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ABSTRACT
Supervised learning approaches to text classification are in
practice often required to work with small and unsystem-
atically collected training sets. The alternative is usually
viewed as building classifiers by hand, using an expert’s un-
derstanding of what features of the text are related to the
class of interest. This is expensive, requires a degree of com-
putational and linguistic sophistication, and makes it diffi-
cult to use combinations of weak predictors. We propose
instead combining domain knowledge with training exam-
ples in a Bayesian framework. Domain knowledge is used to
specify a prior distribution for parameters of a logistic re-
gression model, and labeled training data is used to produce
and find the mode of the posterior distribution. We show
on three text categorization data sets that this approach
can rescue what would otherwise be disastrously bad train-
ing situations, producing much more effective classifiers.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing
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1. INTRODUCTION
Numerous studies show that effective text classifiers can

be produced by supervised learning methods, including sup-
port vector machines (SVMs) [11, 14, 33], regularized logis-
tic regression [9, 33], and other approaches [14, 27, 33]. Most
of these studies have used thousands to 10’s of thousands of
randomly selected training examples. In operational text
classification settings, however, small training sets are the
rule, due to the expense and inconvenience of labeling, or
skepticism that the effort will be adequately repaid.

To learn from a handful of training examples, one must ei-
ther use a sufficiently limited model class or some additional
regularization penalty to effectively constrain the models
learnable with a small amount of data. Otherwise over-
fitting (learning accidental properties of the training data)
will yield poor effectiveness on future data. On the other
hand, strong general constraints on the models themselves
limit the effectiveness of learnable classifiers.

This situation can be improved if one has advance knowl-
edge of which classifiers are likely to be good for the class of
interest. In text categorization, for instance, such knowledge
might come from category descriptions meant for manual in-
dexers, reference materials on the topics of interest, lists of
features chosen by a domain expert, or many other sources.

Bayesian statistics provides a convenient framework for
combining domain knowledge with training examples [3].
The approach produces a posterior distribution for the quan-
tities of interest (e.g., regression coefficients). Per Bayes the-
orem, the posterior distribution is proportional to the prod-
uct of a prior distribution and the likelihood function. In ap-
plications with large numbers of training examples, the like-
lihood dominates the prior. However, with small numbers
of training examples, the prior is influential and priors that
reflect appropriate knowledge can provide improved predic-
tive performance. In what follows we apply this approach
with logistic regression as our model and text classification



(in particular text categorization) as our application.
We begin by reviewing the use of logistic regression in

text classification, and the Bayesian approach in particular
(Section 2), then discuss previous approaches to integrating
domain knowledge in text classification (Section 3). Sec-
tion 4 presents our Bayesian approach, which is simpler and
more flexible. Section 5 describes our experimental methods,
while Section 6 presents our results. We find on three test
categorization test collections, using three diverse sources
of domain knowledge, that domain-specific priors can yield
large effectiveness improvements.

2. BAYESIAN LOGISTIC REGRESSION
A logistic regression model is a linear model for the con-

ditional log odds of a binary outcome, i.e.

p(yi = +1|β, xi) =
exp(βT xi)

1 + exp(βT xi)
=

exp(
∑

j βjxi,j)

1 + exp(
∑

j βjxi,j)

where yi encodes the class of example i (positive = +1,
negative = −1) and xi,j is the value of feature j for example
i (e.g. a within document term weight). We assume that j
runs from 0 to d, the number of features, and that xi,0 = 1.0
for all i, i.e. the model has an intercept term.

A logistic regression training algorithm chooses a vector
of model parameters β that optimizes some appropriate cri-
terion function on a set of training examples for which yi

values are known. In the Bayesian MAP (maximum a pos-
teriori) approach to logistic regression [9, 19], the criterion
function is the sum of the log likelihood of the data and the
log of the prior distribution of the regression coefficients,

l(β) = (−
n∑

i=0

ln(1 + exp(−βT xiyi)) + ln p(β),

where p(β) is the prior probability for parameter vector β

and we output a value β̂ (which may or may not be unique)
that maximizes l(β). The prior, p(), can be any probabil-
ity distribution over real-valued vectors. MAP estimation
is neither necessarily superior or inferior to other Bayesian
approaches [28].

