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


Outline 

•  The Data Grand Challenge  
–  Data challenges of simulation-based science 

•  Rethinking the the simulations -> insights pipeline  
–  Hybrid data staging, In-situ execution 

•  The RU Space Project  

•  Conclusion 
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Rutgers  Discovery  Informatics  Institute:  RDI2	


Ø  Fundamentally  integrated  research,  education,  ACI  and  industry  
partnerships  to  address  core  CDS&E  /  BigData  challenges	


Ø  Broaden  access  to  state-­‐‑of-­‐‑the-­‐‑art  computing  technology;  integrate  
multidisciplinary  research  with  ACI  and  industry  partnerships  	


Ø  Enable  large-­‐‑scale  data  analytics,  computational  modeling,  and  
simulations,  all  of  which  are  playing  an  increasingly  important  role  in  both  
academic  and  commercial  research  and  innovation.    	


Ø  Only  university-­‐‑based  advanced  computation  center  in  NJ,  and  one  of  
about  ten  in  US,  with  an  industry  partnership  program	


	

	


•  Rutgers	
  University,	
  IBM	
  Open	
  Supercomputer	
  Center	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  By	
  Heather	
  
Haddon	
  3/26/12	
  	
  

•  	
  	
  	
  	
  	
  	
  	
  	
  Rutgers	
  University	
  and	
  Interna1onal	
  Business	
  Machines	
  Corp.	
  (IBM	
  +1.11%)	
  will	
  
cut	
  the	
  ribbon	
  Tuesday	
  on	
  a	
  technology	
  center	
  in	
  New	
  Jersey	
  that	
  houses	
  a	
  $3.3	
  
million	
  supercomputer—stacks	
  of	
  processors	
  that	
  can	
  digest	
  massive	
  quan11es	
  of	
  
data	
  in	
  a	
  frac1on	
  of	
  the	
  1me	
  that	
  a	
  desktop	
  unit	
  would	
  take.	
  	
  

•  	
  	
  	
  	
  	
  	
  	
  	
  Named	
  "IBM	
  Blue	
  Gene/P,"	
  the	
  machine,	
  about	
  the	
  size	
  of	
  two	
  refrigerators,	
  will	
  
be	
  one	
  of	
  the	
  most	
  powerful	
  computers	
  in	
  the	
  Northeast,	
  with	
  thousands	
  of	
  central	
  
processing	
  units,	
  or	
  CPUs.	
  IBM	
  hopes	
  in	
  the	
  coming	
  year	
  it	
  will	
  make	
  the	
  pres1gious	
  
"TOP	
  500"	
  list	
  of	
  the	
  world's	
  most	
  powerful	
  computers,	
  determined	
  by	
  a	
  group	
  of	
  
academic…	
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Key  Programmatic  Areas	

Research 

•  Provide Rutgers researchers access to computational resources and technical 
expertise necessary to increase accuracy and scale of their research 

•  Promote interdisciplinary collaborations to increase grant competitiveness 

Advanced Computing Infrastructure 
•  Data and compute-centric capabilities 
•  Experimental platforms 
•  Expertise 

Education and Training  
•  Variety of education and training programs for faculty, students and industry 
•  Masters degrees, certificates, technical modules, industry-specific workshops 

Industry Engagement and Economic Development 
•  RDI2’s Industry Partnership Program will assist private firms in overcoming the cost 

and knowledge barriers associated with advanced computation 
•  RDI2 will promote economic development by attracting new firms to New Jersey and 

encouraging existing firms to stay in-state 

RDI2  Advanced  Computing  Infrastructure  (Phase  I)  	


“Excalibur,” an IBM Blue Gene®/P Supercomputer  

2,000 Nodes, 8,000 Cores, 24 Terabytes of 
RAM, 300 – 400 Terabytes of memory 

Ø  Future Plans: 
–  Phase II -  upgrade Blue Gene/P to IBM’s newest Blue Gene model, the Blue Gene/Q 

–  Acquisition of a 10 – 12 petabyte storage container with co-located analytics  

–  Connectivity to national cyberinfrastructure 

Ø  Goal by Phase III is to have one of the top academic supercomputers in the world  
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RDI2’s  Industry  Partnership  Programs	


NSF Cloud and Autonomic Computing (CAC) Center 
NSF Center for Dynamic Data Analytics (CDDA) 

CAC/CDDA are multidisciplinary NSF centers of excellence 
in cloud and autonomic computing research 

