# Data Mining in Pharmacovigilence

Aimin Feng, David Madigan, and Ivan Zorych

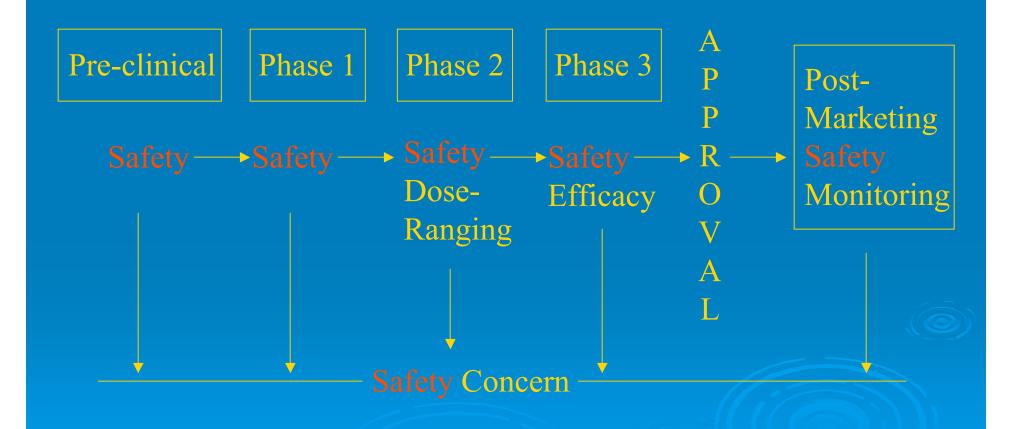
dmadigan@rutgers.edu

http://stat.rutgers.edu/~madigan

#### Overview

- > Intro. to Post-marketing Surveillance
- > SRS Databases
- Existing Analysis Methods
- Our Approaches
  - Bayesian Logistic Regression
  - Propensity Score
- > Conclusions

#### Safety in Lifecycle of a Drug/Biologic product



# Why Post-marketing Surveillance

- > Limitations on pre-licensure trials
  - Size
  - Duration
  - Patient population: age, comorbidity, severity
- > Fact
  - Several hundred drugs have been removed from market in the last 30 years due to safety problems which became known after approval

## Databases of Spontaneous ADRs

- > FDA Adverse Event Reporting System (AERS)
  - Online 1997 replace the SRS
  - Over 250,000 ADRs reports annually
  - 15,000 drugs 16,000 ADRs
- CDC/FDA Vaccine Adverse Events (VAERS)
  - Initiated in 1990
  - 12,000 reports per year
  - 50 vaccines and 700 adverse events
- > Other SRS
  - WHO international pharmacovigilance program

#### Weakness of SRS Data

- > Passive surveillance
  - Underreporting
- Lack of accurate "denominator", only "numerator"
  - "Numerator": No. of reports of suspected reaction
  - "Denominator": No. of doses of administered drug
- > No certainty that a reported reaction was causal
- Missing, inaccurate or duplicated data

## Existing Methods

- Multi-item Gamma Poisson Shrinker (MGPS)
  - US Food and Drug Administration (FDA)
- Bayesian Confidence Propagation Neural Network
  - WHO Uppsala Monitoring Centre (UMC)
- Proportional Reporting Ratio (PRR and aPRR)
  - UK Medicines Control Agency (MCA)
- Reporting Odds Ratios and Incidence Rate Ratios
  - Other national spontaneous reporting centers and drug safety research units

## Existing Methods (Cont'd)

> Focus on 2X2 contingency table projections

|                                 | AE j =<br>Yes | AE j =<br>No  | Total |
|---------------------------------|---------------|---------------|-------|
| Drug $i = Yes$                  | <i>a</i> =20  | <i>b</i> =100 | 120   |
| Drug $i = Yes$<br>Drug $i = No$ | <i>c</i> =100 | <i>d</i> =980 | 1080  |
| Total                           | 120           | 1080          | 1200  |

- 15,000 drugs \* 16,000 AEs = 240 million tables
- Most  $N_{ij}$  = 0, even though N.. very large

## The Different Measures

| Measure of Association | Formula                                        | Probabilistic Interpretation                               |
|------------------------|------------------------------------------------|------------------------------------------------------------|
| RR                     | * (                                            | Pr(ae   drug)                                              |
| Relative Risk*         | <u>a</u> * (a + b + c + d)                     | Pr(ae)                                                     |
|                        | (a + c) * (a + b)                              |                                                            |
| PRR                    | a / (a + b)                                    | Pr(ae   drug)                                              |
| Proportional Reporting | c / (c + d)                                    | $Pr(ae \mid \neg drug)$                                    |
| Ratio                  | *** ***                                        |                                                            |
| ROR                    | a / c                                          | $Pr(ae \mid drug)/Pr(\neg ae \mid drug)$                   |
| Reporting Odds Ratio   | <u>b</u> , / d                                 | $\overline{\Pr(ae \mid \neg drug)/\Pr(\neg ae \mid drug)}$ |
| Information Component  |                                                | $\Pr(ae \mid drug)$                                        |
|                        | <u>a</u> * (a + b + c + d)<br>Log <sub>2</sub> | $\log_2 \frac{\Pr(ae)}{\Pr(ae)}$                           |
|                        | $(\underline{a} + c) * (a + b)$                |                                                            |

