
Decision Trees for Functional Variables

Suhrid Balakrishnan
Department of Computer Science

Rutgers University
Piscataway, NJ 08854, USA

David Madigan
Department of Statistics

Rutgers University
Piscataway, NJ 08854, USA

Abstract

Classification problems with functionally
structured input variables arise naturally in
many applications. In a clinical domain, for
example, input variables could include a time
series of blood pressure measurements. In
a financial setting, different time series of
stock returns might serve as predictors. In
an archeological application, the 2-D pro-
file of an artifact may serve as a key input
variable. In such domains, accuracy of the
classifier is not the only reasonable goal to
strive for; classifiers that provide easily in-
terpretable results are also of value. In this
work, we present an intuitive scheme for ex-
tending decision trees to handle functional
input variables. Our results show that such
decision trees are both accurate and readily
interpretable.

1 INTRODUCTION

We present an extension to standard decision trees (for
example CART, Breiman et al. 1984 or C4.5, Quinlan
1993) that enables them to be applied to classification
problems with functional data as inputs. In so doing,
we aim to leverage the interpretability of decision trees
as well as their other important benefits like reason-
able classification performance and efficient associated
learning procedures.

The application that motivated this work concerns
vaccine efficacy. The study in question followed thirty
vaccinated non-human primates (NHPs) for a year and
then “challenged” the animals. Of the 30 NHPs, 21
survived the challenge and 9 died. Repeated measure-
ments during the year assessed over a dozen aspects
of the putative immune response. These measure-
ments include an immunoglobulin G enzyme-linked

immunosorbent assay (IgG), various interleukin mea-
sures (IL2, IL4, IL6), and a so-called “stimulation in-
dex” (SI), to name a few, with the number of measure-
ments varying somewhat from animal to animal. The
goal of the study is to understand the predictive value
of the various assays with respect to survival.

0 10 20 30 40 50
0

2

4

6

8
IgG, 9 dead (red), 21 survived (green)

0 10 20 30 40 50
0

1

2

3

4
IL6

Figure 1: IgG and IL6 measurements for all 30 NHPs.
Green (solid) represents animals that survived; red
(dashed) represents animals that died. The thick
curves represent sample means.

Our initial approach to this problem used a logistic
regression model (Genkin et al., 2004) and treated
each assay-timepoint combination as a separate input
variable. While this provided good predictive perfor-
mance, it selected a biologically meaningless set of
predictors such as IgG at week 46, SI at week 38,
and IL6 at week 12. The study immunologists in-
stead sought insights such as “IgG trajectories that
rise more rapidly after the 4-week booster shot and fall
more slowly after the 26-week booster lead to higher
survival probability.” In other words, the underlying

biology suggests that the shape of the assay curves
should be predictive of survival rather than measure-
ments at specific timepoints. Figure 1, for example,
shows IgG and IL6 trajectories. For IgG, comparison
of the thick green curve with the thick red curve shows
that higher values are beneficial at the beginning, then
lower values, and then higher values again towards the
end. For IL6, it appears higher values of the curve in
general are beneficial. We shall return to the motivat-
ing example in later sections.

More generally, we consider the following multi-class
classification problem: the training dataset comprises
n labeled training examples, D = {(xi, yi)}n

i=1 where
xi = [xi1, . . . ,xid] is a list of d features and yi ∈
{1, . . . , c}, the c labels. We account for functionally
structured input data, by allowing the elements of
xi to be vectors/lists themselves, each representing
an instance of a function of some independent vari-
able. For example, a time series classification prob-
lem with only one time-series (or functional) variable
of fixed-length T say, as input, would be represented
as xi = xi1 in our setup, with the single feature
xi1 = [x(1)

i1 , x
(2)
i1 , . . . , x

(T)
i1]. Here time would be the

independent variable.