Foster long-term collaborative partnerships among industry, 
academia, and government 

Have a well-established Industry Partnership Program and 
many industry partners 




Modern Science & Society Transformed by Data 
v  Modern science 

v  Data- and compute-intensive 
v  Integrative, multiscale, online 
v  4 centuries of constancy, 4 

decades 109-12 change! 

v  Multi-disciplinary/scale 
collaborations  
v  Individuals, groups, teams, 

communities, networks  
v  New scientific culture 

v  Sea of Data 
v  Heroic Age of Digital 

Observation 

v  Complexity, complexity, 
complexity!  
v  Impeding science 
v  Productivity, reproducibility, etc. 

 

Ack. E. Seidel 
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

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Many Challenges 
•  Computing 

–  Multicore; large and increasing core counts, deep memory 
hierarchies  

–  New prgm. model, concerns (fault tolerance, energy, etc) 
–  New models & technologies: Clouds, grids, hybrid 

manycore, accelerators, deep storage hierarchies, … 
•  Data 

–  Generating more data than in all of human history: preserve, 
mine, share? 

–  How do we create “data scientists/engineers”? 
•  Software 

–  Complex applications on coupled compute-data-networked 
environments, tools needed 

–  Modern apps: 106+ lines, many groups contribute, take 
decades 

•  People 
–  Multidisciplinary expertise essential! 

•  Appropriate academic program, career tracks… 




Data Crisis: Information Big Bang 
NSB Report: Long-Lived Digital 
Data Collections Enabling 
Research and Education in the 
21st Century 

PCAST Digital Data 

NSF Experts Study 

Wired, Nature 

Storage Networking 
Industry Association 
(SNIA) 100 Year Archive 
Requirements Survey Report 
“there is a pending crisis 
in archiving… we have to 
create long-term methods 
for preserving 
information, for making it 
available for analysis in 
the future.” 80% 
respondents:  >50 yrs;  
68% > 100 yrs 

Industry 

“Data generation == 4 x Moore’s Law 
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


We know that modern network/
instruments/experiments/… are 
producing Big Data!! 

But what about traditional HPC?! 
 
 
 
 
O  

Large Hadron Collider 

Image credit: Roger Smith/NOAO/AURA/NSF 

Blanco 4m on Cerro Tololo 

Image credit: Valerio Mezzanotti for The 
New York Times 

SKA project 

Above is proposed image 




Advanced Computing Infrastructure  
•  Large scale, distributed, heterogeneous, multicore/manycore, 

accelerators,  deep storage hierarchies, experimental systems 
…. 

Titan  - Cray XK7 
•  27 PF / 56 K cores 
•  16-core CPU + GPU 
•  Gemini 3D torus 
•  710 TB memory 

Sequoia – IBM BG/Q  
•  20 PF / 1.6 M cores 
•  18-core processor 
•  5D torus 
•  1.5PB memory 

XSEDE 
•  Worlds Largest 

Grid 
•  11 Resource 

Providers 

Worldwide LHC 
Computing Grid  
•  >140 sites;  
•  ~250k cores;  
•  ~100 PB disk 

Modern 
Datacenters 
•  1M servers 
•  50-100 MW 

Special Purpose 
HW (Anton) 
•  > 100 time 

acceleration of 
MD simulations  
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


Scientific Discovery through Simulations - II 
•  Scientific simulations running on high-end computing 

systems generate huge amounts of data! 

Astrophysics Plasma Fusion 

Combustion Climate Modeling 

Molecular Simulation 

•  The volume of simulation data being produced is 
enormous and continuous, and keeps growing every 
year! 

•  Costs involved are huge – systems, operation, scientist 
efforts, …. 




Scientific Discovery through Simulations 
•  Scientific simulations running on high-end computing systems generate 

huge amounts of data!   

