Data Mining in Pharmacovigilence

Aimin Feng, David Madigan, and Ivan Zorych

dmadigan@rutgers.edu

http://stat.rutgers.edu/~madigan

Overview

- > Intro. to Post-marketing Surveillance
- > SRS Databases
- Existing Analysis Methods
- Our Approaches
 - Bayesian Logistic Regression
 - Propensity Score
- > Conclusions

Safety in Lifecycle of a Drug/Biologic product

Why Post-marketing Surveillance

- > Limitations on pre-licensure trials
 - Size
 - Duration
 - Patient population: age, comorbidity, severity
- > Fact
 - Several hundred drugs have been removed from market in the last 30 years due to safety problems which became known after approval

Databases of Spontaneous ADRs

- > FDA Adverse Event Reporting System (AERS)
 - Online 1997 replace the SRS
 - Over 250,000 ADRs reports annually
 - 15,000 drugs 16,000 ADRs
- CDC/FDA Vaccine Adverse Events (VAERS)
 - Initiated in 1990
 - 12,000 reports per year
 - 50 vaccines and 700 adverse events
- > Other SRS
 - WHO international pharmacovigilance program

Weakness of SRS Data

- > Passive surveillance
 - Underreporting
- Lack of accurate "denominator", only "numerator"
 - "Numerator": No. of reports of suspected reaction
 - "Denominator": No. of doses of administered drug
- > No certainty that a reported reaction was causal
- Missing, inaccurate or duplicated data

Existing Methods

- Multi-item Gamma Poisson Shrinker (MGPS)
 - US Food and Drug Administration (FDA)
- Bayesian Confidence Propagation Neural Network
 - WHO Uppsala Monitoring Centre (UMC)
- Proportional Reporting Ratio (PRR and aPRR)
 - UK Medicines Control Agency (MCA)
- Reporting Odds Ratios and Incidence Rate Ratios
 - Other national spontaneous reporting centers and drug safety research units

Existing Methods (Cont'd)

> Focus on 2X2 contingency table projections

	AE j = Yes	AE j = No	Total
Drug $i = Yes$	<i>a</i> =20	<i>b</i> =100	120
Drug $i = Yes$ Drug $i = No$	<i>c</i> =100	<i>d</i> =980	1080
Total	120	1080	1200

- 15,000 drugs * 16,000 AEs = 240 million tables
- Most N_{ij} = 0, even though N.. very large

The Different Measures

Measure of Association	Formula	Probabilistic Interpretation
RR	* (Pr(ae drug)
Relative Risk*	<u>a</u> * (a + b + c + d)	Pr(ae)
	(a + c) * (a + b)	
PRR	a / (a + b)	Pr(ae drug)
Proportional Reporting	c / (c + d)	$Pr(ae \mid \neg drug)$
Ratio	*** ***	
ROR	a / c	$Pr(ae \mid drug)/Pr(\neg ae \mid drug)$
Reporting Odds Ratio	<u>b</u> , / d	$\overline{\Pr(ae \mid \neg drug)/\Pr(\neg ae \mid drug)}$
Information Component		$\Pr(ae \mid drug)$
	<u>a</u> * (a + b + c + d) Log ₂	$\log_2 \frac{\Pr(ae)}{\Pr(ae)}$
	$(\underline{a} + c) * (a + b)$	

These Measures not "Robust"

	AE = Yes	AE = No
D1 = Yes	<u>a</u> =1	b=100
D1 = No	<u>c</u> =5	<u>d</u> =1080

	AE = Yes	AE = No
$D_{\underline{2}} = Yes$	<u>a</u> =2	b=100
D <u>2</u> = No	<u>c</u> =5	d=1080

Measure	Drug D1	Drug D2
PRR	2.1	4.3
ROR	2.2	4.3
IC	1.0	1.7
RR	2.0	3.3

Bayesian Statistics

The Bayesian approach has deep historical roots but required the algorithmic developments of the late 1980's before it was of any use

The old sterile Bayesian-Frequentist debates are a thing of the past

Most data analysts take a pragmatic point of view and use whatever is most useful

Think about this...

