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INTRODUCTION

Feature-rich, 1-of-k authorship attribution requires a multiclass classification learning
method and a scaleable implementation. The most popular methods for multiclass clas-
sification in recent machine learning research are variants on support vector machines
and boosting, sometimes combined with error-correcting code approaches. Rifkin and
Klautau provide a review [12].

In this paper we focus on multinomial or polytomous generalizations of logistic
regression. An important advantage of this approach is that it outputs an estimate of the
probability that an object (documents in our application) belongs to each of the possible
classes. Further, the Bayesian perspective on training a multinomial logistic regression
model allows us to combine training data with prior domain knowledge.

MULTINOMIAL LOGISTIC REGRESSION

Let x =
[

x1, ...,x j, ...,xd
]T be a vector of feature values characterizing a document to

be identified. We encode the fact that a document belongs to a class (e.g. an author)
k ∈ {1, ...,K} by a K-dimensional 0/1 valued vector y = (y1, ...,yK)T , where yk = 1 and
all other coordinates are 0.

Multinomial logistic regression is a conditional probability model of the form

p(yk = 1|x,B) =
exp(β T

k x)

∑k′ exp(β T
k′x)

, (1)

parameterized by the matrix B = [β 1, ...,βK]. Each column of B is a parameter vector
corresponding to one of the classes: β k = [βk1, ...,βkd]

T . This is a direct generalization



of binary logistic regression to the multiclass case.
Classification of a new observation is based on the vector of conditional probability

estimates produced by the model. In this paper we simply assign the class with the
highest conditional probability estimate:

ŷ(x) = argmax
k

p(yk = 1|x).

Consider a set of training examples D = {(x1,y1), . . . ,(xi,yi), . . . ,(xn,yn)}. Maxi-
mum likelihood estimation of the parameters B is equivalent to minimizing the negated
log-likelihood:

l(B|D) =−∑
i

[

∑
k

yikβ T
k xi− ln∑

k
exp(β T

k xi)

]

, (2)

Since the probabilities must sum to one: ∑k p(yk = 1|x,B) = 1, one of the vectors β k can
be set to β k = 0 without affecting the generality of the model.

As with any statistical model, we must avoid overfitting the training data for a multi-
nomial logistic regression model to make accurate predictions on unseen data. One
Bayesian approach for this is to use a prior distribution for B that assigns a high prob-
ability that most entries of B will have values at or near 0. We now describe two such
priors.

Perhaps the most widely used Bayesian approach to the logistic regression model is
to impose a univariate Gaussian prior with mean 0 and variance σ 2

k j on each parameter
βk j:

p(βk j|σk j) = N(0,σk j) =
1√

2πσk j
exp(
−β 2

k j

2σ 2
k j

). (3)

Small values of σk j represents a prior belief that βk j is close to zero. We assume a priori
that the components of B are independent and hence the overall prior for B is the product
of the priors for its components. Finding the maximum a posteriori (MAP) estimate of
B with this prior is equivalent to ridge regression (Hoerl and Kennard, 1970) for the
multinomial logistic model. The MAP estimate of B is found by minimizing:

lridge(B|D) = l(B|D)+
1

σ 2
k j

∑
j
∑
k

β 2
k j. (4)

Ridge logistic regression has been widely used in text categorization, see for example
[18, 10, 17]. The Gaussian prior, while favoring values of βk j near 0, does not favor
them being exactly equal to 0. Since multinomial logistic regression models for author
identification can easily have millions of parameters, such dense parameter estimates
could lead to inefficient classifiers.

However, sparse parameter estimates can be achieved in the Bayesian framework
remarkably easily if we use double exponential (Laplace) prior distribution on the βk j:

p(βk j|λk j) =
λk j

2
exp(−λk j|βk j|). (5)



As before, the prior for B is the product of the priors for its components. For typical data
sets and choices of λ ’s, most parameters in the MAP estimate for B will be zero. The
MAP estimate minimizes:

llasso(B|D) = l(B|D)+λk j ∑
j
∑
k
|βk j|. (6)

Tibshirani [15] was the first to suggest Laplace priors in the regression context. Subse-
quently, the use of constraints or penalties based on the absolute values of coefficients
has been used to achieve sparseness in a variety of data fitting tasks (see, for example,
[3, 4, 6, 16, 14]), including multinomial logistic regression [9].