•  Successful scientific discovery depends on a comprehensive understanding 
of this enormous simulation data 

How we enable the computation scientists to 
efficiently manage and explore extreme scale data: 
“find the needles in haystack” ??  
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


The Era of eScience and Big Data – The 
Landscape 

By
te

s p
er

 d
ay

 

2012                   2020   

Genomics 

LHC 

TeraGrid, 
XSEDE, 
Blue 
Waters 

Square 
Kilometer 

Array 

Genomics 

LHC 

LSST 

Exa 
Bytes 
 
 
 
 
 
Peta 
Bytes 
 
 
 
 
 
Tera 
Bytes 
 
 
 
 
Giga 
Bytes 
 
 
 
 
 

Simulation 
Data 

 

Useful Lifetim
e 

Distribution 

Data Access 

Many smaller datasets… 

Scientific 
Simulation 

Data 
 

Credit:  R. Pennington/A. Blatecky 

Volume/Growth/Complexity 




Traditional Simulation -> Insight  Pipelines Break Down 

•  Traditional simulation -> insight 
pipeline: 

–  Run large-scale simulations on large 
supercomputers 

–  Dump data on parallel disk systems 
–  Export data to archives 
–  Move data to users’ sites – usually 

selected subsets 

–  Perform data manipulations and 
analysis on mid-size clusters 

–  Collect experimental / observational 
data 

–  Move to analysis sites 
–  Perform comparison of experimental/

observational to validate simulation 
data 

Traditional data analysis pipeline 
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


Challenges faced by Traditional HPC Data Pipelines 

The costs of data movement are increasing and dominating! 

Traditional data analysis pipeline •  Data analysis challenge 
•  Can current data mining, manipulation and 

visualization algorithms still work effectively on 
extreme scale machine? 

•  I/O challenge 
•  Increasing performance gap: disks are outpaced 

by computing speed 

•  Data movement challenge 
•  Lots of data movement between simulation and analysis machines, between 

coupled mutli-physics simulation components -> longer latencies  
•  Improving data locality is critical: do work where the data resides! 

 
•  Energy challenge 

•  Future extreme systems are designed to have low-power chips – however, 
much greater power consumption will be due to memory and data movement!  

 




The Cost of Data Movement (I) 
•  Moving large amount of simulation data between node memory 

and system wide persistent storage is slow! 

performance gap 
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


The Cost of Data Movement (II) 
•  The energy cost of moving data is a significant concern 

1 

10 

100 

1000 

10000 
Pi

co
Jo

ul
es

 

now 

2018 

Energy_move_data  =  bitrate * length2  / cross_section_area_of_wire 
From K. Yelick, “Software and Algorithms for Exascale: Ten Ways to Waste an Exascale Computer”"




Challenges Faced by Traditional HPC Data Pipelines 

Traditional data analysis pipeline 

 
We need to Rethink the Data Management Pipeline!  

–  Reduce data movement 
–  Move computation/analytics closer to the data   
–  Add value to simulation data along the IO path  

The costs of data movement 
(power and performance) are 
increasing and dominating! 
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


•  I/O	
  bandwidth	
  constraint	
  make	
  it	
  
infeasible	
  to	
  save	
  all	
  raw	
  simula1on	
  
data	
  to	
  persistent	
  storage	
  
è In	
  situ	
  and	
  in-­‐transit	
  analyses	
  

are	
  a	
  necessity	
  
	
  

Challenges amplified as we move to Exascale  

O(1M)	
  
cores	
  

O(1	
  PB)/dump	
  every	
  	
  
30	
  min	
  (1	
  min)	
  

O(1-­‐8	
  EB)/
run	
  

Synchronous	
  
I/O	
  

Synchronous	
  I/O	
  	
  combusKon	
  
simulaKon	
  

•  Analysis	
  	
  
•  VisualizaKon	
  

Performing	
  the	
  simulaKon	
  is	
  not	
  enough	
  –	
  need	
  to	
  analyze	
  results	
  

•  Storage	
  space	
  requirements	
  	
  
•  35	
  disks	
  for	
  each	
  dump	
  (No	
  RAID)	
  
•  1.5	
  KW/live	
  dump	
  

•  Performance	
  requirements	
  	
  	
  
•  5%	
  overhead,	
  ~1M	
  disks,	
  >40	
  MW	
  
•  10%	
  overhead,	
  ~500K	
  disks,	
  >20	
  MW	
  
•  50%	
  overhead,	
  ~100K	
  disks,	
  >4	
  MW	
  




Rethinking the Data Management Pipeline - I 
•  Objectives 

–  Reduce data movement 
–  Move computation/analytics closer to the data   
–  Add value to simulation data along the IO path  

•  Use distributed, in-memory Hybrid Data Staging, constructed combining 
application node cores and dedicated staging nodes, to enable customized 
in-situ/in-transit processing on staged data   