		Hospital										
	${f A}$	${f B}$	\mathbf{C}	\mathbf{D}	${f E}$	${f F}$	${f G}$	\mathbf{H}	Ι	J	${f K}$	${f L}$
No. of												
ops. n	27	148	119	810	211	196	148	215	207	97	256	360
No. of												
deaths r	0	18	8	46	8	13	9	31	14	8	29	24

Denote by θ the probability that the next operation in Hospital A results in a death

Use the data to estimate (i.e., guess the value of) θ

Hospital Example (0/27)

$$f(\theta \mid data) = \frac{f(data \mid \theta) f(\theta)}{f(data)} \propto f(data \mid \theta) f(\theta)$$

posterior distribution

likelihood

$$\binom{27}{0}\theta^0(1-\theta)^{27}$$

prior distribution

$$c\theta^a(1-\theta)^b$$

$$\propto \theta^{a+0} (1-\theta)^{b+27}$$

Unreasonable prior distribution implies unreasonable posterior distribution

What to report? Mode? Mean? Median? 0.013 Posterior probability that theta exceeds 0.2? theta* such that Pr(theta > theta*) = 0.05 theta* such that Pr(theta > theta*) = 0.95 0.002

_0.023

More formal treatment...

		Hospital										
	\mathbf{A}	${f B}$	\mathbf{C}	\mathbf{D}	${f E}$	${f F}$	\mathbf{G}	\mathbf{H}	Ι	J	\mathbf{K}	\mathbf{L}
No. of												
ops. n	27	148	119	810	211	196	148	215	207	97	256	360
No. of												
deaths r	0	18	8	46	8	13	9	31	14	8	29	24

Denote by θ_i the probability that the next operation in Hospital i results in a death

Assume $\theta_i \sim \text{beta}(a,b)$

Compute joint posterior distribution for all the θ_i simultaneously

	Hospital											
	Α	В	\mathbf{C}	D	\mathbf{E}	F	G	Н	Ţ	J	K	${ m L}$
No. of Ops (n)	27	148	119	810	211	196	148	215	207	97	256	360
Raw Rate (x/n)	0.00	12.16	6.72	5.68	2.37	6.63	6.08	14.42	6.76	8.25	11.33	6.67
Post. Mean	5.77	10.50	7.01	5.88	4.15	6.86	6.58	12.58	6.94	7.85	10.34	6.81
Post. S.D.	2.3	2.3	1.8	0.8	1.3	1.5	1.6	2.2	1.5	2.1	1.8	1.2
Raw Rank	1	11	7	3	2	5	4	12	8	9	10	6
Post. Rank	2	11	8	3	1	6	4	12	7	9	10	5

"Borrowing strength"

Shrinks estimate towards common mean (7.4%)

Technical detail: can use the data to estimate a and b

This is known as "empirical bayes"

Relative Reporting Ratio

$$N_{ij}$$
 AE_j Not AE_j

Drug_i $a=20$ $b=100$

Not $c=100$ $d=980$

- If the Drug and the AE were independent, what would you expect a to be?
 - Overall (a+c)/(a+b+c+d)=120/1200=10% have the AE
 - So, 10% of the "Drug" reports should have the AE
 - That is $(a+b)^*((a+c)/(a+b+c+d))=120^*10\%=12=E_{ii}$
 - Note $N_{ii}/E_{ii}=a/(a+b)*((a+c)/(a+b+c+d))=RR$
 - RR = 20/12 = 1.67 = N/E = Pr(AE|Drug)/Pr(AE)

Relative Reporting Ratio

$$(RR_{ij}=N_{ij}/E_{ij})$$

- > Advantages
 - Simple
 - Easy to interpret
- Disadvantages

- Extreme sampling variability when baseline and observed frequencies are small
 (N=1, E=0.01 v.s. N=100, E=1)
- GPS provides a shrinkage estimate of RR that addresses this concern.

Same Relative Reporting Ratio!