Logistic regression [7, 15, 19, 26, 33, 32] and, to a lesser
degree, the similar probit regression [4], has been widely
used in text classification. Regularization to avoid overfit-
ting has been based on feature selection, early stopping of
the fitting process, and/or a quadratic penalty on the size of
regression coefficients. The last of these, sometimes called
ridge logistic regression, can be interpreted as MAP estima-
tion where p(β) is a product of univariate Gaussians with
mean 0 and a shared variance [19]. Recently, Genkin et al.
[9] showed MAP estimation with a product of univariate
Laplace priors, i.e. a lasso [29] version of logistic regression,
was effective for text categorization.

3. PRIOR WORK
Feature extraction is one use of domain knowledge (most

famously in spam filtering [18]). Creating better features is
good, but one would like to guide the learner to use them.
Domain knowledge can also be used to choose which features
to use (feature selection). An old example is stopwords [24,
30], often deleted in content-based text classification, but
specifically included in authorship attribution. Another is
relevance feedback, where words from the user query are

usually required to appear in the learned model [2, 24]. The
downside of feature selection is that it cannot reduce the
impact of a term without discarding it entirely.

Relevance feedback may also use textual queries as artifi-
cial positive examples to supplement labeled training data.
However, a query (or in general a domain-informative text)
may have different length, non-domain vocabulary, and non-
textual features than a training document, which poses risks
for learning. Finally, some relevance feedback algorithms
(e.g. Rocchio [2]) use a query to set initial values of some or
all classifier parameters, which are then updated by train-
ing data. This is a more flexible approach, but past al-
gorithms have not dealt with words that are negative pre-
dictors, strong predictors of uncertain polarity, or varying
degrees of confidence in predictors.

Several recent papers have modified learning approaches—
naive Bayes [13, 16], logistic regression (fit with a boosting-
style algorithm) [25], and SVMs [31]—to use domain knowl-
edge in text categorization. All modify the base learning
algorithm, and require users to convert knowledge about
words into weighted training examples. Several heuristics
are suggested for this weighting, but implicitly assume a sub-
stantial number of task documents (at least unlabeled ones)
are available. A recent study [21] that upweights human-
selected terms in SVM learning (by altering document vec-
tors) is similar in spirit to our work, though in an active
learning context.

Closely related to using domain knowledge is mixing train-
ing data from different sources in supervised learning (do-
main adaptation). Gabrilovich and Markovitch use a combi-
nation of feature generation, feature selection, and domain
adaptation from a large web directory to improve classifi-
cation of diverse documents [8]. Chelba and Acero [5] use
out-of-task labeled examples in logistic regression training
of a text capitalizer, and use the resulting MAP estimate
as the mode vector of a Bayesian prior for training with
in-task examples. Our work has similarities to Chelba and
Acero’s, as well as to non-textual uses of Bayesian priors to
incorporate knowledge ([17], and citations therein).

4. USING DOMAIN KNOWLEDGE
Given the wide use in text classification of Gaussian pri-

ors, and the recent success of Laplace priors, we take these
as our starting point. The univariate Gaussian and Laplace
distributions each have two parameters, so a product of such
distributions for d features and an intercept gives 2d+2 hy-
perparameters. The Gaussian parameters are the mean µj

and the variance σ2
j . The Laplace parameters are the mean

µj , and the scale parameter λj , corresponding to a variance
of 2/λ2

j . For both distributions the mean µj is also the mode,
and in this paper we will refer to the mode and variance as
the hyperparameters for both the Gaussian and Laplace dis-
tributions. The mode specifies the most likely value of βj ,
while the variance specifies how confident we are that βj is
near the mode.

As for domain knowledge, our interest is in a wide range
of possible clues to which words are good predictors for a
class. Focused lists of words generated specifically for clas-
sification are of interest, but so are reference materials, such
as encyclopedia entries, that provide noisier evidence. We
refer to all these sources as “domain knowledge texts,” and
assume for simplicity there is exactly one domain knowledge
text for each class (more can easily be used). We call a set of



such texts a “domain knowledge corpus.” For a given class,
we distinguish between two sets of words. Knowledge words
(KWs) are all those that occur in the domain knowledge
text for the class of interest. Other words (OWs) are all
words that occur in the training documents for a particular
run, but are not KWs. Table 1 summarizes the methods
discussed in this section.