We allow the inputs to be multivariate—meaning
there may be more than one functional variable
(i.e., more than one vector/list element of xi)
and also allow for standard (non-functional) dis-
crete/continuous/categorical variables (in this case the
relevant components of xi will be the corresponding
scalars/nominal values). Thus, standard decision trees
can be considered a type of special case of the above
formulation where all inputs are restricted to length 1.

2 PREVIOUS STUDIES

Past approaches to this problem applying standard
machine learning algorithms have typically relied on
some sort of ad hoc and domain specific preprocessing
to extract predictive features. A few previous studies
look for interesting “events” in the training instances
of the functional variables and then construct auxil-
iary variables based on them. These auxiliary vari-
ables are then used by either a particular classifier (de-
cision trees, regression trees and 1-nearest neighbor,
Geurts 2001 which retains interpretability), or generic
classifiers (Kadous and Sammut, 2005) (with inter-
pretable results available if a rule learning classifier is
applied), or used in literals as base classifiers combined
via boosting (Gonzalez and Diez, 2004). Another ap-
proach is the scheme by Kudo et al. (1999), which
constrains the functional variables to pass through cer-
tain regions in (discretized) space and disallows other
regions. There are also techniques that create fea-

tures via specialized functional PCA techniques, de-
signed to deal with large data applications (EEG data)
where the functional variables are lengthy and numer-
ous. Finally, there are support vector machine based
approaches that are typically applied by defining an
appropriate kernel function for the problem domain
(Shimodaira et al., 2001).

3 CANDIDATE SPLITS FOR
FUNCTIONAL VARIABLES

In order for a decision tree to be able to process func-
tional variables, we first need to define candidate splits
for such variables. In other words, we need to define
a procedure that results in a partition of the space
of possible function instances (in a manner similar
to partitions for discrete/continuous/categorical vari-
ables). We describe the idea using the time series ex-
ample. Consider a binary classification problem, i.e.,
yi ∈ {1, 2}, and a functional input variable, a time
series of fixed length T , xi1 = [x(1)

i1 , x
(2)
i1 , . . . , x

(T)
i1].

While many splitting rules can be imagined, we pro-
pose the following: consider two representative curves,
xr and xl where xr = [x(1)

r , x
(2)
r , . . . , x

(T)
r] (and xl is

similarly defined). The (binary) split is defined by the
set of function instances that are closer (in terms of
some distance) to one representative curve than the
other.

Note that this definition allows for the construction of
very flexible partitions. Multi-way splits are an imme-
diate extension and are quite simply defined by con-
sidering more than two representative curves. The dis-
tance function used can be application specific. In our
experiments, we primarily focus on binary splits and
two kinds of distance measures: Euclidean distance
and dynamic time warping (DTW) distance. The use
of DTW distance further exemplifies how flexible this
kind of split is, enabling function instances of different
lengths to be compared.

Classification with such splits in trees proceeds ex-
actly as with standard decision trees, and the input
test function instance follows the branch correspond-
ing to the closest representative curve (with leaf nodes
as usual holding predicted class labels).

Note that for a given distance measure, different
choices for xr and xl lead to different candidate splits.
Each candidate split corresponds to a partition of
“function space” into two regions, functions within
one region being more similar to each other than to
functions in the other region. Our proposed approach
rests on two basic assumptions. First, the partition
should be interpretable. That is, the choice of xr and
xl and the particular distance measure should lead to

sets of functions that correspond to recognizably ho-
mogeneous sets of curves. Second, the true classifi-
cation rule needs to be smooth with respect to the
chosen distance measure. That is, functional inputs
that are close together according the distance mea-
sure should generally belong to the same output class.
What we attempt to show in later sections is that
straightforward choices for xr, xl, and the distance
measure lead to functional-split-enabled decision trees
with good classification accuracy and tree structures
that provide valuable insights.

3.1 FINDING REPRESENTATIVE
CURVES

Having provided the intuition for defining the candi-
date test on the basis of proximity of the function in-
stances to representative curves xr and xl (quantified
in some manner), we now focus on how these curves
can be automatically obtained from the data.