	AE_i	Not AE,
Drug _i	a=1	b=5 [°]
Drug;	c=5	d=49

Chi-square = 0.33

$$\begin{array}{c|c} AE_{j} & \text{Not } AE_{j} \\ \text{Drug}_{i} & a=20 & b=100 \\ \text{Not } & c=100 & d=980 \end{array}$$

Chi-square = 6.58

$$AE_{j}$$
 Not AE_{j}

Drug; $a=200$ $b=1000$

Not $c=1000$ $d=9800$

Chi-square = 65.8

GPS/MGPS

- GPS/MGPS follows the same recipe as for the hospitals
- ightarrow Denote by ho_{ii} the true RR for Drug i and AE j
- \succ Assumes the ho_{ij} 's arise from a particular 5-parameter distribution
- Use empirical Bayes to use the data to estimate these five parameters.

GPS-EBGM

- \rightarrow Define $\lambda_{ij} = \mu_{ij} / E_{ij}$, where
 - N_{ij} ~ Poisson(μ_{ij})
 - $\lambda_{ij} \mid \lambda \sim p * g(\lambda; \alpha_1, \beta_1) + (1-p) * g(\lambda; \alpha_2, \beta_2)$ a mixture of two Gamma Distributions
- > EBGM = Geometric mean of Post-Dist. of λ_{ij}
 - Estimates of μ_{ij} / E_{ij}
 - "Shrinks" $N_{ij} / E_{ij} \rightarrow 1$
 - Smaller variances than N_{ij} /E_{ij}

Simpson's Paradox

Contingency table analysis ignores effects of drug-drug association on drug-AE association

Simpson's Paradox

	Ros	inex	No Ro	osinex	Total		
	Nausea	No Nausea	Nause a	No Nausea	Nausea	No Nausea	
Ganclex	81	9	1	9	82	18	
No Ganclex	9	1	90	810	99	811	
RR	,	1		1	4.58		

Bad Things Can Happen...

DATA

happiness

simple regression line

hours per week on studies

HAP = β_0 + β_1 x HOURS, β_1 will be estimated to be negative

A 2nd Look at the DATA

happiness

A 2nd Look at the DATA

A 2nd Look at the DATA

Other Odd Things Can Happen...

Other Odd Things Can Happen...

P(Vax B=1)=0.1
Vaccine B

P(Vax A=1|Vax B=1)=0.9 P(Vax A=1|Vax B=0)=0.01

Vaccine A

P(Sym1=1|Vax B=1)=0.9 P(Sym1=1|Vax B=0)=0.1

Symptom 1

		Sym1 vs	Vax A	Sym1 vs Vax B		
		Value	Rank	Value	Rank	
N		1673	2	1826	1	
	Normal	-3.05E-02	4194	4.69	5	
Bayesian	Normal-CV	0.885	151	3.44	6	
Logistic	Laplace	-3.00E-02	9136	4.69	13	
Method	Laplace-CV	0.00	9127	3.99	7	
GPS EBGM		2.84	73	3.02	68	
Obser	Observed RR		744	3.03	681	

Logistic Regression

- $> \log [P/(1-P)] = intercept + \sum (each drug effect)$
 - P = Pr (report with these drugs will have the AE)
- > Classic logistic regression hard to scale up
 - Huge number of predictors (drugs)
- Bayesian Logistic Regression (Shrinkage Method)
 - Put a prior on coefficients $(\beta_1, ..., \beta_p)$, and shrink their estimates towards zero
 - Stabilize the estimation when there are many predictors
 - Bayesian solution to the multiple comparison problem

Bayesian Logistic Regression

- > Two shrinkage methods
 - Ridge regression Gaussian prior $\beta_i \sim N(0,\lambda)$
 - Lasso regression Laplace prior $f(\beta_i)$ ∝ exp{- $\lambda \mid \beta_i \mid^{\lambda}$ }
- > Choosing hyperparameter λ
 - Decide how much to shrink
 - Cross-validation: choose prior to fit left-out data
 - Aggregation method by Bunea and Nobel (2005)

