and sparse
inputs (with up to 260,000 features). He found that for the largest problem a limited
memory Quasi-Newton method was 8 times faster than the second best method, a
Polak-Ribere-Positive version of conjugate gradient. Sha and Pereira [43] studied
a very large noun phrase chunking problem (3 classes, and 820,000 to 3.8 million
features) and found limited-memory BFGS (with 3-10 pairs of previous gradients
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and updates saved) and preconditioned conjugate gradient performed similarly, and
much better than iterative scaling or plain conjugate gradient. They used a Gaus-
sian penalty on the loglikelihood. Goodman [21] studied large language modeling,
grammar checking, and collaborative filtering problems using an exponential prior
(a Laplace prior truncated at 0). He claimed not find a consistent advantage for
conjugate gradient over iterative scaling, though experimental details are not given.

Another interesting study is that of Krishnapuram, Hartemink, Carin, and
Figueiredo [28]. They experimented on small, dense classification problems from
the Irvine archive using multinomial logistic regression with an L1 penalty (equiv-
alent to a Laplace prior). They claimed a cyclic coordinate descent method beat
conjugate gradient by orders of magnitude but provided no quantitative data.

We base our work here on a cyclic coordinate descent algorithm for binary
ridge logistic regression by Zhang and Oles [52]. In previous work we modified this
algorithm for binary lasso logistic regression and found it fast and easy to implement
[19]. A similar algorithm has been developed by Shevade and Keerthi [44].

3.2.2 Coordinate decent algorithm

Here we further modify the binary logistic algorithm we have used [19] to apply to
ridge and lasso multinomial logistic regression. Note that both objectives (4) and
(6) are convex, and (4) is also smooth, but (6) does not have a derivative at 0; we’ll
need to take special care with it.

The idea in the smooth case is to construct an upper bound on the second deriva-
tive of the objective on an interval around the current value; since the objective is
convex, this will give rise to the quadratic upper bound on the objective itself on
that interval. Minimizing this bound on the interval gives one step of the algorithm
with the guaranteed decrease in the objective.

Let Q(β(0)
kj ,∆kj) be an upper bound on the second partial derivative of the

negated loglikelihood (2) with respect to βkj in a neighborhood of βkj ’s current
value β

(0)
kj , so that:

Q(β(0)
kj , ∆kj) ≥ ∂2l(B|D)

∂β2
kj

for all βkj ∈ [β(0)
kj −∆kj , β

(0)
kj + ∆kj ].

Using Q we can upper bound the ridge objective (4) by a quadratic function of βkj .
The minimum of this function will be located at β

(0)
kj + ∆vkj where

∆vkj =
−∂l(B|D)

∂βkj
− 2β

(0)
kj /σ2

kj

Q(β(0)
kj , ∆kj) + 2/σ2

kj

. (7)

Replacing β
(0)
kj with β

(0)
kj + ∆vkj is guaranteed to reduce the objective only if ∆vkj

falls inside the trust region [β(0)
kj − ∆kj , β

(0)
kj + ∆kj ]. If not, then taking a step of

size ∆kj in the same direction will instead reduce the objective. The formula for
computing the upper bound Q(βkj , ∆kj) needed in this computation is described
in the Appendix.

The algorithm in its general form is presented in Figure 2. The solution to the
ridge regression formulation is found by using (7) to compute the tentative step at
Step 2 of the algorithm. The size of the approximating interval ∆kj is critical for
the speed of convergence: using small intervals will limit the size of the step, while
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(1) initialize βkj ← 0, ∆kj ← 1 for j = 1, ..., d, k = 1, ...,K
for t = 1, 2, ... until convergence

for j = 1, ..., d
for k = 1, ..., K

(2) compute tentative step ∆vkj

(3) ∆βkj ← min(max(∆vkj ,−∆kj), ∆kj) (reduce the step to the interval)
(4) βkj ← βkj + ∆βkj (make the step)
(5) ∆kj ← max(2|∆βkj |, ∆kj/2) (update the interval)

end
end

end

Figure 2: Generic coordinate decent algorithm for fitting Bayesian multinomial
logistic regression.

having large intervals will result in loose bounds. We therefore update the width,
∆kj , of the trust region in Step 5 of the algorithm, as suggested by [52].