•  Active Data Management @ Hybrid Data Staging 
–  In-situ Computation/Analytics: move data processing operations to where the 

simulation data is being generated 
–  In-transit Data Manipulation: transform/make-right the data as it moves from source 

to sink 
–  In-situ Coupled Simulation Workflows: execute interacting scientific applications in-

situ on multi-core architecture to increase intra-node data exchanges  
–  Dynamic Binary Code Deployment: dynamically deploy compiled binary code and 

execute it within the staging area 
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


•  Exploit multi-levels in-memory Hybrid Data Staging to: 
–  Decrease the gap between CPU and IO speeds 
–  Dynamically deploy and execute data analytical or pre-processing operations 

either in-situ or in-transit 
–  Improved IO write performance 

Rethinking the Data Management Pipeline II – Hybrid 
Staging + In-Situ & In-Transit Execution 

Design	
  space	
  of	
  possible	
  workflow	
  architectures	
  	
  

•  Loca1on	
  of	
  the	
  compute	
  resources	
  
–  Same	
  cores	
  as	
  the	
  simula1on	
  (in	
  situ)	
  
–  Some	
  (dedicated)	
  cores	
  on	
  the	
  same	
  nodes	
  
–  Some	
  dedicated	
  nodes	
  on	
  the	
  same	
  machine	
  	
  
–  Dedicated	
  nodes	
  on	
  an	
  external	
  resource	
  

•  Data	
  access,	
  placement,	
  and	
  persistence	
  
– Direct	
  access	
  to	
  simula1on	
  data	
  structures	
  
– Shared	
  memory	
  access	
  via	
  hand-­‐off	
  /	
  copy	
  
– Shared	
  memory	
  access	
  via	
  non-­‐vola1le	
  near	
  
node	
  storage	
  (NVRAM)	
  

– Data	
  transfer	
  to	
  dedicated	
  nodes	
  or	
  external	
  
resources	
  

•  Synchroniza1on	
  and	
  scheduling	
  
–  Execute	
  synchronously	
  with	
  simula1on	
  

every	
  nth	
  simula1on	
  1me	
  step	
  
–  Execute	
  asynchronously	
  	
  

Processing	
  data	
  on	
  remote	
  nodes	
  Using  distinct  cores on same 
node 

Sharing cores with the simulation 

DRAM
D
R
AM

D
R
AM

Simulation	
  Node

D
R
AM

Staging	
  Node

Network	
  Communication

Analysis	
  Tasks

Simulation

Visualization

DRAM

NVRAM

SSD

Hard Disk

CPUs

DRAM

NVRAM

SSD

Hard Disk

CPUs

Network

Node 1
Node 2

Node N

...

Staging option 1

Staging option 2

Staging option 3
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


Programming Data Staging Resources  

Goal: Effective use of staging 
resources for flexible in-memory, 
in-situ processing 

 
•  Application-application 

interactions 
–  Code coupling, MxN data 

redistribution, data 
transformations 

•  Querying interfaces 

•  Application workflows/pipelines 

•  Analytic plugins/filters  
–  Dynamic deployment 

•  Programming model 
–  PGAS, Workflow, Database, etc. 

•  Abstractions provided  
–  Data and control models 

•  Runtime mechanisms  
–  Mapping (locality, heterogeneity), 

scheduling, etc. 




In-Situ/In-Transit Workflows 

Issues/Challenges 
 
•  Programming abstractions/systems 

•  Mapping and scheduling 

•  Control and data flow 

•  Autonomic runtime 
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


In-Situ/In-Transit Workflows – Mapping and 
Scheduling  
Mapping: Fully in-situ v/s fully in-transit v/s hybrid 
•  Task characteristics  

–  Parallelization, runtime, memory footprint, communication 
requirements,  input-output characteristics, data sizes etc. 

•  Heterogeneous capabilities, costs 
–  In-situ cores v/s In-transit cores  

•  Cores, memory, comm., etc. 

•  Data locality v/s data movement 
•  Dataflow  

–  Where are the inputs produced, haw will the outputs be 
used? 

•  Resources state, usage pattern, … 
Scheduling:  
•  Impact on overall execution, impact end-to-end 

process? 


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Third-Party Plugins in the Staging Area 
•  Data processing plugins in the hybrid 

staging area  
•  In-situ data processing 
•  Analytics pipelines 

•  Many issues  
•  Programming (data and control) 

models for plugins 
•  Deployment mechanisms 
•  Robustness, correctness, etc. 