## These Measures not "Robust"

|          | AE = Yes    | AE = No        |
|----------|-------------|----------------|
| D1 = Yes | <u>a</u> =1 | b=100          |
| D1 = No  | <u>c</u> =5 | <u>d</u> =1080 |

|                           | AE = Yes    | AE = No |
|---------------------------|-------------|---------|
| $D_{\underline{2}} = Yes$ | <u>a</u> =2 | b=100   |
| D <u>2</u> = No           | <u>c</u> =5 | d=1080  |

| Measure | Drug D1 | Drug D2 |
|---------|---------|---------|
| PRR     | 2.1     | 4.3     |
| ROR     | 2.2     | 4.3     |
| IC      | 1.0     | 1.7     |
| RR      | 2.0     | 3.3     |

## Bayesian Statistics

The Bayesian approach has deep historical roots but required the algorithmic developments of the late 1980's before it was of any use

The old sterile Bayesian-Frequentist debates are a thing of the past

Most data analysts take a pragmatic point of view and use whatever is most useful

## Think about this...

|            |         | Hospital |              |              |         |         |         |              |     |    |         |         |
|------------|---------|----------|--------------|--------------|---------|---------|---------|--------------|-----|----|---------|---------|
|            | ${f A}$ | ${f B}$  | $\mathbf{C}$ | $\mathbf{D}$ | ${f E}$ | ${f F}$ | ${f G}$ | $\mathbf{H}$ | Ι   | J  | ${f K}$ | ${f L}$ |
| No. of     |         |          |              |              |         |         |         |              |     |    |         |         |
| ops. $n$   | 27      | 148      | 119          | 810          | 211     | 196     | 148     | 215          | 207 | 97 | 256     | 360     |
| No. of     |         |          |              |              |         |         |         |              |     |    |         |         |
| deaths $r$ | 0       | 18       | 8            | 46           | 8       | 13      | 9       | 31           | 14  | 8  | 29      | 24      |

Denote by  $\theta$  the probability that the next operation in Hospital A results in a death

Use the data to estimate (i.e., guess the value of)  $\theta$ 

# Hospital Example (0/27)

$$f(\theta \mid data) = \frac{f(data \mid \theta) f(\theta)}{f(data)} \propto f(data \mid \theta) f(\theta)$$

posterior distribution

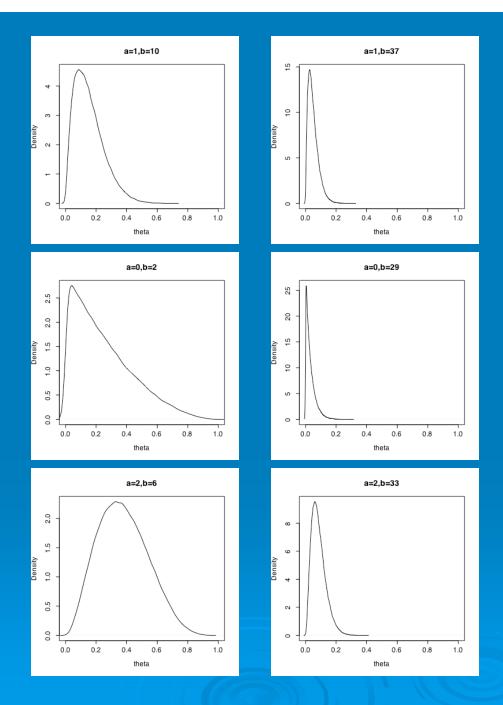
likelihood

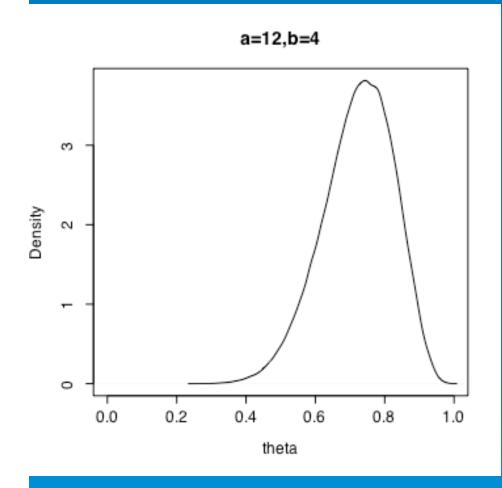
$$\binom{27}{0}\theta^0(1-\theta)^{27}$$