4.1 Baselines
Text classification research using regularized logistic re-

gression has usually set all prior modes to 0, and all prior
variances to a common value (or do the equivalent non-
Bayesian regularization). Some papers explore several val-
ues for the prior variance [15, 33], others use a single value
but do not say how it was chosen [19, 32], and others choose
the variance by cross-validation on the training set [9]. We
used cross-validation (Section 5.1.1) to choose a common
prior variance for OWs. In our “No DK” baseline (Table 1),
all words are OWs.

Another simple baseline is to create X copies of the prior
knowledge text for a class and add these copies to the train-
ing data as additional positive examples (“DK examples” in
Table 1), as in some relevance feedback approaches. We ap-
plied the same tokenization and term weighting (Section 5.3)
to these artificial documents as to the usual training docu-
ments. We tested a range of values for X, but include results
only for the best value, X = 5.

4.2 Priors From Domain Knowledge
Our four methods for using domain knowledge to spec-

ify class-specific hyperparameters begin by giving OWs a
prior with µj = 0 and a common variance σ2 chosen by
cross-validation. KWs are then given more ability to af-
fect classification by assigning them a larger prior mode or
variance than OWs. All four methods use a heuristic con-
stant CDKRW, the “domain knowledge relative weight”, to
control how much more influence KWs have. This constant
can be set manually or, as in our experiments, chosen by
cross-validation on the training set (Section 5.1.1).

Two of our methods look not just at the domain knowl-
edge text for the target class, but at the texts for other
classes, in order to determine how significant to the tar-
get class each word in its domain knowledge text is. As a
heuristic measure of significance, we use TFIDF weighting
(Section 5.3) within the domain knowledge corpus:

significance(t, Q) = logtf(t, d)× idf(t), (1)

where

• d is the domain knowledge text for class Q,

• logtf(t, d) = 0 if term t does not occur in text d, or
1+ loge(tf(t, d)) if it does, where tf(t, d) is the number
of occurrences of t in d,

• idf(t) = loge((NK + 1)/(df(t) + 1)), where NK is the
total number of domain knowledge texts used to com-
pute IDF weights, and df(t) is the number of those
documents that contain term t.

We now describe the methods.

4.2.1 Variance-Setting Methods
One view is that KWs will have more influence (i.e. pa-

rameter values farther from 0) than typical OWs in a good

logistic regression model for the class, but could be positive
or negative predictors. That suggests the prior on a KW
should usually have a larger variance than the prior on an
OW. Methods Var and Var/TFIDF (Table 1) make the
prior variances for KWs a multiple of the variance for OWs.
This multiple is the same for all KWs in Method Var:

σ2
j = CDKRW ∗ σ2,

but is proportional to our heuristic measure of term signifi-
cance (Equation 1) in Method Var/TFIDF:

σ2
j = CDKRW × significance(tj , Q)× σ2.

Both methods use a prior mode of 0 for both OWs and KWs.

4.2.2 Mode-Setting Methods
Another view of a domain knowledge text is that it con-

tains words which are mostly positive predictors of class
membership, i.e. that KWs will tend to have parameter val-
ues greater than 0 in a good logistic regression model. Along
these lines, Methods Mode and Mode/TFIDF make the
prior mode for a KW greater than 0, in contrast to the mode
of 0 used for OWs. Method Mode gives the prior for every
KW the same mode:

µj = CDKRW,

while Method Mode/TFIDF makes the prior modes propor-
tional to term significance:

µj = CDKRW × significance(tj , Q).

Both methods use a common variance chosen by cross-validation
for both OWs and KWs.

While mode-setting may seem more natural than variance-
setting, it carries more risks. If a term does not occur in the
training data, then the MAP estimate for the corresponding
parameter is identically the prior mode. With nonzero prior
modes and a tiny training set, we may be hardwire many
untested parameter choices into the final classifier.

5. EXPERIMENTAL METHODS
In this section, we describe our experimental approach to

studying the use of domain knowledge in logistic regression.

5.1 Software and Algorithms
As discussed in Section 3, our interest was in domain

knowledge techniques that can be used with existing super-
vised learning algorithms. Here we discuss the particular
implementations used in our experiments.

