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ABSTRACT
This paper studies regularized logistic regression and its ap-
plication to text categorization. In particular we examine
a Bayesian approach, lasso logistic regression, that simul-
taneously selects variables and provides regularization. We
present an efficient training algorithm for this approach, and
show that the resulting classifiers are both compact and have
state-of-the-art effectiveness on a range of text categoriza-
tion tasks.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing

General Terms
Algorithms, Experimentation

Keywords
text categorization, supervised learning, logistic regression,
regularization, sparsity

1. INTRODUCTION
Feature selection, the deliberate discarding of some avail-

able predictor features before running a learning algorithm,
is widely applied in machine learning tasks, including text
classification. Feature selection may be used for a range
of reasons [9], including computational efficiency in train-
ing, computational efficiency at classification time, avoiding
overfitting and improving effectiveness of the learned clas-
sifier, and making the classifier and classification decisions
more comprehensible to people.

There are, however, several downsides to feature selection
as a preprocessing step. First, even when an individual fea-
ture selection mechanism has a clear statistical foundation,
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this is rarely true for the combined process of feature selec-
tion followed by a particular supervised learning algorithm.
This makes it difficult or impossible to predict how effec-
tiveness will change as training data increases, to choose
the number of features in a principled way, to understand
the reliability of predictions, or in general to make use of
theoretical insights into the behavior of learning algorithms
(admittedly weak as those often are). Second, most fea-
ture selection methods used in preprocessing consider each
feature in isolation and thus may choose redundant or oth-
erwise ineffective combinations of features. Those methods
that do consider combinations tend to be expensive com-
putationally, involving large numbers of runs of the core
supervised learning algorithms. Finally, since the interac-
tions between feature selection and learning algorithm are
poorly understood, there is little to guide one in combining
these feature selection methods with, for instance, domain
knowledge, even when the learning algorithm itself can use
such knowledge.

Recent advances in efficient, regularized learning algo-
rithms, such as SVMs [15], boosting [31], and penalized lo-
gistic regression [39] have greatly reduced the need to use
feature selection for efficient training or to avoid overfitting.
However, feature selection is still often desired, particularly
in applied contexts, to improve human interpretability and
to reduce memory and computational requirements at pre-
diction time [16, 26]. In what follows, we show that by
using a particular regularized learning approach, these final
two virtues of feature selection can be achieved in a single
learning algorithm with clear statistical foundation.

Recent papers have demonstrated that regularized logis-
tic regression provides outstanding predictive performance
[39, 23] across a range of text classification tasks and cor-
pora. The regularization these papers describe takes the
form of a penalty on the L2 norm of the regression param-
eter. This is equivalent to ridge regression [12] for the lo-
gistic model [30, 19]. In this work we turn to L1 norm
regularization, which simultaneously selects variables and
provides regularization, leading to sparse models. L1 pe-
nalization of logistic regression corresponds to the lasso al-
gorithm [34] for linear regression. We present experimental
results on 268 text categorization tasks on three corpora
showing that lasso logistic regression systematically outper-
forms ridge logistic regression. We present an optimization
algorithm for efficient fitting of lasso logistic regression mod-
els with 10’s of thousands of predictors. Software imple-
menting this algorithm has been made publicly available at



http://www.stat.rutgers.edu/∼madigan/BBR/.
We begin in Section 2 with the definition of regularized lo-

gistic regression, both ridge and lasso versions, and also give
a Bayesian interpretation of those procedures. Section 3 de-
scribes the algorithm we use to fit our model to training
data. Section 4 describes the data sets and methods we use
in our experiments, and Sections 5 and 6 the experimental
results. Specifically, Section 5 demonstrates that lasso logis-
tic regression effectiveness higher than that of ridge logistic
regression and very similar to that of SVMs. In the Section 6
we study the ability of lasso logistic regression to produce
sparse models; we find those models yield higher effective-
ness when they have the same sparsity as models produced
by ridge logistic regression with traditional feature selection
as a preprocessing step.