Algorithmic approaches to multinomial logistic regression

Several of the largest scale studies have occurred in computational linguistics, where
the maximum entropy approach to language processing leads to multinomial logistic
regression models. Malouf [11] studied parsing, text chunking, and sentence extraction
problems with very large numbers of classes (up to 8.6 million) and sparse inputs
(with up to 260,000 features). He found that for the largest problem a limited memory
Quasi-Newton method was 8 times faster than the second best method, a Polak-Ribere-
Positive version of conjugate gradient. Sha and Pereira [13] studied a very large noun
phrase chunking problem (3 classes, and 820,000 to 3.8 million features) and found
limited-memory BFGS (with 3-10 pairs of previous gradients and updates saved) and
preconditioned conjugate gradient performed similarly, and much better than iterative
scaling or plain conjugate gradient. They used a Gaussian penalty on the loglikelihood.
Goodman [7] studied large language modeling, grammar checking, and collaborative
filtering problems using an exponential prior. He claimed not find a consistent advantage
for conjugate gradient over iterative scaling, though experimental details are not given.

Krishnapuram, Hartemink, Carin, and Figueiredo [9] experimented on small, dense
classification problems from the Irvine archive using multinomial logistic regression
with an L1 penalty (equivalent to a Laplace prior). They claimed a cyclic coordinate
descent method beat conjugate gradient by orders of magnitude but provided no quanti-
tative data.

We base our work here on a cyclic coordinate descent algorithm for binary ridge
logistic regression by Zhang and Oles [18]. In previous work we modified this algorithm
for binary lasso logistic regression and found it fast and easy to implement [5]. A similar
algorithm has been developed by Shevade and Keerthi [14].

Coordinate decent algorithm

Here we further modify the binary logistic algorithm we have used [5] to apply to
ridge and lasso multinomial logistic regression. Note that both objectives (4) and (6) are
convex, and (4) is also smooth, but (6) does not have a derivative at 0; we’ll need to take
special care with it.



(1) initialize βk j← 0,∆k j← 1 for j = 1, ...,d, k = 1, ...,K
for t = 1,2, ... until convergence

for j = 1, ...,d
for k = 1, ...,K

(2) compute tentative step ∆vk j
(3) ∆βk j←min(max(∆vk j,−∆k j),∆k j) (reduce the step to the interval)
(4) βk j← βk j +∆βk j (make the step)
(5) ∆k j←max(2|∆βk j|,∆k j/2) (update the interval)

end
end

end

FIGURE 1. Generic coordinate decent algorithm for fitting Bayesian multinomial logistic regression.

The idea in the smooth case is to construct an upper bound on the second derivative of
the objective on an interval around the current value; since the objective is convex, this
will give rise to the quadratic upper bound on the objective itself on that interval. Min-
imizing this bound on the interval gives one step of the algorithm with the guaranteed
decrease in the objective.

Let Q(β (0)
k j ,∆k j) be an upper bound on the second partial derivative of the negated

loglikelihood (2) with respect to βk j in a neighborhood of βk j’s current value β (0)
k j , so

that:

Q(β (0)
k j ,∆k j)≥

∂ 2l(B|D)

∂β 2
k j

for all βk j ∈ [β (0)
k j −∆k j,β

(0)
k j +∆k j].

In our implementation we use the least upper bound (the inference is straightforward
and the formula is omitted for the lack of space). Using Q we can upper bound the
ridge objective (4) by a quadratic function of βk j. The minimum of this function will be
located at β (0)

k j +∆vk j where

∆vk j =
−∂ l(B|D)

∂βk j
−2β (0)

k j /σ 2
k j

Q(β (0)
k j ,∆k j)+2/σ 2

k j

. (7)

Replacing β (0)
k j with β (0)

k j + ∆vk j is guaranteed to reduce the objective only if ∆vk j falls

inside the trust region [β (0)
k j −∆k j,β

(0)
k j +∆k j]. If not, then taking a step of size ∆k j in the

same direction will instead reduce the objective.
The algorithm in its general form is presented in Figure 1. The solution to the ridge

regression formulation is found by using (7) to compute the tentative step at Step 2 of
the algorithm. The size of the approximating interval ∆k j is critical for the speed of
convergence: using small intervals will limit the size of the step, while having large
intervals will result in loose bounds. We therefore update the width, ∆k j, of the trust
region in Step 5 of the algorithm, as suggested by [18].



The lasso case is slightly more complicated because the objective (6) is not differen-
tiable at 0. However, as long as β (0)

k j 6= 0, we can compute:

∆vk j =
−∂ l(B|D)

∂βk j
−λk js

Q(β (0)
k j ,∆k j)

, (8)

where s = sign(β (0)
k j ). We use ∆vk j as our tentative step size, but in this case must reduce

the step size so that the new βk j is neither outside the trust region, nor of different sign
than β (0)

k j ). If the sign would otherwise change, we instead set βk j to 0. The case where

the starting value β (0)
k j ) is already 0 must also be handled specially. We must compute

positive and negative steps separately using right-hand and left-hand derivatives, and see
if either gives a decrease in the objective. Due to convexity, a decrease will occur in at
most one direction. If there is no decrease in either direction βk j stays at 0. Figure 2
presents the algorithm for computing ∆vk j in the Step 2 of the algorithm in Figure 1 for
the lasso regression case.