The lasso case is slightly more complicated because the objective (6) is not
differentiable at 0. However, as long as β

(0)
kj 6= 0, we can compute:

∆vkj =
−∂l(B|D)

∂βkj
− λkjs

Q(β(0)
kj ,∆kj)

, (8)

where s = sign(β(0)
kj ). We use ∆vkj as our tentative step size, but in this case

must reduce the step size so that the new βkj is neither outside the trust region,
nor of different sign than β

(0)
kj ). If the sign would otherwise change, we instead set

βkj to 0. The case where the starting value β
(0)
kj ) is already 0 must also be handled

specially. We must compute positive and negative steps separately using right-hand
and left-hand derivatives, and see if either gives a decrease in the objective. Due to
convexity, a decrease will occur in at most one direction. If there is no decrease in
either direction βkj stays at 0. Figure 3 presents the algorithm for computing ∆vkj

in the Step 2 of the algorithm in Figure 2 for the lasso regression case.
Software implementing this algorithm has been made publicly available 1. It

scales up to 100’s of classes, 100,000’s of features and/or observations.

3.2.3 Strategies for choosing the upper bound

A very similar coordinate descent algorithm for fitting lasso multinomial logistic
regression models has been presented by Krishnapuram, Hartemink, Carin, and
Figueiredo [28]. However, they do not take into account the current value of B when
computing a quadratic upper bound on the negated loglikelihood. Instead, they use
the following bound on the Hessian of the negated (unregularized) loglikelihood [7]:

H ≤
∑

i

1
2

[
I− 11T/K

]⊗ xixi
T , (9)

1http://www.stat.rutgers.edu/∼madigan/BMR/
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if βkj ≥ 0
compute ∆vkj by formula (8) with s = 1
if βkj + ∆vkj < 0 (trying to cross over 0)

∆vkj ← −βkj

endif
endif
if βkj ≤ 0

compute ∆vkj by formula (8) with s = −1
if βkj + ∆vkj > 0 (trying to cross over 0)

∆vkj ← −βkj

endif
endif

Figure 3: Algorithm for computing tentative step of lasso multinomial logistic re-
gression: replacement for Step 2 in algorithm Fig. 2.

where H is the dK×dK Hessian matrix; I is the K×K identity matrix; 1 is a vector
of 1’s of dimension K; ⊗ is the Kronecker matrix product; and matrix inequality
A ≤ B means A−B is negative semi-definite.

For a coordinate descent algorithm we only care about the diagonal elements of
the Hessian. The bound (9) implies the following bound on those diagonal elements:

∂2l(B|D)
∂β2

kj

≤ K − 1
2K

∑

i

x2
ij . (10)

As before, the exact second partial derivatives of the regularization penalties can
be added to 10 to get bounds on the second partial derivatives of the penalized
likelihoods. We then can use the result to put a quadratic upper bound on the
negated regularized loglikelihood, and derive updates that minimize that quadratic
function. For the ridge case the update is

∆vkj =
−∂l(B|D)

∂βkj
− 2β

(0)
kj /σ2

kj

K−1
2K

∑
i x2

ij + 2/σ2
kj

, (11)

and for the lasso case the tentative update is:

∆vkj =
−∂l(B|D)

∂βkj
− λkjs

K−1
2K

∑
i x2

ij

. (12)

As before, a lasso update that would cause a βkj to change sign must be reduced
so that βkj instead becomes 0.

The bound in 10 depends only on the number of classes K and the values taken
on by each feature j, and holds at all values of B. Therefore, in contrast to our
bound Q(βjk, ∆jk), it does not need to be recomputed when B changes, and no trust
region is needed. On the downside, it is a much looser bound than Q(βjk, ∆jk).
In addition, since Q(βjk, ∆jk) only uses information that is needed anyway for
computation of first derivatives, the constancy of the bound in 10 provides only a
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Group name Contents Postings Authors
ARCHCOMP Computational Archaeology 1007 298
ASTR Theatre History 1808 224
BALT Baltic Republics - politics 9842 23
DOTNET-CF .NET Compact Framework 801 115
ICOM International Council of Museums 1055 227

Table 1: Some Listserv group statistics.

minor savings. On the other hand, it seemed conceivable that eliminating the trust
region might give a larger advantage, so we did an empirical comparison.