2. LOGISTIC REGRESSION WITH REGU-
LARIZATION

We want to learn a text classifier, y = f(x), from a set of
training examples D = {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)}.
For text categorization, the vectors xi = [xi1, ..., xij , ..., xid]T

comprise transformed word frequencies from documents (Sec-
tion 4.1). The values yi ∈ {−1, +1} are class labels encoding
membership (+1) or nonmembership (−1) of the vector in
the category.1

Logistic regression is a conditional probability model of
the form

p(yi = +1|β, xi) =
1

1 + exp(−βT xi)
. (1)

For a text categorization problem, p(y = +1|xi) corre-
sponds to the probability that the ith document belongs to
the category. The decision of whether to assign the cate-
gory can be based on comparing the probability estimate
with a threshold or, more generally, based on maximizing
the expected effectiveness [4, 20].

Maximum likelihood estimation of the parameters β is
equivalent to minimizing the negated log-likelihood:

l(β) = −
n∑

i=1

ln(1 + exp(−βT xiyi), (2)

Correspondingly, finding the ridge logistic regression param-
eters is done by minimizing:

lridge(β) = l(β) + λ

d∑
j=1

β2
j , (3)

whereas lasso logistic regression requires minimization of:

llasso(β) = l(β) + λ

d∑
j=1

|βj |, (4)

where λ is a hyperparameter controlling degree of regular-
ization.

One may view these same techniques from a Bayesian
point of view by using a prior distribution for β. The sim-
plest approach is to impose a univariate Gaussian prior with
mean zero and variance τ > 0 on each parameter βj :

p(βj |τ) = N(0, τ) =
1√
2πτ

exp(
−β2

j

2τ
). (5)

1We encode class labels as −1/ + 1 rather than 0/1 to sim-
plify presentation of our fitting algorithm.
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Figure 1: The density of the Laplace and Gaussian
(dashed line) distributions with the same mean and
variance.

The mean of zero encodes a prior belief that βj will be near
zero. The variance τ is a positive constant we must specify.
A small value of τ represents a strong prior belief that βj are
close to zero. A large value of τ represents a weaker such
belief. We assume a priori that the components of β are
independent and hence the overall prior for β is the product
of the priors for each of its component βj ’s. Finding the
maximum a posteriori (MAP) estimate of β with this prior
is equivalent to ridge logistic regression (3) with λ = 1/(2τ).

Ridge logistic regression has been widely used in text cat-
egorization, see for example [39, 23, 38]. But a Gaussian
prior, while favoring values of βj near zero, does not favor
βj ’s being exactly equal to zero. Absent unusual patterns in
the data, the MAP estimates of all or almost all βj ’s will be
non-zero. To obtain sparse text classifiers with a Gaussian
prior, previous authors have used various feature selection
mechanisms - see, for example, [39] and [38].

Ad hoc feature selection is not necessary, however, if we
simply choose the right prior. Suppose we use the double
exponential (Laplace) prior distribution:

p(βj |λ) =
λ

2
exp(−λ|βj |). (6)

As before, the prior for β is the product of the priors for its
components. MAP estimation in this case is exactly lasso
logistic regression (4). For typical data sets and choices of
λ, most parameters in the MAP estimate for β can be zero.

Figure 1 shows the density of the Laplace distribution,
with the suggestive cusp at zero. Tibshirani [34] was the
first to suggest Laplace priors in the regression context. He
pointed out that the MAP estimates using the Laplace prior
are the same as the estimates produced by the lasso algo-
rithm. Since then the use of constraints or penalties based
on the absolute values of coefficients has been used to achieve
sparseness in a variety of data fitting tasks (see, for example,
[5, 6, 8, 35, 33]).

Figures 2 and 3 show the effect of hyperparameter set-
tings on the logistic regression parameters on a particular
data set with eight predictor variables. Figure 2 shows the
effect of a Gaussian prior distribution on each parameter.
When τ is small, each βj has a small prior variance, and
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Figure 2: MAP estimates (y-axis) of the eight pa-
rameters of a logistic regression as the hyperparam-
eter τ of a Gaussian prior on those parameters varies
(x-axis). For example, the vertical dotted line shows
the eight estimates corresponding to a particular
choice of τ .

the resulting MAP estimates are small, approaching zero as
τ → 0. When τ is large, the MAP estimates are similar to
the maximum likelihood estimates. The vertical dashed line
corresponds to tau = 0.01. Figure 3 shows the equivalent
picture for the Laplace prior. As with the Gaussian prior,
the MAP estimates range from all zeroes to the maximum
likelihood estimates. However, unlike the Gaussian case,
particular choices for the hyperparameter lead to MAP esti-
mates where some components of β are zero while others are
not. The vertical dashed line corresponds to prior distribu-
tions with a variance of 0.01. Note that with this particular
choice for the hyperparameter, the posterior modes of two
of the parameters are zero. Hastie et al. [10] show similar
plots for linear regression.