•  Multiple approaches 
•  Code, binary, scripts, etc. 
•  Several implementations 

•  ActiveSpace, SmartTap, etc. 

•  E.g., ActiveSpaces (IPDPS 11): 
Dynamically deploy custom 
application data transformation/filters 
on-demand and execute in staging 
area (DataSpaces) 

 

•  Provide the programming support to 
define custom data kernels to operate 
on data objects of interest  

•  Runtime system to dynamically deploy 
kernels to staging resources, and 
execute them on the relevant data 
objects 
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ADIOS 

In-Situ Data Management & Analytics @ RU  

l  Virtual Shared-space 
programming abstraction 

l  Simple API to insert and 
retrieve data 

l  Online indexing, storage, 
flexible querying 

l  In-memory distributed 
storage 

l  Efficient asynchronous data 
transfer  

p  DART: a network independent transport library for high speed asynchronous data extraction 
and transfer [HPDC08] 

p  DataSpaces/XpressSpace: an interaction and coordination framework for memory-to-memory 
data coupling [HPDC10, CCGrid10,11] 

p  ActiveSpace: dynamic deployment and execution of data processing routines on the in-
memory staging data [IPDPS11] 

p  In-situ  Execution of workflows:  reduce data movement and increase intra-node data sharing 
[IPDPS12]  


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DataSpaces: A Shared Space Abstraction in the 
Hybrid Staging Area [HPDC’10] 

•  Semantically-specialized virtual 
shared space abstraction in the 
staging area 

–  Shared (distributed) data object 
–  Simple put/get/query API 
–  Supports application – application, 

workflows 
–  Provide a global-view programming 

abstraction consistent with the PGAS 
model (UPC, GA) 

 

•  DataSpaces (HPDC10) 
–  Constructed on-the-fly on hybrid staging 

nodes 
•  Indexes data for quick access and 

retrieval 
•  Provides asynchronous coordination and 

interaction support 
–  Complements existing interaction/

coordination mechanisms   

•  Code coupling using DataSpaces  
–  Maintain locality for in-situ 

exchange 
–  Complex geometry-based queries 
–  In-space (online) data 

transformation and manipulations 
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DataSpaces Query Engine: Indexing + DHT  
•  The global application domain 

is used to build an overlay and 
DHT across a dynamic set of 
DataSpaces servers 
•  Use a Hilbert SFC to construct 

the key space  
•  e.g., map multi-dimensional 

space to a linear space 

•  Use the DHT to maintain 
meta-data information 
e.g., geometric descriptors for the 
shared data 

•  Data objects are indexed with 
the same SFC and the DHT 
entries updated 

•  The SFC maps the global domain to a 
set of intervals 
•  Intervals are non-contiguous and can lead 

to meta-data load imbalance 

•  Second mapping compacts the intervals 
into a contiguous virtual interval  

•  Split the contiguous interval equally to the 
DataSpaces servers 


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DataSpaces: Scalability on ORNL Jaguar-pf 

•  Evaluate framework scalability with an 
increasing number of processors 

•  Use two testing applications that 
exchange data through DataSpaces 
•  Run on M processors and insert data in 

the space 
•  Run on N processors and retrieve data 

from the space 

•  Use a weak scaling experiment 
•  Amount of data increases with the 

number of processors  
•  Keep the amount of data/

processor constant 
•  Resembles the behavior of real 

simulations 
•  A 128 fold increase in the system size 

adds 0.5s to the insert time, and 1s to the  
retrieve time 
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DataSpaces: Scalability on BlueGene/P 

•  Run the space on different number 
of nodes 

•  Measure DataSpaces retrieve time 
•  Retrieve operation is largely 

synchronous 
•  Scaling the space alleviates the 

latency 

•  Use DataSpaces services to share 
data objects, e.g., insert and retrieve 

•  Measure DataSpaces insert time 
•  DataSpaces is a distributed framework 
•  Scales with number of server nodes 
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Motivations 
•  Emerging high-end systems have increased on-chip cores count, e.g., 

Titan 16-core processor, Mira and Sequoia IBM BG/Q 18-core 
•  On-chip data sharing is much cheaper than off-chip data transfers 
•  Data locality and core-level parallelism can be exploited to reduce data 

movement by increasing intra-node data sharing & reuse 

System highlights 
In-situ execution of simulation and 
analytic codes  
 
Execute data producing and 
consuming tasks on different cores 
of the same processor 
 
Allows simulation data to be close to 
where is will be consumed  
 
 

In-Situ Workflow Execution (IPDPS’12) 



11/27/12 

18 




In-Situ Workflow Execution (I) 
Challenges 
•  Locality-aware mapping of computation tasks from separate coupled 

applications onto processor cores 
•  Which CPU core should the task run on? Trade-offs? 