5.1.1 Logistic Regression
We trained and applied all logistic regression models us-

ing Version 2.04 of the BBR (Bayesian Binary Regression)
package [9]1. BBR supports Gaussian and Laplace priors
with user-specified modes and variances. With Methods No
DK and DK Examples we used prior modes of 0 and chose
a common prior variance, σ2, from this set of possibilities:

0.25, 1, 2.25, 4, 6.25, 9, 12.25, 16, 20.25, 25, 30.25, 36,
42.25, 49, 56.25, 64, 100, 10000, 1000000, 100000000.

The BBR fitting algorithm chose the prior variance that
maximized the cross-validated posterior predictive log-likeli-
hood for each training set.

1http://www.stat.rutgers.edu/∼madigan/BBR/



Method Description of the method

[KWs] - none
No DK (baseline) [OWs, intercept] - mode: 0, variance σ2 chosen by cross-validation

DK examples Like No DK, but treat the domain knowledge text for the class as X positive examples

[KWs] - mode: 0, variance: σ2
j = CDKRW × σ2, (CDKRW, σ2) pair chosen by cross-validation

Var [OWs, intercept] - mode: 0, variance: σ2

[KWs] - mode: 0, variance: σ2
j = CDKRW × significance(tj , Q)× σ2 for term tj and class Q, and (CDKRW,

σ2) pair chosen by cross-validation
Var/TFIDF [OWs, intercept] - mode: 0, variance: σ2

[KWs] - mode: µj = CDKRW, variance: σ2, (CDKRW, σ2) pair chosen by cross-validation
Mode [OWs, intercept] - mode: 0, variance: σ2

[KWs] - mode: µj = CDKRW × significance(tj , Q), variance: σ2 for term tj and class Q, and (CDKRW, σ2)
pair chosen by cross-validation

Mode/TFIDF [OWs,intercept] - mode: 0, variance: σ2

Table 1: Summary of tested methods for incorporating domain knowledge into learning. CDKRW is a
constant specifying the relative weight given domain knowledge.

For methods using class-specific priors, we used cross-
validation external to BBR to choose a pair (CDKRW,

σ2) from the cross product of a set of values for CDKRW
and the above set of values for σ2. For Methods Var and
Var/TFIDF, the CDKRW values tried were 2, 5, 10, 20,
50, 100, and 10000. For Methods Mode and Mode/TFIDF,
the CDKRW values were 0.5, 1, 2, 3, 4, 5, 10, 20, 50, 100,
and 10000. The pair was again chosen to maximize cross-
validated posterior predictive log-likelihood on the training
set.

5.1.2 Support Vector Machines
As a baseline to ensure that logistic regression was pro-

ducing reasonable classifiers without domain knowledge, we
trained support vector machine (SVM) classifiers on all train-
ing sets. SVMs are one of the most robust and effective ap-
proaches to text categorization [11, 12, 14, 27]. In our exper-
iments, we used Version 5.0 of SVM Light software [11, 12] 2.
All options were kept at their default values. Keeping the −c
option at its default meant that SVM Light used the default
choice (C = 1.0 for our cosine normalized examples) of the
regularization parameter C. We also generated results with
the regularization parameter chosen by cross-validation, but
these were inferior and are not included here.

5.2 Datasets
Our text classification experiments used three public text

categorization datasets for which publicly available domain
knowledge texts was available. We chose, as our binary clas-
sification tasks, categories with a moderate to large number
of positive examples. This enabled experimentation with
different training set sizes.

5.2.1 Bio Articles
This collection of full text biomedical articles was used in

the TREC 2004 genomics track categorization experiments
[10].3 The genomics track itself featured a few, atypical
categorization tasks. However, because all the articles are
indexed in the National Library of Medicine’s MEDLINE
system, they have corresponding MEDLINE records with
manually assigned MeSH (Medical Subject Headings) terms.

2http://svmlight.joachims.org/
3http://trec.nist.gov/data/t13 genomics.html

We posed as our text classification tasks predicting the pres-
ence or absence of selected MeSH headings.

Documents. We split the Bio Articles documents into
three 8-month segments. We used the first segment for the
training and the last segment for testing. The middle seg-
ment was reserved for future purposes and was not used
in the experiments reported here. Training sets of various
sizes were drawn from the training population of 3,742 arti-
cles (period: 2002-01-01 to 2002-08-31), and classifiers were
evaluated on the test set of 4,175 articles (period: 2003-05-
01 to 2003-12-31).