We compared training a lasso multinomial logistic regression model using each
of the bounds on the data set Abalone from the UCI Machine Learning Repository
[41]. This data set contains 27 classes, 11 variables, and 3133 observations. All
aspects of the software (including the convergence tolerance) were identical except
computation of the bounds, and omission of the trust interval test when using the
bound in 10.

Training the classifier using the bound in 10 took 405 passes through the co-
ordinates and 79 sec on a Pentium 4 PC, while with our bound it took only 128
iterations and 31 sec. While we have not conducted a detailed comparison, it ap-
pears that the looseness of the bound means that updates, while always valid, are
not very large. More aggressive updates that must occasionally be truncated by the
trust region boundary, and in turn adapt the size of the trust region, appears to be
more efficient.

4 Experiments in one-of-k author identification

4.1 Data sets

Our first data set was based on RCV1-v22, a text categorization test collection
based on data released by Reuters, Ltd.3. We selected all authors who had 200 or
more stories each in the whole collection. The collection contained 114 such authors,
who wrote 27,342 stories in total. We split this data randomly into training (75%
- 20,498 documents) and test (25% - 6,844 documents) sets.

The other data sets for this research were produced from the archives of several
listserv discussion groups on diverse topics. Table 1 gives statistics on some of
the listserv groups used in the experiments. Each group was split randomly: 75%
documents of all postings for training, 25% for test.

The same representations were used with all data sets, and are listed in Figure 4.
The representations were produced by first running the perl module Lingua:EN:Tag4

on the text. This broke the text into tokens and (imperfectly) assigned each token
a syntactic part-of-speech tag based on a statistical model of English text. The se-
quence of tokens was then postprocessed in a variety of ways. After postprocessing,
each of the unique types of token remaining became a predictor feature. Feature
set sizes ranged from 10 to 133,717 features.

The forms of postprocessing are indicated in the name of each representation:
2http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004 rcv1v2 README.htm
3http://about.reuters.com/researchandstandards/corpus/
4http://search.cpan.org/dist/Lingua-EN-Tagger/Tagger.pm
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• noname: tokens appearing on a list of common first and last names were
discarded before any other processing.

• Dpref: only the first D characters of each word were used.

• Dsuff: only the last D characters of each word were used.

• ˜POS: some portion of each word, concatenated with its part-of-speech tag
was used.

• DgramPOS: all consecutive sequences of D part-of-speech tags are used.

• BOW: all and only the word portion was used (BOW = “bag of words”). There
are also two special subsets defined of BOW. ArgamonFW is a set of function
words used in a previous author identification study [26]. The set brians is a
set of words automatically extracted from a web page about common errors
in English usage5.

Finally, CorneyAll is based on a large set of stylometric characteristics of text
from the authorship attribution literature gathered and used by Corney [9]. It
includes features derived from word and character distributions, and frequencies of
function words, as listed in ArgamonFW.

4.2 Results

We used Bayesian multinomial logistic regression with Laplace prior to build clas-
sifiers on several data sets with different representations. The performance of these
classifiers on the test sets is presented in Figure 4.

One can see that error rates vary widely between data sets and representations;
however the lines that correspond to representations do not have very many cross-
ings between them. If we were to order all representations by the error rate produced
by the model for each data set, the order will be fairy stable across different data
sets. This is even more evident from Figure 5, which shows ranks instead of actual
error rates. For instance, representation with all words (”bag-of-words”, denoted
BOW in the chart) almost always results in the lowest error rate, while pairs of
consecutive part of speech tags (2gramPOS in the chart) always produces one of
the highest error rates. There are some more crossings between representation lines
near the right-most column that reflects RCV1, hinting that this data set is es-
sentially different from all listserv groups. Indeed, RCV1 stories are produced by
professional writers in the corporate environment, while the postings in the discus-
sion groups are written by people in an uncontrolled environment on topic of their
interest.