3. ALGORITHM
For maximum likelihood logistic regression the most com-

mon optimization approach in statistical software is some
variant of the multidimensional Newton-Raphson method
[3]. Newton algorithms have the advantage of converging in
very few iterations. For high-dimensional problems such as
text categorization, however, Newton algorithms have the
serious disadvantage of requiring O(d2) memory, where d
is the number of model parameters. A variety of alternate
optimization approaches have therefore been explored for
maximum likelihood logistic regression, and for MAP logis-
tic (or probit) regression with a Gaussian prior. Some of
these algorithms, such as limited memory BFGS [27], con-
jugate gradient [27], and hybrids of conjugate gradient with
other methods [18], compute the gradient of the objective
function at each step. This requires only O(d) memory (in
addition to the data itself). Efron et al. [5] describe a new
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Figure 3: MAP estimates of logistic regression pa-
rameters on the same data set as Figure 2, shown
for varying values of a Laplace prior hyperparameter
λ. For example, the vertical dotted line shows the
eight estimates corresponding to a particular choice
of λ, a choice that selects six of the eight predictor
variables.

class of “least angle” algorithms for lasso linear regression
and related models. Madigan and Ridgeway [25] discuss
possible extensions to the logistic model.

Other methods solve a series of partial optimization prob-
lems. Some of these methods use the subproblems to main-
tain an evolving approximation to the gradient of the full
objective, which still requires O(d) memory. Others use
each subproblem only to make progress on the overall ob-
jective, using only constant memory beyond that for the
parameter vector. The smaller problems may be based on
processing one example at a time, as in dual Gauss-Seidel
[39], stochastic gradient descent [1], exponentiated gradient
descent [17], and Bayesian online algorithms [2, 28]. Or the
one dimensional subproblems may be based on processing
one parameter at a time, as in iterative scaling [13], and
cyclic coordinate descent [39, 33]. Some of these algorithms
have already shown promise on text categorization or other
language processing tasks.

Of these, we base our work on the cyclic coordinate de-
scent algorithm [39] due to its speed and simplicity of im-
plementation. This algorithm requires an objective function
that is convex and smooth, namely having a continuous first
order derivative and a piece-wise continuous second order
derivative. This holds for (3) but not for (4), which is still
convex, but does not have a finite derivative at 0. So modi-
fications are needed to adapt the algorithm for the lasso lo-
gistic regression. We first present the Algorithm CLG from
[39], clarifying some details omitted in their presentation,
and making clear our implementation and tuning choices
where they presented several alternatives. We then present
our modification of CLG to support lasso logistic regression.



3.1 Ridge case
As the name “cyclic coordinate descent” suggests, each

step of the algorithm approximately minimizes the objective
along one coordinate before going on to the next, in a fashion
that guarantees the overall optimum is approached. The
way it’s done guarantees the convergence and speed of the
algorithm. The idea is to construct an upper bound on the
second derivative of the objective on an interval around the
current value; since the objective is convex, this will give rise
to the quadratic upper bound on the objective itself on that
interval. Minimizing the quadratic bound on the interval
gives one step of the algorithm.

Let f(βj) be the objective expressed as the function of
only one component βj with all the rest being fixed, and
Q(βj , ∆j) be an upper bound on the second derivative of
f(·) in the ∆j-vicinity of βj , ∆j > 0:

Q(βj , ∆j) ≥ f ′′(βj + δ) for all δ ∈ [−∆j , ∆j ].

The minimum of the quadratic upper bound on f will then
be located at βj + ∆vj where

∆vj = −f ′(βj)/Q(βj , ∆j)

This is a tentative step, we now need to check if ∆vj hap-
pens to fall inside the interval [−∆j , ∆j ]; if not, the step is
reduced to the interval boundary.