Categories. We wanted a set of categories that were
closely related to each other (to test the ability of domain
knowledge to support fine distinctions) and somewhat fre-
quent on the particular biomedical journal articles we had
available. MeSH organizes its headings into multiple tree
structures, and we choose the A11 subtree (MeSH descrip-
tor: “Cells”) to work with. This subtree contains 310 dis-
tinct headings, and we chose to work with the 32 that were
assigned to 100 or more of our documents. Note that when
deciding whether a MeSH heading was assigned to a docu-
ment, we stripped all subheadings from the category label.

Prior Knowledge. Each MeSH heading has a detailed
entry provided as an aid to both NLM manual indexers and
users of MEDLINE. Figure 1 shows a portion of one such
entry. We used as our domain knowledge text for a category
all words from the MeSH Heading, Scope notes, Entry terms,
See Also, and Previous Indexings fields. Entries were taken
from the 2005 MeSH keyword hierarchy [1], downloaded in
November 2004.

5.2.2 ModApte Top 10
Our second dataset was the ModApte subset of the Reuters-

21578 test collection of newswire articles [14].4

Documents. The ModApte subset contains 9603 and
3299 Reuters news articles in the training set and test set,
respectively.

Categories. Following Wu and Srihari [31] (see below)
we used the 10 “Topic” categories with the largest number
of positive training examples.

Prior Knowledge. In their experiments on incorporat-
ing prior knowledge into SVMs, Wu and Srihari [31] manu-
ally specified short lists of high value terms for the top 10

4http://www.daviddlewis.com/resources/testcollections/reuters21578/



MeSH Heading Neurons
Tree Number A08.663
Tree Number A11.671
Annotation do not use as a substitute or synonym for

BRAIN / cytol
Scope Note The basic cellular units of nervous tissue.

Each neuron consists of a body, an axon,
and dendrites. Their purpose is to re-
ceive, conduct, and transmit impulses in
the NERVOUS SYSTEM.

Entry Term Nerve Cells
See Also Neural Conduction
... ...
Unique ID D009474

Figure 1: A portion of MeSH entry for the MeSH
heading “Neurons”.

Class Prior Knowledge

earn cents cts net profit quarter qtr revenue rev share shr
acq acquire acquisition company merger stake
money-fx bank currency dollar money
grain agriculture corn crop grain wheat usda
crude barrel crude oil opec petroleum
trade deficit import surplus tariff trade
interest bank money lend rate
wheat wheat
ship port ship tanker vessel warship
corn corn

Figure 2: Keywords used as prior knowledge for the
ModApte Top 10 collection [31].

Topic categories. We used those lists (Figure 2) as our do-
main knowledge texts. Note that due to the small number
of these texts and their highly focused nature, IDF weights
within the domain knowledge corpus had almost no impact,
so methods Var/TFIDF and Mode/TFIDF behaved almost
identically to methods Var and Mode.

5.2.3 RCV1 A-B Regions
The third dataset was drawn from RCV1-v2, a test cat-

egorization test collection of 804, 414 newswire articles [14].
5

Documents. For efficiency reasons, we did not use the
full set of 804, 414 documents. Our test set was the 120, 076
documents dated 20-December-1996 to 19-February-1997.
For a large training set, we used the LYRL2004 ([14]) train-
ing set of 23,149 documents from 20-August-1996 to 31-
August-1996. Small training sets were drawn from a training
population of 264, 569 documents (20-August-1996 to 19-
December-1996). The remaining documents was set aside
for future use.

Categories. We selected a subset of the Reuters Region
categories whose names exactly matched the names of geo-
graphical regions with entries in the CIA World Factbook
(see below) and which had one or more positive examples in
our large (23, 149 document) training set. There were 189
such matches, from which we chose the 27 with names be-
ginning with the letter A or B to work with, reserving the
rest for future use.

5http://www.ai.mit.edu/projects/jmlr/papers/volume5/
lewis04a/lyrl2004 rcv1v2 README.htm

Afghanistan
...
Geography
Location: Southern Asia, north of Pakistan
...
International disputes: periodic disputes with Iran over Hel-
mand water rights; Iran supports clients in country, private
Pakistani and Saudi sources also are active; power struggles
among various groups for control of Kabul,
...
Government
Name of country:
conventional long form: Islamic State of Afghanistan
conventional short form: Afghanistan
...
Capital: Kabul

Figure 3: A portion of CIA WFB (1996 edition)
entry for the category “Afghanistan”.