Software implementing this algorithm has been made publicly available 1. It scales up
to 100’s of classes, 100,000’s of features and/or observations.

if βk j ≥ 0
compute ∆vk j by formula (8) with s = 1
if βk j +∆vk j < 0 (trying to cross over 0)

∆vk j←−βk j
endif

endif
if βk j ≤ 0

compute ∆vk j by formula (8) with s =−1
if βk j +∆vk j > 0 (trying to cross over 0)

∆vk j←−βk j
endif

endif

FIGURE 2. Algorithm for computing tentative step of lasso multinomial logistic regression: replace-
ment for Step 2 in algorithm Fig. 1.

Strategies for choosing the upper bound

A very similar coordinate descent algorithm for fitting lasso multinomial logistic re-
gression models has been presented by Krishnapuram, Hartemink, Carin, and Figueiredo

1 http://www.stat.rutgers.edu/∼madigan/BMR/



[9]. They use the following bound on the Hessian of the negated loglikelihood [1]:

H≤∑
i

1
2

[

I−11T/K
]

⊗xixi
T , (9)

where H is the dK× dK Hessian matrix; I is the K×K identity matrix; 1 is a vector of
1’s of dimension K; ⊗ is the Kronecker matrix product; and matrix inequality A ≤ B
means A−B is negative semi-definite.

For a coordinate descent algorithm we only care about the diagonal elements of the
Hessian. The bound (9) implies the following bound on those diagonal elements:

∂ 2l(B|D)

∂β 2
k j

≤ K−1
2K ∑

i
x2

i j. (10)

the tentative updates for ridge and lasso case can now be obtained by substituting right-
hand side of (10) instead of Q(β (0)

k j ,∆k j) into (7) and (8). Note that it does not really

depend on beta(0)
k j ! As before, a lasso update that would cause a βk j to change sign must

be reduced so that βk j instead becomes 0.
In contrast to our bound Q(β jk,∆ jk), this one does not need to be recomputed when B

changes, and no trust region is needed. On the downside, it is a much looser bound than
Q(β jk,∆ jk).

EXPERIMENTS IN ONE-OF-K AUTHOR IDENTIFICATION

Data sets

Our first data set draws from RCV1-v22, a text categorization test collection based on
data released by Reuters, Ltd.3. We selected all authors who had 200 or more stories each
in the whole collection. The collection contained 114 such authors, who wrote 27,342
stories in total. We split these data randomly into training (75% - 20,498 documents)
and test (25% - 6,844 documents) sets.

The other data sets for this research were produced from the archives of several
listserv discussion groups on diverse topics. Different groups included from 224 to 9842
postings and from 23 to 298 authors. Each group was split randomly: 75% of all postings
for training, 25% for test.

The same representations were used with all data sets, and are listed in Figure 3.
Feature set sizes ranged from 10 to 133,717 features. The forms of postprocessing are
indicated in the name of each representation:

• noname: tokens appearing on a list of common first and last names were discarded
before any other processing.

2 http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm
3 http://about.reuters.com/researchandstandards/corpus/



• Dpref: only the first D characters of each word were used.
• Dsuff: only the last D characters of each word were used.
• ˜POS: some portion of each word, concatenated with its part-of-speech tag was

used.
• DgramPOS: all consecutive sequences of D part-of-speech tags are used.
• BOW: all and only the word portion was used (BOW = “bag of words”). There are

also two special subsets defined of BOW. ArgamonFW is a set of function words
used in a previous author identification study [8]. The set brians is a set of words
automatically extracted from a web page about common errors in English usage4.

Finally, CorneyAll is based on a large set of stylometric characteristics of text from
the authorship attribution literature gathered and used by Corney [2]. It includes features
derived from word and character distributions, and frequencies of function words, as
listed in ArgamonFW.

Results

We used Bayesian multinomial logistic regression with Laplace prior to build classi-
fiers on several data sets with different representations. The performance of these clas-
sifiers on the test sets is presented in Figure 3.

One can see that error rates vary widely between data sets and representations;
however the lines that correspond to representations do not have very many crossings
between them. If we were to order all representations by the error rate produced by
the model for each data set, the order will be fairy stable across different data sets.
For instance, representation with all words ("bag-of-words", denoted BOW in the chart)
almost always results in the lowest error rate, while pairs of consecutive part of speech
tags (2gramPOS in the chart) always produces one of the highest error rates. There
are some more crossings between representation lines near the right-most column that
reflects RCV1, hinting that this data set is essentially different from all listserv groups.
Indeed, RCV1 stories are produced by professional writers in the corporate environment,
while the postings in the discussion groups are written by people in an uncontrolled
environment on topic of their interest.

The National Science Foundation funded this work through the Knowledge Discovery
and Dissemination (KD-D) program.
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