For the objective in (3) the upper bound takes the form:

Q(βj , ∆j) =
∑

i

x2
ijF (βT xiyi, ∆jxij) + 2λ,

where the function F (r, δ) is the upper bound on the second
derivative of the logistic c.d.f. in the interval [r−|δ|, r+ |δ|].
We use the tight upper bound:

F (r, δ) =

{
0.25, if |r| ≤ |δ|
1/(2 + exp(|r| − |δ|) + exp(|δ| − |r|)), otherwise.

Now the tentative step computation takes the form:

∆vj =

∑
i

xijyi

1+exp(βT xiyi)
− 2βjλ

∑
i F (βT xiyi, ∆jxij)x2

ij + 2λ
, (7)

The algorithm is presented in Figure 4. The size of the
approximating interval ∆j is updated as suggested by [39].
The convergence criterion in our implementation is∑

i |∆ri|/(1 +
∑

i |ri|) ≤ 5 · 10−4. See [39] for some other
choices of stopping criteria and update rules for ∆j .

3.2 Lasso case
The objective in the lasso case (4) is convex and satisfies

the above formulated smoothness requirements everywhere
except at 0. So the algorithm will work correctly as long as
we operate within positive numbers only or within negative
numbers only. Within these limits the tentative step com-
putation at step 4 in case of Laplace prior takes the form:

∆vj =

∑
i

xijyi

1+exp(βT xiyi)
− λs

∑
i x2

ijF (βT xiyi, ∆jxij)
. (8)

where s = βj/|βj | and βj 6= 0. At each tentative step we
have to check if this step is trying to cross over 0, and in
that case reduce it to 0. In case when the current value of

(1) initialize βj ← 0, ∆j ← 1 for j = 1, ..., d
(2) for k = 1, 2, ... until convergence
(3) for j = 1, ..., d
(4) compute tentative step ∆vj by formula (7)
(5) ∆βj ← min(max(∆vj ,−∆j), ∆j)

(reduce the step to the interval)
(6) βj ← βj + ∆βj

(7) ∆j ← max(2|∆βj |, ∆j/2)
(8) end
(9) end

Figure 4: Algorithm CLG for fitting ridge logistic
regression.

...
(4.1) if βj = 0
(4.2) s ← 1 (try positive direction)
(4.3) compute ∆vj by formula (8)
(4.4) if ∆vj ≤ 0 (positive direction failed)
(4.5) s ← −1 (try negative direction)
(4.6) compute ∆vj by formula (8)
(4.7) if ∆vj ≥ 0 (negative direction failed)
(4.8) ∆vj ← 0
(4.9) endif
(4.10) endif
(4.11) else
(4.12) s ← βj/|βj |
(4.13) compute ∆vj by formula (8)
(4.14) if s(βj + ∆vj) < 0 (cross over zero)
(4.15) ∆vj ← −βj

(4.16) endif
(4.17) endif
...

Figure 5: Algorithm for fitting lasso logistic regres-
sion: replacement for Step 4 in Algorithm CLG.

βj is 0 we have to try both directions and see if either of
them gives an improvement to the objective (could not be
both due to the convexity). If neither works then βj stays
at 0 for the iteration. This change affects only Step 4 of
the Algorithm CLG. In Figure 5 we present the modified
Step 4 to be plugged into Algorithm CLG. The resulting
algorithm is highly efficient. For instance, training time for
a single category on the ModApte data set (9,603 training
examples, 18,979 model parameters, Section 4.1) averages
10.7 seconds with a Gaussian prior and 17.5 seconds with a
Laplace prior. Shevade and Keerthi have recently presented
a similar algorithm for logistic regression with an L1 penalty
[33].

4. EXPERIMENTAL METHODS
To study whether lasso logistic regression provides an ef-

ficient and effective text categorization approach, we tested
it on several large data sets. In this section we discuss our
experimental methods: how texts were represented as nu-
meric vectors, what collections of documents and category
labels were used, and how effectiveness was measured (and



optimized). We also discuss two state-of-the-art text cate-
gorization approaches with which we compared lasso logistic
regression: support vector machines, and ridge logistic re-
gression combined with feature selection.

