Algorithms for Multidimensional Scaling I
Working Group Meeting: August 6 - 9, 2001
Public Workshop: Friday, August 10, 2001
Location: DIMACS Center, CoRE Building, Rutgers University
Organizers:
- J. Douglas Carroll, Rutgers University, dcarroll@rci.rutgers.edu
- Phipps Arabie, Rutgers University, arabie@andromeda.rutgers.edu
- Lawrence J. Hubert, University of Illinois, lhubert@s.psych.uiuc.edu
This material is based upon work supported by the National Science Foundation under Grant No. 0100921
References for Algorithms for Multidimensional Scaling Working Group
- [B1] Abney, S., Volinsky, C., and Buja, A., Mining
large call graphs, AT&T Labs Technical Memorandum, Florham Park, NJ,
1998.
- [B2] Brusco, M.J., Morph-based local-search
heuristics for large-scale combinatorial data analysis,
J. Classification, 16 (1999), 163-180.
- [B3] Brusco, M.J., and Stahl, S., Using quadratic assignment methods to generate
initial permutations for least-squares unidimensional scaling of symmetric
proximity matrices, working paper, Florida State University, 2000.
- [B4] Brusco, M.J., and Stahl, S., A simulated annealing heuristic for
unidimensional and multidimensional (city-block) scaling of symmetric
proximity matrices, working paper, Florida State University, 2000.
- [B5] Buja, A., Swayne, D.F., Littman, M.L., and Dean,
N., XGvis: Interactive data visualization with multidimensional
scaling, J. of Computational and Graphical Statistics, to appear.
- [B6] Carroll, J.D., Some multidimensional
scaling and related procedures devised at Bell Laboratories, with
ecological applications, in P. Legendre and L. Legendre (eds.),
Developments in Numerical Ecology, NATO ASI Series, Vol. G14,
Springer-Verlag, Berlin-Heidelberg, 1987, pp. 65-138.
- [B7] Carroll, J.D., and Arabie, P., Multidimensional scaling, in
M.H. Birnbaum (ed.), Handbook
of Perception and Cognition, Volume 3: Measurement, Judgment and Decision
Making, Academic Press, San Diego, CA, 1998, pp.
179-250.
- [B8] Carroll, J.D. and Chang, J.J., Analysis of individual differences in
multidimensional scaling via an N-way generalization of
``Eckart-Young'' decomposition, Psychometrika, 35 (1970),
283-319. [Reprinted in P. Davies and A. P. M. Coxon (eds.), Key
Texts in Multidimensional Scaling, Heinemann, Portsmouth, NH, 1984,
pp. 229-252.]
- [B9] Carroll, J.D., and Chaturvedi, A., A general approach to clustering and
multidimensional scaling of two-way, three-way, or higher-way data,
in R. D. Luce, M.
D'Zmura, D. D. Hoffman, G. Iverson and A. K. Romney (eds.),
Geometric Representations of Perceptual Phenomena, Erlbaum, Mahwah, NJ,
1995, pp. 295-318.
- [B10] Carroll, J.D., and Corter, J., A graph-theoretic method for organizing
overlapping clusters into trees, multiple trees, or extended trees,
J. Classification, 12 (1995), 283-313.
- [B11] Carroll, J.D., De Soete, G., and Pruzansky, S., A comparison of three
rational initialization methods for INDSCAL, in E. Diday (ed.),
Data Analysis and Informatics V, North-Holland, Amsterdam,
1988, pp. 131-142.
- [B12] Carroll, J.G., De Soete, G., and Pruzansky, S., An evaluation of five
algorithms for generating an initial configuration for SINDSCAL, J.
Classification, 6 (1989), 105--119.
- [B13] Carroll, J.D., and Pruzansky, S., The CANDECOMP-CANDELINC family of
models and methods for multidimensional data analysis, in H. G. Law,
W. Snyder, J. Hattie, and R. P. McDonald (eds.), Research Methods
for Multimode Data Analysis, Praeger, New York, 1984, pp. 372-402.
- [B14] Carroll, J.D. and Pruzansky, S., Discrete and hybrid models for
proximity data, in W. Gaul and M. Schader (eds.) Classification
as a Tool of Research, North-Holland, Amsterdam, 1986, pp. 47-59.
- [B15] Carroll, J.D., Pruzansky, S., and Kruskal, J.B., CANDELINC: A general
approach to multidimensional analysis of many-way arrays with linear
constraints on parameters, Psychometrika, 45 (1980), 3-24.
- [B16] Chandon, J.L., and De Soete, G., Fitting a least squares ultrametric
to dissimilarity data: Approximation versus optimization, in
E. Diday, M. Jambu, L. Lebart, J. Pages, and R. Tomassone
(eds.), Data Analysis and Informatics III, North-Holland, Amsterdam,
1984, pp. 213-221.