•  Efficient support for data sharing and exchange between the coupled 
applications 

Two simple in-situ workflow 
scenarios:  
(1)  Online data analysis and  
(2)  Coupled simulations 

(climate modeling) 


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In-Situ Workflow Execution: Evaluation (III) 
Lesson learned: To meet power budgets, locality-aware 
mapping/scheduling can be used to reduce data movement 
significantly, but requires fatter nodes. 
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Integrating In-Situ and In-Transit Analytics 
(SC’12) 

•  Primary resources execute 
the main simulation and in 
situ computations 

•  Secondary resources provide 
a staging area whose cores 
act as buckets for in transit 
computations  

•  4896	
  cores	
  total	
  (4480	
  simula1on/in	
  situ;	
  256	
  in	
  
transit;	
  160	
  task	
  scheduling/data	
  movement)	
  

•  Simula1on	
  size:	
  1600x1372x430	
  
•  All	
  measurements	
  are	
  per	
  simula1on	
  1me	
  step	
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 Dynamically deploy binary code on-demand and execute 
customized data operations (e.g., data transformation/filters) 
within staging area  

ActiveSpaces: Move Code to the Data [IPDPS’11] 

Plasma fusion code-coupling scenario: XGC0, M3D-MPP, and 
auxiliary services for post-processing, diagnostics, visualization 

Advantages 
•  Reduces network data traffic 

by transferring only the 
analytic kernels and retrieving 
the results 

•  Reduces application 
execution time by offloading 
and executing in parallel data 
computations 

•  Kernels defined using native 
programming language 

•  Operates only on data of 
interest  
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Programming with ActiveSpaces: Data Kernel 
Execution 

•  Data kernels are user defined and customized for each application 

•  Implemented using all constructs of the C language 

•  Compiled and linked with user applications 

•  Can execute locally, or be deployed and executed remotely in the staging area 
 


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•  Use a coupling scenario with two 
application exchanging data through 
the space 
•  One application inserts data into the space 
•  One application retrieves and processes 

data from the space 

•  Define custom kernels data filters 
•  Transfer data from the space to the 

application and execute filters locally 
•  Transfer the filters to the space, execute on 

the space and retrieve the result 

•  The data retrieved and processed was 
scaled from 1kB to 1GB 

•  Crossover (sweet) point is interesting: 
–  For small data sizes (<= 10kB), it is better to 

transfer raw data, 
–  But for larger sizes (>10kB) is better to 

offload the kernels 

ActiveSpaces: Evaluation-I 
Data Scaling Experiment 
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ActiveSpace: Evaluation-II 

•  The retrieving application 
was scaled from 1 to 512 
processors 
q  Offloaded interpolation 

operation to the space 
(i.e., cylindrical to mesh 
coordinates) 

q  Sorted particle data in the 
space 

     
•  Time saving of 0.14s per 

processor -> ~1 hour at 
application level 

Application Performance 


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Pixplot 
8 cores 

Pixmon 
1 core  

(login node) 

ParaView Server 
 4 cores 

In-situ viz. and 
monitoring with staging" Pixie3D 

1024 cores 

DataSpaces 

record.bp record.bp record.bp 

pixie3d.bp pixie3d.bp pixie3d.bp 
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In-Situ Feature Extraction and Tracking using 
Decentralized Online Clustering (DISC’12, ICAC’10) 

DOC	
  workers	
  executed	
  in-­‐situ	
  on	
  
simulaKon	
  machines	
  

Simula1on	
  Compute	
  Nodes	
  

One compute node 

Processor	
  core	
  runs	
  	
  simula1on	
  

Processor	
  core	
  runs	
  	
  DOC	
  worker	
  

Benefits of runtime feature extraction and tracking 
(1) Scientists can follow the events of interest (or data of interest) 
(2) Scientists can do real-time monitoring of the running simulations  

DOC	
  Overlay	
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ActiveSpaces for Remote Online Debugging 

•  Use data kernels to debug the science 
   -  load data kernels to retrieve data for visualization 
   -  get insights into simulation evolution by analyzing the data 