Note that the regularity assumption we make, is equiv-
alent to assuming that the instances (or curves) cluster
in some manner in the input domain. Consequently, a
simple idea is to perform a functional variable-specific
clustering, and then use cluster representatives in the
candidate tests. The choice of different clustering pro-
cedures may lead to different decision trees and in gen-
eral this choice will require some application-specific
consideration.

In our experiments we used two clustering procedures:
standard k-means clustering (k = 2 for binary par-
titions) with the Euclidean distance function between
two instances of the same length, and a clustering pro-
cedure using DTW distances between instances. With
DTW distance, the mean of the curves is not a par-
ticulary well-motivated representative of a cluster (in-
stances look more like warped/time-shifted versions of
each other than the mean). We instead use an in-
stance as representative of the cluster—in particular,
we perform the following EM-like iterations to find the
representatives: a) Set the cluster representative to be
the instance which is closest (has smallest combined
DTW distance) to all the other instances in the clus-
ter. b) Reassign instances to clusters based on their
distance to the representatives1. We will refer to these
procedures as “Euclidean clustering” and “DTW clus-
tering” in the remainder of the paper.

3.2 CHOOSING GOOD SPLITS

While reasonable clustering procedures can provide
reasonable representative curves, most standard clus-

1Note that this procedure bears resemblance to
complete-link hierarchical clustering.

tering algorithms are only guaranteed to converge to
locally optimal solutions. The standard approach to
alleviate this problem is to do multiple restarts (mul-
tiplicity m) initialized randomly and pick the tightest
clusters found.

Recall that in our application, however, the criterion
for “goodness” of a candidate test is not how tight the
found clusters are, but rather how well the represen-
tative curves partition the data class labels. Typical
measures of partition purity used include entropy, in-
formation gain and the Gini diversity index. In our
experiments we use the Gini index.

Summing up, in order to find good (high purity)
splits for a functional variable we perform multiple
restarts of clustering with random initializations (set-
ting m = 1000, unless noted otherwise) and pick the
partition (the representative curves summarize/define
this partition) that has highest Gini index. This search
procedure can be easily plugged in to standard divide
and conquer decision tree building algorithms like C4.5
and CART, and Algorithm 1 provides an outline in
high level pseudo-code.

Algorithm 1: Search procedure for functional vari-
able split
Data: subset of the training data D.
Result: Representative curves xr,xl that partition

the input data Dl, Dr (D = Dl ∪Dr), score
of partition.

Initialize best = [0, φ, φ] (stores [score,Dl, Dr]).
xr,xl = φ.
for j = 1, 2, . . . , m do

Run clustering procedure with random
initialization. Obtain candidate representative
curves and partition.
Compute score (e.g., Gini index using candidate
partition).
if score is better than current best score then

Update best,xr,xl.
else

Continue.
end

end

4 APPLICATIONS

We now describe applications of our algorithm to both
simulated and real datasets (see Table 1 for details).
We will first examine three simulated datasets, the
cylinder, bell, funnel dataset (CBF), an extension of
it we created (CBF-2), and the control chart (CC)
dataset. Table 2 provides some details about the pre-
dictive performance experiments. For each dataset,

Table 1: Dataset Descriptions

Data Src. n df c Tr Protocol
CBF * 798 1 3 128 10-fold CV

CBF-2 * 798 2 2 128 10-fold CV
CC 1 600 1 6 60 10-fold CV
JV 1 370 12 9 7-29 test 270

Bone 2 96 1 2 100 leave one out
NHP * 30 7 2 7-10 leave one out

*: Own/Simulated, 1: UCI KDD Archive (Hettich and
Bay, 1999), 2: Ramsay and Silverman (2002). n: Num. of
observations, df : Num. of functional variables, c: Num.

of classes and Tr: length of the functional instances.