4.1 Datasets
Our experiments used three standard text categorization

test collections. The first collection was the ModApte sub-
set of the Reuters−21578 collection of news stories [22].2

The ModApte subset contains 9, 603 Reuters news articles
in the training set, and 3, 299 in the test set. Documents
in the ModApte data set belong to 0 or more of a set of 90
“Topic” categories corresponding to news areas of economic
interest. (We used the 90 Topic categories that have at least
one positive training example and one positive test example
on the ModApte subset.) There were 21,989 unique terms
in the ModApte data set, 18,978 of which occur in the train-
ing set and thus potentially have nonzero parameters in a
classifier.

The second data set was RCV1-v23, a test categorization
test collection of 804, 414 newswire stories based on data
released by Reuters, Ltd.4 We used the LYRL2004 train-
ing/test split ([22]) of RCV1-v2, which has 23,149 training
documents and 781,265 test documents. However, for effi-
ciency reasons we used a fixed, random, roughly 10% subset
(77,993 documents) of the test documents as our test set in
all experiments.

We used 101 RCV1-v2 “Topic” categories that have at
least one positive training example. (The Topic categories
in RCV1-v2 are different from those in Reuters-21578, and
cover a broader range of news types.) For our text rep-
resentation we used stemmed token files distributed with
RCV1-v2. A total of 47,152 unique terms were present in
the training set, and 288,062 unique terms in the union of
the training set and the 77,993 document test set.

The third data set consists of Medline records from the
years 1987 to 1991, formatted for the SMART retrieval sys-
tem, and distributed as part of the OHSUMED text retrieval
test collection [11]. 5 Of the 348,566 OHSUMED records,
we used the 233,445 records where the title, abstract, and
MeSH (Medical Subject Headings) category fields were all
nonempty. We used the 83,944 such documents from the
years 1987 and 1988 as our training set, and the 149,501
such documents from the years 1989 to 1991 as our test set.

We did not use the queries and relevance judgments dis-
tributed with the collection. Instead, we based binary classi-
fication tasks on predicting the presence or absence of MeSH
controlled vocabulary terms in the records [24]. We used the
same 77 categories as [21]. These were drawn from a set of
119 MeSH Heart Disease categories extracted by Yiming
Yang from the April 1994 (5th Ed.) UMLS CD-ROM, dis-
tributed by the National Library of Medicine in the United
States. All text from the .T (title) and .W (abstract) fields
was used in computing the TF weights. There were 73,269
distinct terms in the training set, and 122,076 in the union
of the training and test sets.

Text processing for all three collections was done using

2 http://www.daviddlewis.com/resources/testcollections/
reuters21578/
3 http://www.ai.mit.edu/projects/jmlr/papers/volume5/
lewis04a/lyrl2004 rcv1v2 README.htm
4 http://about.reuters.com/researchandstandards/corpus/
5ftp://medir.ohsu.edu/pub/ohsumed/

Lemur toolkit6, which performed a simple tokenization into
words (using its TrecParser module), discarded words from
the SMART stopword list of 572 words7, and applied the
Lemur variant of the Porter stemmer (Porter, 1980, 2003)
to remove word endings. All stems from text in the <TITLE>

and <BODY> SGML elements were combined to produce raw
TF weights.

For training and classification purposes, we represent each
document as a vector of term weights using a form of log TF
× IDF (term frequency times inverse document frequency)
weighting [22]. All IDF weights were computed on the train-
ing set. Then cosine normalization was applied [29].

In addition to one parameter for each term, our vectors
include a constant term, 1.0. (The constant term is not
taken into account during cosine normalization, and is not
changed by it.) The presence of a constant term is usual in
statistical practice, but often omitted in text categorization
studies. The model parameter for the constant term (i.e.
the intercept) is included in the regularization penalty.

4.2 Benchmark Algorithms
We compared the effectiveness of lasso logistic regression

to two state-of-the-art approaches to text categorization: lo-
gistic regression with feature selection and support vector
machines.

To produce sparse text classifiers when using ridge logistic
regression, it is common to attempt to discard low quality
features before model fitting. We tested three traditional
feature selection methods in combination with ridge logistic
regression, as well as trying no feature selection whatsoever.