Prior Knowledge. The domain knowledge text for each
Region category was the corresponding entry in the CIA
World Factbook 1996.6 Figure 3 shows a portion of the
entry for “Afghanistan”. The HTML source code of the
CIA WFB was downloaded in June 2004. The formatting
of the entries did not make it easy to omit field names and
boilerplate text. We instead simply deleted (in addition to
HTML tags) all terms that occurred in 10% or more of the
entries.

5.3 Text Representation
Text from each training and test document was converted

to a sparse numeric vector in SVM Light format (also used
by BBR). The Bio Articles documents were in XML for-
mat. We concatenated the contents of the title (<atl>),
subject (<docsubj>), and abstract (<abs>) elements and
deleted all internal XML tags. For ModApte, we used the
concatenation of text from the title (<TITLE>) and body
(<BODY>) SGML elements of each article. For the RCV1
A-B Regions collection, we concatenated the contents of the
headline (<HEADLINE>) and text (<TEXT>) XML ele-
ment of each article.

For all datasets, text processing used the Lemur7 utility
ParseToFile. This performed case-folding, replaced punc-
tuation with whitespace, and tokenized text at whitespace
boundaries. The Lemur index files were then converted to
document vectors in SVM Light format.

In processing text for the Bio Articles and the ModApte
datasets, the Porter stemmer [20] supplied by Lemur and
the SMART [22] stoplist were used in conjunction with the
Lemur utility ParseToFile.8 For the RCV1-v2 dataset we
used a convenient pre-existing set of document vectors we
had prepared using Lemur without stemming or stopping.
domain knowledge text corpora were processed in the same
fashion as the corresponding task documents.

Within document weights were computed using cosine-
normalized TFIDF weighting [23]. The initial weight of term

6http://www.umsl.edu/services/govdocs/wofact96/
7http://www-2.cs.cmu.edu/∼lemur
8ftp://ftp.cs.cornell.edu/pub/smart/english.stop or
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
lyrl2004 rcv1v2 README.htm



Dataset Type of DK DK Texts

Bio Articles MeSH scope notes 22,995
ModApte Top 10 manually selected words 10
RCV1 A-B Regions CIA WFB entries 189

Table 2: Type of domain knowledge texts and size of
domain knowledge corpus for each of categorization
datasets.

tj in document di, wij was

wij =

{
(1 + loge(fij))loge

N+1
nj+1

, if tj is present in di,

0, otherwise.

Here N is the number of documents in the training popula-
tion, fij is the frequency of term tj in document di, and nj

is the number of training population documents containing
term tj . We use the Lookahead IDF variant of IDF weighting
[6]. Cosine normalization was then applied to the TFIDF
values.

5.4 Evaluation and Thresholding
We evaluated classification effectiveness using the F1 mea-

sure (harmonic mean of recall and precision) [14, 30], with
macroaveraging (average of per-category F1 values) across
categories. Both BBR and SVM Light produce linear clas-
sifiers with thresholds intended to minimize error rate, so
we retrained the thresholds to maximize observed F1 on the
training data, while leaving other classifier parameters un-
changed.

6. RESULTS
Our primary hypothesis was that using domain knowledge

texts would greatly improve classifier effectiveness when few
training examples are available, and not hurt effectiveness
with large training sets. We also believed, given the di-
verse and non-document-like forms of the domain knowl-
edge texts, that using them to specify prior distributions in
a Bayesian framework was not only more natural, but more
effective, than pretending they were additional training ex-
amples.

Table 2 summarizes the types of domain knowledge used,
and the number of domain knowledge texts used to compute
significance values for the Var/TFIDF and Mode/TFIDF
methods. The number of categories used in the experiments
was 32, 10 and 27 for the Bio Articles, ModApte and RCV1
collections, respectively.