- [B17] Chen, G., Metric two-way multidimensional scaling and circular
unidimensional scaling: Global optimization by mixed integer programming
approaches, Doctoral Dissertation, Rutgers University, 2000.
- [B18] Crippen, G.M., and Havel, T.F., Stable
calculation of coordinates from distance information, Acta
Crystallographica, A34 (1978), 282-284.
- [B19] de Leeuw, J., and Heiser, W., Convergence of correction-matrix
algorithms for multidimensional scaling, in J. C. Lingoes (ed.),
Geometric Representations of Relational Daata: Readings in
multidimensional scaling, Mathesis, Ann Arbor, MI, 1977, pp.
735-752.
- [B20] Glunt, W., Hayden, T.L, and Raydan, M., Molecular
conformation from distance matrices, J. Computational Chemistry,
14 (1993), 114-120.
- [B21] Hagerty, C.G., Muchnik, I., Kulikowski, C., and
Kim, S-H., Two indices can approximate four hundred and two amino acid
properties, Proceedings of the 1999 IEEE International Symposium
on Intelligent Control/Intelligent Systems and Semiotics, Cambridge,
MA, September 1999, pp. 365-369.
- [B22] Havel, T.F., An evaluation of computational
strategies for use in the determination of protein structure from
distance constraints obtained by nuclear magnetic resonance,
Progress in Biophysics and Molecular Biology, 56 (1991), 43-78.
- [B23] Heiser, W.J., Order invariant unfolding analysis under smoothness
restrictions, in G. De Soete, H. Feger, and C. Klauer (eds.), New
Developments in Psychological Choice Modeling,
North-Holland, Amsterdam, 1989, pp. 3-31.
- [B24]
Hubert, L.J., and Arabie, P., Unidimensional scaling and combinatorial
optimization, in J. de Leeuw, W. Heiser, J. Meulman, and F. Critchley
(eds.), Multidimensional Data Analysis, DSWO Press, Leiden
1986, pp. 181-196.
- [B25]
Hubert, L.J., and Arabie, P. Iterative projection strategies for the
least-squares fitting of tree structures to proximity data, British
J. Math. Statist. Psych., 48 (1995), 281-317.
- [B26] Hubert, L.J. and Arabie, P., The approximation of two-mode proximity
matrices by sums of order-constrained matrices, Psychometrika,
60 (1995), 573--605.
- [B27]
Hubert, L.J., Arabie P.,, and Hesson-Mcinnis, M., Multidimensional scaling in
the city-block metric: A combinatorial approach, J. Classification,
9 (1992), 211--236.
- [B28]
Hubert, L.J., Arabie, P., and Meulman, J., Linear and circular unidimensional
scaling for symmetric proximity matrices, British J. Math. Statist.
Psych., 50, 253-284.
- [B29]
Kruskal, J.B., Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis, Psychometrika, 29 (1964), 1-27.
- [B30] Kruskal, J.B., Nonmetric multidimensional scaling: A numerical method,
Psychometrika, 29 (1964), 115-129.
- [B31] Kruskal, J.B., and Hart, R.E., A geometric
interpretation of diagnostic data from a digital machine: Based on a
study of the Morris, Illinois Electronic Central Office, Bell
Sys. Tech. J., 45 (1966), 1299-1338.
- [B32] Legendre, P., and Legendre, L., Numerical
Ecology, Elsevier, Amsterdam, 1998.
- [B33] Littman, M., Swayne, D.F., Dean, N., and Buja, A.,
Visualizing the embedding of objects in Euclidean space,
Computing Science and Statistics: Proc. of the 24th Symp. on the
Interface, Interface Foundation of North America, Fairfax Station,
VA, 1992, 208-217.
- [B34] Luczkovich, J.J., Borgatti, S.P., Johnson, J.C.,
and Everett, M.G., Defining and measuring trophic role similarity in
food webs using regular coloration, in preparation.
- [B35]
Shepard, R.N., The analysis of proximities: Multidimensional scaling with
an unknown distance function. I, Psychometrika, 27 (1962),
125-140.
- [B36]
Shepard, R.N., The analysis of proximities: Multidimensional scaling with
an unknown distance function. II, Psychometrika, 27
(1962), 219-246.
- [B37] Simantiraki, E., Unidimensional Scaling: A linear programming approach
minimizing absolute deviations, J. Classification, 13
(1996), 19-25.
- [B38] Watts, D., Small Worlds: The Dynamics of Networks
between Order and Randomness, Princeton University Press, Princeton,
NJ, 1999.
Working group home page
DIMACS Homepage
Contacting the Center
Document last modified on April 11, 2001.