•  Use data kernels to steer simulation execution 
   -   inject data parameters into the space for conditional execution 

•  Deployed in distributed environments, e.g., Rutgers and ORNL 
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Energy-Performance Tradeoffs in the Data Analytics 
Pipeline 

Large 
impact 
on 
energy 
and 
exec 
time 

Energy-­‐Performance	
  Tradeoffs	
  in	
  the	
  Data	
  AnalyKcs	
  Pipeline	
  

NVRAM/HDD gap 

Experiments in collaboration 
with Steve Poole, ORNL 

Lessons	
  learned:	
  Frequency	
  of	
  analy1cs	
  is	
  driven	
  by	
  the	
  dynamics	
  of	
  
features	
  of	
  interest,	
  but	
  is	
  limited	
  by	
  node	
  architecture.	
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Ensemble	
  of	
  Models	
  with	
  UQ	
  

Visual	
  Analy1cs	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  

Validation Workflows 

First	
  Principles	
  Fusion	
  Code	
  
XGC,	
  “core-­‐edge”	
  turbulence	
  

	
  with	
  UQ	
  	
  

Model 	
  Model	
  

Model 	
  Model	
  

Analysis	
  
Compara1ve	
  Analy1cs	
  

Visualiza1on	
  
Experiment	
  mock	
  up	
  

Knowledge	
  
Database	
  

KSTAR Tokamak

diagnos1c	
  diagnos1c	
   diagnos1c	
  

diagnos1c	
  diagnos1c	
   diagnos1c	
  

Synthe1c	
  
Diagnos1c	
  

Automate	
  the	
  process	
  of	
  these	
  
workflows	
  and	
  move	
  work/data	
  
to	
  sa1sfy	
  metrics	
  specified	
  by	
  
users,	
  and	
  track	
  provenance	
  

Use	
  first	
  principle	
  calcula1ons	
  on	
  
HPC	
  to	
  generate	
  more	
  accurate	
  
models	
  

Generate	
  a	
  DB	
  of	
  
knowledge	
  by	
  
codes,	
  to	
  use	
  for	
  
predic1ve	
  
capability	
  during/
aver	
  each	
  
experiment	
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Autonomic Data Streaming & In-Transit Processing 

Application Level “Proactive” 
management 

Simulation 

LLC Controller 

Slack metric 
Generator 

In-Transit node Simulation 

Slack metric 
Generator 

In-Transit Level  
“Reactive” management 

Slack metric 
corrector 

 

Coupling 

Slack metric 
corrector 

Budget 
estimation 

Slack metric adjustment 

metric  
updates 

Sink 

Data flow 
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Summary & Conclusions 
•  Complex applications running on high-end systems generate extreme 

amounts of data that must be managed and analyzed to get insights 
–  Data costs (performance, latency, energy) are quickly dominating 
–  Traditional data management/analytics pipelines are breaking down 

•  Hybrid data staging, In-situ workflow execution, & Dynamic code 
deployment can address this challenges 
–  Users to efficiently intertwine applications, libraries, middleware for complex 

analytics  
 
•  Many challenges; Programming, mapping and scheduling, control and 

data flow, autonomic runtime management…. 

•  The Rutgers-Spaces project explores solutions at various levels: 
–  High-level programming abstractions for in-situ workflows for code coupling 

and online analytics 
–  Efficient runtime mechanisms for hybrid staging, locality-aware mapping and 

location-aware data movement 
–  Support for dynamic code deployment and execution for moving code to data 
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Thank You! 

Manish Parashar, Ph.D. 
Prof., Dept. of Electrical & Computer Engr. 
Rutgers Discovery Informatics Institute (RDI2)  
Cloud & Autonomic Computing Center (CAC) 
Rutgers, The State University of New Jersey 
 
Email: parashar@rutgers.edu 
WWW: rdi2.rutgers.edu 
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Next generation data challenges of 
computational simulations 
•  At the architecture or node level 

–  Use increasingly deep memory hierarchies coupled with 
new memory properties 

•  At the system level 
–  Cope with I/O rates and volumes that stress the 

interconnect and can severely limit application performance  
–  Can consume unsustainable levels of power 

•  At the extreme scale 
–  Immense aggregate I/O needs with potentially uneven 

loads placed on underlying resource 
–  Can result in data hotspots, interconnect congestion and 

similar issues 