6.1 Large Training Sets
This experiment trained classifiers on each collection’s

large training set. Table 3 presents macroaveraged F1 re-
sults for the three test collections. As found elsewhere [9],
SVMs and lasso logistic regression show similar effectiveness,
and both dominate ridge logistic regression. We note that
our macroaveraged F1 for SVMs on ModApte Top 10 (86.55)
is similar to that found by Wu & Srihari (approximately 83.5
on a non-random sample of 1,024 training examples, from
the graph in Figure 3 [31]) and Joachims (82.5 with all 9,603
training examples, computed from his Figure 2 [11]).

Method DK Examples (using domain knowledge texts as
artificial positive examples) had little impact on any learn-
ing algorithm with these large training sets. The four meth-

ods using prior probability distributions had little impact
on lasso logistic regression, but gave a substantial benefit to
ridge logistic regression on the two datasets with the lowest
frequency categories.

6.2 Small Training Sets
The small training sets available in practical text classi-

fication situations are produced in a variety of unsystem-
atic ways, making it hard to define what a “realistic” small
training set is. We present results on three definitions that
exhibit the range of properties we have seen using other def-
initions.

6.2.1 500 Random Examples
In this experiment we selected random training sets of

500 examples from the training population. The resulting
training sets had 2 to 139 positive examples for categories
in the Bio Articles collection, 9 to 184 positive examples for
categories in the ModApte Top 10 collection, and 0 to 22
positive examples for categories in the RCV1 A-B Regions
collection.

Table 4 provides the results. Effectiveness is lower than
with large training sets, and the effect of the differing class
frequencies is obvious. Lasso logistic regression is notably
more effective on the small training sets than SVMs and
ridge logistic regression. Method DK Examples gave im-
provements on two of three collections, but hurt the third.
The Bayesian prior based methods, in contrast, always im-
proved logistic regression results. For ridge logistic regres-
sion, the improvement was up to 1500%.

6.2.2 5 Positive and 5 Random Examples
Operational text classification tasks often originate with a

handful of known positive examples. We simulated this by
randomly selecting 5 positive examples of each class from
the training population, and adding 5 additional examples
randomly selected from the remainder without knowledge of
class labels (Table 5). Since 5 positive examples is more than
occurs in random samples of 500 examples for some classes,
effectiveness is sometimes better and sometimes worse than
in Table 4. Method DK Examples has a large impact with
these tiny training sets, but the impact is sometimes good
and sometimes bad. The prior based methods uniformly
improve ridge regression (up to 130%) and usually improve
lasso regression, though the risky Mode method hurts lasso
substantially in two of the conditions.

6.2.3 5 Positive and 5 Closest Negative Examples
In a variation on the previous approach, we instead com-

bined each of 5 random positive examples for each class with
its nearest (based on highest dot product) negative neighbor.
The theory was that someone attempting to quickly build
a small training set might end up with positive and “near
miss” examples. It is hard to know if this is true but, surpris-
ingly, effectiveness (Table 6) was lower than when positives
were supplemented with random examples (Table 5). In any
case, we again see DK Examples having a large but unsta-
ble effect. The prior-based methods uniformly, sometimes
greatly, improve ridge (up to 127%) and give small decre-
ments (maximum 3.6%) to large improvements (maximum
79.7%) for lasso.

6.3 Analysis



Bio Articles ModApte Top 10 RCV1 A-B Regions
Method SVM lasso ridge SVM lasso ridge SVM lasso ridge
No DK 49.15 54.2 26.3 86.55 84.1 82.9 71.08 62.9 42.2

DK examples 50.55 54.4 26.8 86.55 84.3 82.1 71.09 64.2 42.3
Var 54.8 47.2 84.8 82.8 66.4 58.6

Var/TFIDF 55.2 52.2 84.6 83.8 70.8 68.9
Mode 53.2 35.3 84.2 82.7 59.2 47.1

Mode/TFIDF 53.3 41.9 83.6 83.1 64.5 62.9

Table 3: Macroaveraged F1 results for SVMs, lasso, and ridge logistic regression on three text categorization
test collections using large training sets.

Bio Articles ModApte Top 10 RCV1 A-B Regions
Method SVM lasso ridge SVM lasso ridge SVM lasso ridge
No DK 9.06 35.1 2.6 69.24 72.5 37.6 8.45 23.1 3.3

DK examples 16.77 38.3 3.3 72.34 72.5 42.7 7.96 21.2 2.7
Var 44.5 34.4 74.8 73.1 32.9 23.0

Var/TFIDF 49.2 40.9 74.8 71.0 40.8 33.0
Mode 35.9 12.9 76.3 69.6 23.8 7.6

Mode/TFIDF 42.5 37.6 76.6 73.4 31.6 32.2

Table 4: Macroaveraged F1 results for SVMs, lasso, and ridge logistic regression on three text categorization
test collections using 500 random examples in training sets.