5 Topic independence in author identification

Topics correlate with authors in many available text corpora for very natural rea-
sons. These days text categorization by topics is a well developed technology, so
we have to look into the role that topics play in author identification and see if
we confuse one for the other knowingly or unknowingly. Some researchers con-
sciously use topics to help identify authors, which makes perfect sense when dealing

5http://www.wsu.edu/˜brians/errors/errors.html
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Figure 4: Test set error rates on different data sets with different representations.

Figure 5: Ranks of test set error rates on different data sets with different repre-
sentations.

with research articles, see for example [47], [22]. However, forensic, intelligence or
homeland security applications seek to identify authors regardless of topic.

Traditionally, researchers used representations like function words that they as-
sumed to be topic-independent. Whether function words really are topic-independent
is questionable. A number of other representations may be subject to same concern.
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Experimental evidence is needed to determine whether a particular representation
is indeed topic-independent. Cross-topic experiments,i.e. experiments on a corpus
of documents written on diverse topics by the same authors, are one promising
approach to addressing this issue.

It is hard to collect a cross-topic corpus, so we performed a small-scale experi-
ment, which, however, we believe to be illustrative. In the Listserv collection there
are few authors that have posted on essentially different topics. We selected two of
them who have made considerable number of postings, see Table 2. The postings
from the group GUNDOG-L where both authors participated were used for train-
ing; the postings from two other groups with radically different topics were used
for testing. Results are presented in Figure 6 through side by side comparison with
earlier results on different representations. Obviously, there are much more line
crossings approaching the right-most column, which reflects our cross-topic experi-
ment. That of course means that the order of representations by produced error rate
is radically different. In particular, the ”bag of words” representation (BOW on the
chart), which is known to be good for content-based categorization, performs poorly
in this experiment. In contrast, a representation based on pairs of consecutive part
of speech tags (2gramPOS in the chart) becomes one of the best.

GUNDOG-L BGRASS-L IN-BIRD-L
Author bluegrass birds of

music Indiana
drxxx@aol.com 10 24
bbxxx@inetdirect.net 6 19

Table 2: Two authors from Listserv for cross-topic experiment: number of postings
per group.

6 ”Odd-man-out” experiments

Given a list of authors, the ”odd-man-out” task is to determine whether a particular
document was written by one of these authors, or by someone else. Let us assume
that there is a training set of documents available, where each document was written
by one of the target authors, and that there is at least one document written by
each of those authors.

It also seems natural to assume there are other documents available that do
not belong to any of the target authors. We are going to use the authors of these
”other” documents as ”decoys” for training our classifier. Of course, it’s better if
these documents have much in common with available documents from the target
authors: same genre, close creation date, etc. For the purpose of experimental work,
all the documents will be taken from the same corpus.

The idea is to construct binary classifiers to discriminate between the target
authors’ documents and, ideally, documents from any other author. In our exper-
iments, we are going to pool together some documents from the target authors as
positive training examples, documents from the ”decoy” authors as negative training
examples; other documents from target authors and documents from other authors
(not target and not decoy) will form the test sample.

We used the subset of RCV1 data set with 114 authors and train/test split
as described earlier. The documents were represented using function words fre-
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Figure 6: Ranks of test set error rates with different representations for the cross-
topic experiment (right-most column) compared to ranks from Figure 5.

quencies. Let K denote the number of target authors; L - number of ”decoy”
authors and M - number of the rest, test authors. Table 3 shows the results of
experiments for different combinations of K,L and M . For each combination,
10 random splits of 114 authors into those three categories were performed and
the results averaged. We used our Bayesian logistic regression software (BBR,
http://www.stat.rutgers.edu/˜madigan/BBR/), essentially a binary specialization
of the Bayesian multinomial logistic regression we described above.