we compare predictive error rates to one or more of
the following: 1. LR (an L1 constrained logistic re-
gression classifier), using BBR2 (Genkin et al., 2004)
(for binary classification problems) and BMR3 (for
multi-class problems) trained with 10-fold CV used
to pick the hyperparameter from amongst the set
{0.001, 0.01, 0.1, 1, 10, 100, 1000}. This is a reasonably
fair baseline that represents state-of-the-art classifier
performance (see Genkin et al. 2004, for how BBR
compares to SVMs etc.). 2. Seg. (segmented in-
puts), which are the best previously published results
from Geurts (2001) on various classifiers that use seg-
mented auxiliary variables as input. 3. Fnl. (func-
tional), which are the best previously published results
of Geurts (2001) using comparably interpretable clas-
sifiers constructed by combining functional patterns
and decision trees. 4. Best, which are the best pub-
lished results otherwise known (not any of the other
three categories).

For datasets where 10-fold CV was used to estimate
error rates (CBF, CBF-2 and CC), the functional deci-
sion trees (FDT) were pruned by training on 8 out the
10 folds, and picking the sub-tree of the full tree that
gave smallest error on the 9th fold (the pruning set).
Finally, prediction errors were counted on the remain-
ing 10th fold. For leave-one-out protocol datasets, no
pruning was done.

Also, in order to display the functional splits we
will use the following conventions in displayed trees
throughout the paper: a functional split will be dis-
played by showing the functional variable name, a <
symbol, followed by a unique integer for the split. For
example, x1 < 1 represents a split on the functional
variable 1 (xi1), and the index 1 likely indicates this is
the root split. Further, for any split, the left branch
representative xl will be shown in plots by a solid
line and the right branch representative xr, will
be shown by a dashed line.

2http://www.stat.rutgers.edu/∼madigan/BBR
3http://www.stat.rutgers.edu/∼madigan/BMR

4.1 CBF

0 50 100
−5

0

5

10

Bell (b)

0 50 100
−5

0

5

10

Cylinder (c)

0 50 100
−5

0

5

10

Funnel (f)

0 50 100

0

2

4

6

8
Means

Figure 2: Cylinder, bell, funnel dataset.

The cylinder, bell, funnel dataset proposed by Saito
(1994) is a three class problem yi ∈{b,c,f}, with one
time series (functional) variable of fixed length. The
equations describing the functional attribute for each
class have both random noise as well as random start
and end points for the generating events of each class,
making for quite a lot of variability in the instances.
As in past studies, we simulated 266 instances of each
class to construct the dataset. Instances of each class
are shown in Figure 2, where also shown is a partic-
ular instance of each class in bold and the computed
class means in the bottom right panel. Although this

0 50 100

0

2

4

6

8
x1<1

0 50 100

0

2

4

6

8
x1<2

c

f b

 x1 < 1

 x1 < 2

Figure 3: CBF results: pruned tree, splits.

is essentially an easy classification problem (reported
accuracies are in the high 90’s), it is often used as

a sanity check when testing algorithms that perform
functional variable classification. As far as predictive
performance goes, our procedure also performs at par
with some of the best known methods on this dataset
(see Table 2). The functional decision tree provides a
highly interpretable representation. Shown in Figure
3 is a pruned decision tree constructed on the whole
dataset using Euclidean distance4. The leaf splits are,
as expected, very representative of the class means (cf.,
Figure 2).

4.2 CBF-2

This is an artificial dataset we created that extends
the CBF dataset by adding another independent func-
tional variable. This second functional variable we also
set to be a cylinder, bell or funnel instance. Finally, we
create a binary classification problem with these inputs
by assigning patterns to be class 1 if and only if the
first variable instance xi1, is a cylinder and the second
variable instance xi2, is a bell (again, we simulated 266
instances of each class for each variable). The classifi-
cation problem is pretty much of the same hardness as
the original CBF problem (see the predictive results
table). We choose to work with this dataset because it
is a perfect example to apply functional decision trees
to: a combination of both input functional instances
carry the entire predictive signal. The interpretability
of the learned tree highlights how effective functional
decision trees can be—see Figure 4. The splits, one
on each variable, correspond exactly to the true data
generating mechanism, and this mechanism is evident
in the plots of the functional splits.