Bio Articles ModApte Top 10 RCV1 A-B Regions
Method SVM lasso ridge SVM lasso ridge SVM lasso ridge
No DK 21.51 29.6 18.8 36.53 42.7 27.1 28.90 52.1 23.0

DK examples 17.78 41.0 11.9 34.52 61.2 22.3 39.29 47.2 38.7
Var 36.3 34.2 61.7 62.2 47.4 37.1

Var/TFIDF 34.3 35.7 61.3 61.5 50.7 53.0
Mode 23.7 24.0 57.1 62.2 34.7 27.2

Mode/TFIDF 36.4 33.9 58.5 62.1 51.5 48.8

Table 5: Macroaveraged F1 results for SVMs, lasso, and ridge logistic regression on three text categorization
test collections using 5 positive and 5 random examples in training sets.

Bio Articles ModApte Top 10 RCV1 A-B Regions
Method SVM lasso ridge SVM lasso ridge SVM lasso ridge
No DK 19.87 21.4 18.8 33.41 34.4 33.0 21.84 30.6 23.0

DK examples 22.34 37.0 10.6 32.99 55.9 23.2 24.45 25.8 35.5
Var 30.5 31.9 34.0 60.4 37.4 37.3

Var/TFIDF 32.9 34.6 47.3 58.9 34.1 47.7
Mode 26.7 24.5 61.8 58.7 29.5 27.8

Mode/TFIDF 36.4 34.2 61.4 58.5 53.0 52.2

Table 6: Macroaveraged F1 results for SVMs, lasso, and ridge logistic regression on three text categorization
test collections using 5 positive and their 5 closest negative examples in training sets.

Domain knowledge, in any form, generally had little ef-
fect with large training sets. The exception was ridge logis-
tic regression, which was substantially improved on the two
collections where some categories had few positives. Over-
all, ridge performed poorly given its popularity. A caveat is
that many ModApte and RCV1 Regions categories have a
dominant single predictor, a situation that favors lasso.

Treating domain texts as artificial training examples had
an erratic impact, sometimes improving and sometimes sub-
stantially harming effectiveness. Converting domain texts to
priors, on the other hand, almost always improved effective-
ness (37 of 48 experimental conditions for lasso, and 48 of 48
for ridge from its poor baseline). As expected, mode-setting
was risky, with method Mode proving either the best or,
usually, the worst of the four prior setting methods 21 of
24 times. Where we had nontrivial domain corpus TFIDF
weights (Bio Articles and RCV1 A-B Regions), they proved
surprisingly useful. Var/TFIDF beat Var in 14 of 16 such

conditions, and Mode/TFIDF beat Mode in 16 of 16. Other
source of term quality information, such as stoplists or task-
document IDFs, would likely prove useful as well.

Under a view that domain knowledge should do no harm
we recommend either Var/TFIDF, which reduced effective-
ness vs. No DK in only 1 of 24 conditions (by 2.7%), or
Mode/TFIDF, which reduced effectiveness in only 3 of 24
conditions (by a maximum of 1.7%). Both usually provided
large improvements.

7. SUMMARY AND FUTURE WORK
We have presented an initial, but highly effective, strat-

egy for combining domain knowledge with supervised learn-
ing for text classification using Bayesian logistic regression.
On three data sets, with three diverse sources of domain
knowledge, we found large improvements in effectiveness,
particularly when only small training sets are available. We



are continuing this work in many directions, including ex-
ploring the impact of variability in the choice of both small
training sets and domain knowledge texts.

Beyond that, our research program is to recast many IR
heuristics (stopword lists, stemming, term weighting, etc.)
as appropriate priors, with the goal of using simple binary
text representations and priors for which a somewhat so-
phisticated user could have meaningful numeric intuitions.
Logistic regression is behind statements in medicine such
as “eating food X increases you change of heart disease by
Y%”. It does not seem impossible to have similarly concrete
prior knowledge of words in text classification.
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