In these experiments the multiclass nature of data was completely ignored; all
documents for target authors, as well as for ”decoy” and test authors, were pooled
together. It’s interesting to find out if it is possible to improve the results using
information about individual authors. The approach we are using here is inspired
by the works of Pereversev-Orlov [39]. Consider the set of documents for training as
before, i.e. from target and ”decoy” authors. We are going to train a multinomial
logistic model with K+L classes, regardless of those authors being target or ”decoy”.
Having built this model, for any document x we can compute K +L values of linear
scores from that model: βT

k x, k = 1, ..., K +L. Higher score value would mean that
the document is closer to a particular class (i.e. author) in the view of the model
at hand. The intuition behind is that multinomial model would produce feature
combinations generally useful for discriminating between authors and capture this
in scoring functions.

We now proceed with binary classification as before; the only difference is that,
instead of function words or whatever other representation, we are going to use the
vector of K + L scores from the multinomial model as document representation.
Figure 7 compares error rates produced by both approaches for the same set of
K, L,M combinations as above. Obviously, the approach with multinomial model
scores produces lower error rates in most cases.
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K L M error rate %%
10 30 74 39.02
10 40 64 45.68
10 50 54 24.56
10 60 44 37.14
20 10 84 55.64
20 20 74 41.31
20 30 64 49.60
20 40 54 49.07
20 50 44 34.33
30 10 74 51.72
30 20 64 54.52
30 30 54 48.37
30 40 44 49.99
30 50 34 50.41
40 10 64 53.75
40 20 54 52.41
40 30 44 50.89
50 10 54 50.59
50 10 44 45.09

Table 3: ”Odd-man-out” experiments with binary classification: error rates for
different combinations of K, L,M values, averaged over 10 random splits of 114
authors into these three categories.

Figure 7: ”Odd-man-out” experiments: comparing error rates from Table 3 (dark
bars) with those produced by multinomial model scores approach (light bars).

7 Revisiting the Federalist Papers

During 1787-1788 seventy-seven articles were published anonymously in four of New
York’s five newspapers by Alexander Hamilton, John Jay, and James Madison to
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persuade the citizens of the State of New York to ratify the Constitution. These pa-
pers together with an additional eight essays that had not previously been published
were called the Federalist papers. These articles appeared under the pseudonym
Publius and, as it happens, were unsuccessful: 56% of the citizens of New York
state voted against ratifying the constitution.

Historians did a lot of research on the identity of Publius at the time. It was
believed that General Alexander Hamilton had written most of the articles. Jay
wrote five and these were identified. Hamilton died in a duel with Aaron Burr in
1804, and in 1807 a Philadelphia periodical received a list, said to have been made
by Hamilton just before his fatal duel, assigning specific papers to specific authors.
But in 1818, Madison claimed to have written numbers 49-58 as well as 62 and
63 which had been ascribed to Hamilton himself in his list. Thus twelve of the
eight-five papers were claimed by both Hamilton and Madison. These papers were
called disputed papers. An additional three No 18,19,20 are usually referred to as
”Hamilton and Madison” since Hamilton said they were joint papers.

Many previous statistical studies have attempted to attribute the disputed Fed-
eralist papers and most assign all the disputed papers to Madison. Mosteller and
Wallace (1962) used a function word representation and a naive Bayes classifier.
They concluded: ”Madison is the principal author. These data make it possible
to say far more than ever before that the odds are enormously high that Madison
wrote the 12 disputed papers.”

Traditionally, most of the statistical analyses are based on a small numbers of
features. Table 4 lists the features sets we used in this analysis.

Features Name in Short
The length of each word charcount

Part of speeches POS
Two-letter-suffix Suffix2
Three-letter-suffix Suffix3

Words, numbers, signs, punctuations Words
The length of each word plus part of speech tags Charcount+POS

Two-letter-suffix plus part of speech tags Suffix2+POS
Three-letter-suffix plus part of speech tags Suffix3+POS

Words, numbers, signs, punctuations plus part of speech tags Words+POS
484 function words from Koppel et al’s paper 484 features

Mosteller and Wallace function words Wallace features
Words appear at least twice Words(¿=2)

Every word in the Federalist papers Each word

Table 4: Feature sets for the Federalist analysis.