0 50 100
−5

0

5

10

x2<1

0 50 100
−5

0

5

10

x1<2

0

0 1

 x2 < 1

 x1 < 2

Figure 4: CBF results: learnt tree, splits. Branches
predicting class 1 are shown in red.

4Note that the DTW results are reported in Table 2.
Euclidean clustering results are slightly worse.

4.3 Control Chart

This is an artificial dataset in the UCI KDD
Archive5 consisting 100 objects of each of
the six classes. The instances of each class
∈{normal,cyclic,up,down,increasing,decreasing}
are defined by 60 time points and the label broadly
describes the behavior of the function with time—see
Figure 5 (Up/Down denote a sudden jump in the
series up/down respectively) . Euclidean clustering

0 20 40 60
0

20

40

60

80
Cyclic, Up

0 20 40 60
0

10

20

30

40
Down, Normal

0 20 40 60
−20

0

20

40

60

80
Increasing, Decreasing

0 20 40 60
0

20

40

60
Class means

Figure 5: Control chart dataset.

performs best on this dataset, with competitive
predictive accuracy to other techniques (Table 2).
Figure 6 shows the complete functional decision tree
along with select functional splits. Notice that the
highest level split (x1 < 1) corresponds broadly to
partitioning the instances as those that generally
increase and those that generally decrease (cyclic
and normal are arbitrarily assigned to one or other).
Appealingly, other internal splits display similar sorts
of intuitive behavior (see x1 < 4, for example) and
leaf splits display strong representative instances of
the component classes (see x1 < 9 and x1 < 10).

4.4 Japanese Vowels

Another dataset in the UCI KDD Archive, the
Japanese Vowels dataset was first used in Kudo et al.
(1999). The classification problem is a speaker identi-
fication task and the dataset consists the utterance of
the Japanese vowels “a” and “e” by nine male speak-
ers (yi ∈ {1, . . . , 9}). Each utterance is described
by 12 temporal attributes, which are 12 time-varying
LPC spectrum coefficients (for details of how these at-
tributes were obtained see Kudo et al. 1999). An im-
portant challenge this dataset poses to many standard

5Hettich and Bay (1999), http://kdd.ics.uci.edu

up incr up cyclic

up incr cyclic normal decrdown down

down decr

 x1 < 1

 x1 < 2 x1 < 3

 x1 < 4 x1 < 5 x1 < 6 x1 < 7

 x1 < 8 x1 < 9 x1 < 10 x1 < 11

 x1 < 14

0 20 40 60
20

30

40

50
x1<1

0 20 40 60
25

30

35

40

45

50
x1<4

0 20 40 60
10

20

30

40

50
x1<9

0 20 40 60
0

10

20

30

40
x1<10

Figure 6: Control chart: learnt tree and some splits.

classification techniques is that the input sequences are
of variable length (owing to the variable length of each
utterance). For this reason, our results are obtained
by applying the DTW clustering procedure, for which
variable lengths are not a problem.

For this problem, since the number of classes is fairly
large compared to the number of examples of each
class, we constructed a 15-bit error correcting output
code classifier (Dietterich and Bakiri, 1995) from the
functional decision trees. Although our prediction ac-
curacy isn’t quite at par with the best methods for
this problem (see Table 2) it is better than that of the
other functional classifier that produces interpretable
outputs, Geurts (2001).

More interesting for this dataset, are the learnt de-
cision trees and their comparison with Kudo et al.’s
analysis of the problem. Shown in Figure 7 is the tree
learnt for speaker 1 (a 1-vs.-all binary classification
problem), select splits from the tree, and previously
published results based on Kudo et al.’s analysis (who
also construct individual speaker classifiers). Kudo

et al.’s procedure constructs regions in space through
which the speakers curves mostly should (solid black
rectangles) and mostly should not (dashed purple rec-
tangles) pass. The qualitative correspondence between
these regions and the functional splits we obtain is
quite striking.