Posterior Modes with Varying Hyperparameter Laplace

Bayesian Logistic Regression

- > Software: Bayesian Binary Regression (BBR)
 - http://stat.rutgers.edu/~madigan/BBR
 - Two priors: Gaussian and Laplace
 - Hyperparameter: fixed, default and CV
 - Handles millions of predictors efficiently
- Safety Signal: an apparent excess of an adverse effect associated with use of a drug
 - Coefficients β's logs of odds ratios
 - Pr($AE_j \mid drug_i$) Pr($AE_j \mid not drug_i$)

Evaluation Strategies

- Top-Rank Plot for Safety Signal
 - To compare the timeliness of outbreak detection
 - Similar to AMOC (Activity Monitor Operating Characteristic) curve in fraud detection
 - Y window (month in 1999)
 - X Top rank of association from window 1 to corresponding window

RV v.s. INTUSS

- > Rotavirus
 - Severe diarrhea (with fever and vomiting)
 - Hospitalize 55,000 children each year in US
- Intussusception (INTUSS)
 - Uncommon type of bowel obstruction
- RotaShield (RV)
 - Licensed on 8/31/1998 in US
 - Recommended for routine use in infants
 - Increased the risk for intussusception
 - 1 or 2 cases among each 10,000 infants
 - On 10/14/1999, the manufacturer withdrew RV

3

Top Rank of Alarm

Simulation

- Step-by-step procedure
 - Choose either a rare (5%, 1), intermediate (50%, 3), or common (95%, 100) vaccine adverse event (V-A) combination
 - Use year 1998 data as baseline
 - Add extra report(s) per month of 1999 containing the chosen V-A combination
 - Generate the AMOC curve

Conclusions of Simulation

- The Bayesian Logistic Regressions (Normal-CV and Laplace-CV) signal consistently, and are at least as good as GPS method
- Simple RR cannot signal for intermediate and common cases
- GPS is relatively good on rare and intermediate cases, but not stable on common cases

Discussion of Logistic Method

- Advantages over low-dimensional tables
 - Correct confounding and mask effect
 - Analyze multiple drugs/vaccines simultaneously
- > Limitations
 - Build separate model for each AE
 - Ignore dependencies between AEs
 - Fail to adjust for unmeasured/unrecorded factors
 - health status, unreported drugs, etc.
 - Model-based approach
 - Require model assumptions

Causal Inference View

- > Rubin's causal model
 - Potential outcomes
 - Factual outcome
 - I took an aspirin and my headache went away
 - Counterfactual outcome
 - If I hadn't taken an aspirin, I'd still have a headache
- > Define:
 - Z_i : treatment applied to unit i (0=control, 1=treat)
 - $Y_i(0)$: response for unit *i* if $Z_i = 0$
 - $Y_i(1)$: response for unit *i* if $Z_i = 1$
 - Unit level causal effect: Y_i(1) Y_i(0)
 - Fundamental problem: only see one of these!

Bias Due To Confounding

- Individuals are observed already under their respective conditions
- The two groups may differ in ways other than just the observed condition
- Average effects may be biased due to confounding between covariates and group condition
- We can simulate randomization or counterfactual world using information from observational study...sort of

Propensity Score Method

- > Definition
 - $e(x_i) = P(Z_i=1 \mid X_i=x_i)$ Conditional probability of assignment to test treatment $Z_i=1$ given observed covariates
 - Assuming no unmeasured confounders, stratifying on $e(x_i)$ leads to causal inferences just as valid as in randomized trials
- > Methods with propensity scores:
 - Inverse weighting
 - Regression adjustment
 - Matching

Conclusion

- "First generation" Method
 - Contingency table methods
 - Deal with each drug and each adverse event in isolation
- "Second generation" Method
 - Bayesian logistic regression
 - Propensity score
 - Deal with large numbers of drugs jointly and with multidrug interactions
- > Ultimate Method
 - Not only interactions and relationships among drugs, but also adverse events
 - Question: which sets of drugs cause which sets of adverse events?