Word lengths vary from 1 to 20. The suffix2 features are features like ly, ed,
ng, and there are 276 of them. The suffix3 features are features like ble, ing, ure,
and there are 1051 of them. The word features include each word and numbers and
signs like # $ % and punctuations like ;,”. The 484 features are given by Koppel et
al. There are three feature sets in Mosteller and Wallace paper, we choose the third
one which has 165 features. The part of speech feature set includes 44 features.

One way to assess the usefulness of a representation is to examine preditive per-
formance. Table 5 below shows error rate estimates for the different representations
as assessed by ten-fold cross-validation on the 65 undisputed (i.e., labeled) papers
and using the BBR software.
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Features Error Rate
charcount 0.216

POS 0.189
Suffix2 0.117
Suffix3 0.086
Words 0.099

Charcount+POS 0.120
Suffix2+POS 0.078
Suffix3+POS 0.041
Words+POS 0.083
484 features 0.047

Wallace features 0.047
Words(≥2) 0.047
Each word 0.051

Table 5: The results of the error rates on the training data set for each feature set.

We can see that the feature set suffix3 plus POS has the lowest error rate but
several other representations provide similar performance.

Figure 8: predicted probability of Madison for each of the disputed papers for six
of the representations.
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Figure 8 shows the predicted probability of Madison for each of the disputed
papers for six of the representations. For four of the papers (18, 19, 20, and 63)
the probability of Madison is close to one for all representations. For all the other
papers, however, the predicted probability depends on the representation. For three
of the papers (49, 55, and 56), Suffix3+POS, the representation that provided the
best predictive performance on the training examples, actually assigns zero prob-
ability to Madison! The confidence Mosteller and Wallace placed in their findings
seems inappropriate. We speculate that many of published attribution studies may
suffer from similar over-confidence.

We note that Collins et al. using 18 “representational effects” as the features
claimed No. 49, 55, 57, 58 were written by Hamilton. The Madison scores for No.
53 and No. 56 are also very low in their paper.

8 Conclusion

Our initial experiments suggest that sparse Bayesian logistic regression coupled with
high-dimensional document representations shows considerable promise as a tool for
authorship attribution. However, significant challenges concerning representation
remain; different document representations can lead to different attributions and
no clear method exists for accounting for this uncertainty.

9 Appendix

Here we are giving the formula for the function Q(βkj ,∆kj), defined in Section 3.2,
as the least upper bound for the second partial derivative of the negated loglikeli-
hood (2) in the ∆kj-vicinity of βkj , where ∆kj > 0:

Q(βkj , ∆kj) =
∑

i

x2
ij/ (F (B,xi,∆kj) + 2) .

To define F we need some auxiliary notation:

rik = βT
k xi

Eik =
(∑

k′ exp(βT
k′xi)

)
− exp(rik)

Finally:

F (B,xi, δ) =





exp(rik − δ)/Eik + Eik/ exp(rik − δ), if Eik < exp(rik − δ)
2, if exp(rik − δ) ≤ Eik ≤ exp(rik + δ)
exp(rik + δ)/Eik + Eik/ exp(rik + δ), if exp(rik + δ) < Eik.

The inference is straightforward and omitted here for the lack of space.
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[3] S. Argamon, M. Šarić, and S. S. Stein. Style mining of electronic messages
for multiple author discrimination. In Proc. ACM Conference on Knowledge
Discovery and Data Mining, 2003.

[4] S. Argamon-Engelson, M. Koppel, and G. Avneri. Style-based text categoriza-
tion: What newspaper am i reading? In Proc. AAAI Workshop on Learning
for Text Categorization, pages 1–4, 1998.

[5] H. Baayen, H. van Halteren, and F. Tweedie. Outside the cave of shadows:
Using syntactic annotation to enhance authorship attribution. Literary and
Linguistic Computing, 11(3):121–131, 1996.

[6] D. Biber. Variations Across Speech and Writing. Cambridge University Press,
1988.
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