Each feature selection approach is based on computing
some quality measure for each feature, ranking features by
that measure, and then using only the top-ranked features
when learning a classifier. A different set of features was cho-
sen for each category. We tested each method at choosing
feature sets with 5, 50, or 500 features, with the same num-
ber of features used for all categories. The intercept term
was always used, so the total number of model parameters
was 6, 51, and 501, respectively.

The first feature quality measure was the chi-square test
for independence between two variables. As a feature se-
lection measure, it chooses the features that are least in-
dependent from the class label, and is widely used in text
categorization [37, 32].

Our second measure, bi-normal separation (BNS), was the
best measure on several criteria in a recent comparison of
feature selection methods for text categorization [7]. Forman
defines it as:

B(j) = |Φ−1(
a

a + b
)− Φ−1(

c

c + d
)| (9)

where Φ is the standard normal cumulative distribution func-
tion. Forman provides a justification of BNS in term of ROC
(receiver operating characteristic) analysis.

Most feature selection measures studied in text classifica-
tion research (including the two discussed above) take into
account only the binary presence or absence of terms in doc-
uments. In contrast, the most effective text representations
are non-binary ones such as TF × IDF weighting. Our third
measure, the Pearson product-moment correlation, makes

6http://www-2.cs.cmu.edu/˜lemur/
7Available at ftp://ftp.cs.cornell.edu/pub/smart/english.stop
or as part of the RCV1-v2 data set.



sum of sum of two-sided
positive negative p-value

ranks ranks (Wilcoxon)
lasso - ridge 1667 163 .000
lasso - SVM 969.5 921.5 .863
ridge - SVM 204.5 1811.5 .000

Table 1: Comparison of lasso and ridge logistic
regression and SVM on ModApte corpus using
Wilcoxon paired signed-ranks test. For all topic cat-
egories, the differences between F1 values are calcu-
lated and ranked from smallest to largest by abso-
lute value. Them sum of positive ranks (first method
has greater F1) and sum of negative ranks (second
method has greater F1) are compared. Algorithms
significantly better at the p = 0.050 level are indi-
cated in bold.

use of the values of within document weights in choosing
features. It has been used for feature selection in a variety
of machine learning tasks [9].

The support vector machine algorithm for learning lin-
ear classifiers has consistently been one of the most effective
approaches in text categorization studies [22]. It also pro-
duces models with a form of instance sparseness that may
or may not translate into sparseness of linear model coeffi-
cients. We trained a single SVM classifier for each category
using Version 5.00 of SVM Light [14, 15].8 All SVM Light
parameters, except the regularization parameter C (see be-
low), were set at their default values.

Regularization parameter values for all modeling algo-
rithms: SVM (C parameter for SVM Light), ridge, and lasso
logistic regression (λ in (3) and (4)) – were chosen through
cross-validation. After parameter fitting, the threshold for
each classifier was tuned to minimize the number of training
set errors on that category. This is a common approach in
tuning SVMs for the unbalanced training sets seen in text
categorization. We adopt it for comparability, though it
means we do not take advantage of logistic regression’s abil-
ity to optimize the expected value of the actual effectiveness
measure being used.

5. EFFECTIVENESS OF MODELS
Our first set of experiments compared the effectiveness

of lasso logistic regression with ridge logistic regression and
SVMs. For each category and for each algorithm we com-
puted the F1 effectiveness measure ([36, 22]). Tables 1, 2,
and 3 show the number of categories on which algorithm A
had greater, less, or the same value of F1 as algorithm B.

As a significance test, we looked at the category-wise dif-
ference in F1 between pairs of algorithms for each data set
and applied the 2-tailed Wilcoxon paired signed-ranks test.
By this measure, lasso logistic regression and SVM are sig-
nificantly better than ridge logistic regression on all data
sets; SVM is better than lasso logistic regression on two of
three data sets, but in all three cases the difference is sta-
tistically insignificant.