4.5 Bone

This second real dataset records the planar cross-
sectional outline of the intercondylar notch from the
knee joint (on the femur) of adults. The data has been
collected from exhumed skeletons and includes con-
comitant information such as the sex of the individual.
We obtained the data from Ramsay and Silverman’s
book (Ramsay and Silverman, 2002) data section6.
The raw data (outline of the coordinates of the bone)
is first parameterized by arc length and sampled—see
Ramsay and Silverman (2002) for details of this stan-
dard pre-processing. This arc length parameterized
data is what we set (both x and y coordinates) as our
single two-dimensional functional variable (the inde-
pendent variable being arc length). The binary classi-
fication problem involves predicting arthritis and past
analyses of this problem have shown the notch shape
to be an important predictor. Besides obtaining com-
petitive predictive accuracy on this dataset, the learnt
tree displays interesting splits. Firstly, the tree con-
tains both non-functional splits (on sex of the indi-
vidual) and functional splits. Second, the functional
splits themselves are instructive about bone shape
and arthritis implications—see Figure 8 (shown with
a comparable plot from the literature). Corroborating
the conclusions James and other authors reached by
independent analyzes on the same dataset (James and
Silverman, 2005; Ramsay and Silverman, 2002), the
functional splits we learn show that both variability in
the y-direction (shrunken bones) and bending to the
right are predictive of a greater risk of arthritis.

4.6 NHP study

As described in the introduction, this dataset involves
time series measurements (of different lengths) related
to the state of the immune system of vaccinated NHPs.
Once again, the tree we learn is competitive in predic-
tive accuracy. Figure 9 shows the learnt tree and func-
tional splits (as in the introduction, red corresponds to
branches for predicting death yi = d, while green cor-
responds to NHPs that survive, yi = a). The splits
are biologically sensible. A increasing IL6 trajectory
is predictive of survival; A rapid early rise in SI is pre-
dictive of death; an early rise in TNF (tumor necrosis
factor) is predictive of survival.

6http://www.stats.ox.ac.uk/∼silverma/fdacasebook/

Table 2: Predictive Performance—Error Rates
Data Best LR Seg. Fnl. FDT

CBF 01 2.77 0.5 1.17 0.13D

CBF2 - 5.29 - - 0.25D

CC 0.332 10.33 0.5 2.33 2.0E

JV 3.83 - 3.51 19.4 9.46D

Bone - 21.86 - - 19.79E

NHP - 33.33 - - 26.67E

1: Kadous and Sammut (2005) 2: Geurts and Wehenkel
(2005) 3: Kudo et al. (1999) D: DTW clustering, E:

Euclidean clustering.

5 DISCUSSION, FUTURE WORK

In this paper, we presented a simple and effective ex-
tension to decision trees that allows them to operate
on functional input variables. We presented results
showing that these functional decision trees are accu-
rate and produce interpretable classifiers.

Many extensions to the basic idea presented here sug-
gest themselves; we describe a few. The representa-
tive curves can be generated by more sophisticated
clustering algorithms; of particular interest would be
ones designed for clustering functional curves. For ex-
ample, the one proposed by James and Sugar (2003).
Also, a range of algorithms from model-based cluster-
ing (e.g. HMM based) to non-parametric clustering
(e.g. Gaussian processes based clustering methods)
might be applied.

Further, one is not limited to decision trees as the
base classifier either. An alternative way to view a
single functional split is that it defines an auxiliary
variable that may be used in addition to standard fea-
tures in any classification algorithm. Multi-way splits,
for example, might be particularly powerful features
in multi-class problems. Finally, predictive accuracy
can likely be improved by boosting these functional
decision trees, a topic we are currently investigating.

Acknowledgements

We thank the US National Science Foundation for fi-
nancial support as well as the KD-D group, who sup-
ported this work through NSF grant EIA-0087022.

References

L. Breiman, J. H. Friedman, R. A. Olshen, and
C. J. Stone. Classification and Regression Trees.
Wadsworth International Group., 1984.