To get a sense of overall effectiveness, we computed macro-
averaged F1 for each algorithm/collection pair, see Table 4.
The conclusion that we draw from this table is basically

8http://svmlight.joachims.org/

sum of sum of two-sided
positive negative p-value

ranks ranks (Wilcoxon)
lasso - ridge 3925 926 .000
lasso - SVM 2112 2739 .267
ridge - SVM 1031 3625 .000

Table 2: Comparing F1 on RCV1-v2 corpus. Details
as in Table 1.

sum of sum of two-sided
positive negative p-value

ranks ranks (Wilcoxon)
lasso - ridge 2359 416 .000
lasso - SVM 1462 1239 .540
ridge - SVM 599 2102 .000

Table 3: Comparing F1 on OHSUMED corpus. De-
tails as in Table 1.

the same: lasso logistic regression and SVM produce results
close to each other and significantly outperform ridge logistic
regression.

6. SPARSITY OF MODELS
The number of features the lasso model selected (starting

with the full feature set) varied from category to category,
but was always a small proportion of the full feature set.
The number of selected features ranged from 0 to 511 for
ModApte, from 3 to 1737 for RCV1-v2, and from 0 to 965
for OHSUMED. Figure 6 provides more details.

Consider now a situation that requires both good effec-
tiveness and sparsity at the same time. Figure 6 shows that
the number of features in the lasso model varies widely and
is hard to predict. In order to allow a direct comparison we
decided to use L1 penalty for not only the regularization,
but also as a device to reduce the number of features in the
model to the requested limit. This resulted in the algorithm
we called Squeezer.

Squeezer first builds the lasso model with cross-validated
hyperparameter selection. If the number of features in the
model turns out to be within the requested limit, the algo-
rithm stops. (Trying to relax the hyperparameter in order
to increase the number of features up to the limit would
result in overfitted model.)

If the number of features in the model exceeds the re-
quested limit, squeezer gradually increases the hyperparam-
eter value until the number of features falls within the limit.
Finally, binary search is performed in the interval between

ModApte RCV1-v2 OHSUMED
lasso 52.03 56.54 51.30
ridge 39.71 51.40 42.99
SVM 52.09 57.26 49.35

Table 4: Macroaveraged F1 measure for lasso lo-
gistic regression, ridge logistic regression, and sup-
port vector machines on three text categorization
test collections.
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Figure 6: Number of features that the lasso selected
for each of the three datasets (ModApte, RCV1-v2,
and OHSUMED).

the two most recent hyperparameter values until the small-
est hyperparameter value is found that results in the model
with the number of features within the limit.

Now we can compare directly the effectiveness of different
models with limited number of features. Table 5 compares
squeezer against ridge logistic regression with three feature
pre-selection methods. Squeezer demonstrates consistently
higher effectiveness than the three feature pre-selection meth-
ods for target feature set sizes of 500 and 50, and is roughly
equivalent for feature set sizes of 5.

7. CONCLUSION AND FUTURE WORK
We demonstrated in our experiments with three text col-

lections that lasso logistic regression yields consistently higher
effectiveness than ridge and is very close to SVM. At the
same time it offers the substantial advantage of sparsity of
the fitted model. Using our Squeezer algorithm, we com-
pared lasso logistic regression models against ridge used with
traditional feature pre-selection procedures to obtain a re-
quested level of sparsity, and we found lasso models to yield
higher effectiveness in that case also.

Our current work-in-progress focuses on taking advantage
of the Bayesian interpretation of regularized algorithms. One
direction is to combine prior domain knowledge with learn-

Number of features 500 50 5
ModApte squeezer 51.91 51.98 47.71

ridge + BNS 42.09 50.03 48.87
ridge + chi-square 38.63 47.29 46.65
ridge + correlation 38.38 47.41 46.85

RCV1-v2 squeezer 56.15 51.83 28.68
ridge + BNS 50.89 43.97 30.60
ridge + chi-square 50.57 45.60 32.31
ridge + correlation 50.13 47.37 35.63

OHSUMED squeezer 51.35 50.56 43.03
ridge + BNS 43.46 44.27 42.40
ridge + chi-square 42.38 45.18 36.55
ridge + correlation 41.73 43.65 38.53

Table 5: Macroaveraged F1 measure for different
algorithms resulting in the fixed number of features
in the model.

ing from training data. The simplest case would be to give
rare words priors with a higher variance, reflecting that they
have higher content than more common words. This would
be a more principled alternative to the usual term weighting
heuristics (Section 4.1). The other direction is to automate
hyperparameter selection using so-called marginal probabil-
ity approach ([30]) and avoid tedious cross-validation.
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