T. G. Dietterich and G. Bakiri. Solving multiclass
learning problems via error-correcting output codes.
Journal of Artificial Intelligence Research, 2:263 – 286,
1995.

A. Genkin, D. D. Lewis, and D. Madi-
gan. Large-scale bayesian logisitic regres-
sion for text categorization., 2004. URL
http://www.stat.rutgers.edu/∼madigan/PAPERS/.

P. Geurts. Pattern extraction for time-series clas-
sification. In L. de Raedt and A. Siebes, editors,
PKDD, LNAI 2168, pages 115 – 127, Freiburg, Sep-
tember 2001.

P. Geurts and L. Wehenkel. Segment and combine
approach for non-parametric time-series classification.
In PKDD, October 2005.

C. J. A. Gonzalez and J. J. R. Diez. Boosting interval-
based literals: Variable length and early classifica-
tion. In A. Kandel M. Last and H. Bunke, editors,
Data mining in time series databases. World Scien-
tific, 2004.

S. Hettich and S. D. Bay. The UCI KDD archive,
1999. URL http://kdd.ics.uci.edu.

G. James and B. Silverman. Functional adaptive
model estimation. Journal of the American Statistical
Association, 100:565 – 576, 2005.

G. James and C. Sugar. Clustering for sparsely sam-
pled functional data. Journal of the American Statis-
tical Association, 98:397 – 408, 2003.

M. W. Kadous and C. Sammut. Classification of mul-
tivariate time series and structured data using con-
structive induction. Machine Learning Journal, 58:
179 – 216, 2005.

M. Kudo, J. Toyama, and M. Shimbo. Multidimen-
sional curve classification using passing-through re-
gions. Pattern Recognition Letters, 20(11-13):1103 –
1111, 1999.

J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, California, 1993.

J. O. Ramsay and B. W. Silverman. Applied Func-
tional Data Analysis: Methods and Case Studies.
Springer-Verlag, New York, 2002.

N. Saito. Local feature extraction and its application
using a library of bases. PhD thesis, Yale University,
1994.

H. Shimodaira, K. i. Noma, M. Nakai, and
S. Sagayama. Dynamic time-alignment kernel in sup-
port vector machine. In NIPS, volume 2, pages 921 –
928, 2001.

0 0

0 0

0 1 1 0

 x11 < 1

 x4 < 2 x10 < 3

 x3 < 4 x1 < 5

 x2 < 7 x3 < 8

0 10 20 30
−1

0

1

2

3
x1<5

0 10 20 30
−2

−1

0

1
x2<7

0 10 20 30
−1

0

1

2
x3<4

0 10 20 30
−1

−0.5

0

0.5

1
x4<2

Figure 7: Japanese Vowels: Functional splits corre-
sponding to reported results in Kudo et al. (1999).
Branches corresponding to speaker 1 have been col-
ored red for ease of comparison. Note: the bottom
figure is a capture of a figure in Kudo et al. (1999).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.4

0.6

0.8

1
x1<1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
x1<2

x

y

Figure 8: Bone data comparative results. Top Row fig-
ures: captures from a figure in James and Silverman
(2005). Plot shows, in blue, the first two principal
components of the predictive model they propose. ’-’
sign curve being for arthritic bones and the ’+’ curve
being for healthy bone shapes (mean bone shape in
red). Lower row figures: root and next level split of
learnt FDT (tree not shown). Branches of the func-
tional splits predicting arthritis are colored red.

0 10 20 30 40 50
0

1

2

3

4
x7 < 1, IL6

0 10 20 30 40 50
0

1

2

3

4
x3 < 2, Si

0 10 20 30 40 50
0.4

0.6

0.8

1

1.2

1.4
x9 < 3, TNF

Weeks

a

a

a d

 x7 < 1

 x3 < 2

 x9 < 3

Figure 9: NHP learnt tree, functional splits. Branches
of the functional splits predicting death are colored
red.