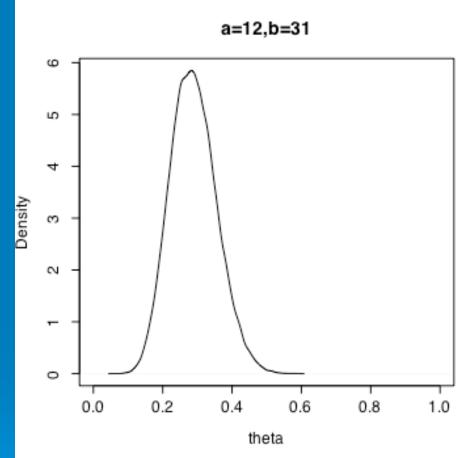
prior distribution

$$c\theta^a(1-\theta)^b$$

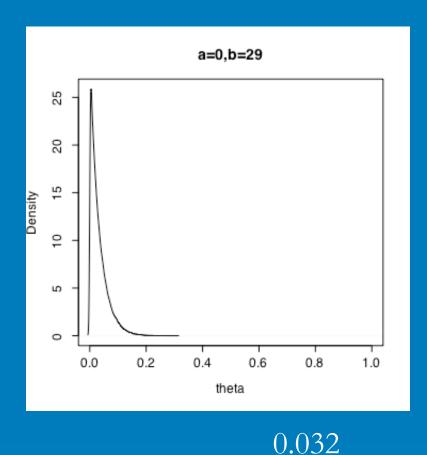
$$\propto \theta^{a+0} (1-\theta)^{b+27}$$







Unreasonable prior distribution implies unreasonable posterior distribution



What to report? Mode? Mean? Median? 0.013 Posterior probability that theta exceeds 0.2? theta\* such that Pr(theta > theta\*) = 0.05 theta\* such that Pr(theta > theta\*) = 0.95 0.002

\_0.023

## More formal treatment...

|            |              | Hospital |              |              |         |         |              |              |     |    |              |              |
|------------|--------------|----------|--------------|--------------|---------|---------|--------------|--------------|-----|----|--------------|--------------|
|            | $\mathbf{A}$ | ${f B}$  | $\mathbf{C}$ | $\mathbf{D}$ | ${f E}$ | ${f F}$ | $\mathbf{G}$ | $\mathbf{H}$ | Ι   | J  | $\mathbf{K}$ | $\mathbf{L}$ |
| No. of     |              |          |              |              |         |         |              |              |     |    |              |              |
| ops. $n$   | 27           | 148      | 119          | 810          | 211     | 196     | 148          | 215          | 207 | 97 | 256          | 360          |
| No. of     |              |          |              |              |         |         |              |              |     |    |              |              |
| deaths $r$ | 0            | 18       | 8            | 46           | 8       | 13      | 9            | 31           | 14  | 8  | 29           | 24           |

Denote by  $\theta_i$  the probability that the next operation in Hospital i results in a death

Assume  $\theta_i \sim \text{beta}(a,b)$ 

Compute joint posterior distribution for all the  $\theta_i$  simultaneously

|                  | Hospital |       |              |      |              |      |      |       |      |      |       |          |
|------------------|----------|-------|--------------|------|--------------|------|------|-------|------|------|-------|----------|
|                  | Α        | В     | $\mathbf{C}$ | D    | $\mathbf{E}$ | F    | G    | Н     | Ţ    | J    | K     | ${ m L}$ |
| No. of Ops $(n)$ | 27       | 148   | 119          | 810  | 211          | 196  | 148  | 215   | 207  | 97   | 256   | 360      |
| Raw Rate $(x/n)$ | 0.00     | 12.16 | 6.72         | 5.68 | 2.37         | 6.63 | 6.08 | 14.42 | 6.76 | 8.25 | 11.33 | 6.67     |
| Post. Mean       | 5.77     | 10.50 | 7.01         | 5.88 | 4.15         | 6.86 | 6.58 | 12.58 | 6.94 | 7.85 | 10.34 | 6.81     |
| Post. S.D.       | 2.3      | 2.3   | 1.8          | 0.8  | 1.3          | 1.5  | 1.6  | 2.2   | 1.5  | 2.1  | 1.8   | 1.2      |
| Raw Rank         | 1        | 11    | 7            | 3    | 2            | 5    | 4    | 12    | 8    | 9    | 10    | 6        |
| Post. Rank       | 2        | 11    | 8            | 3    | 1            | 6    | 4    | 12    | 7    | 9    | 10    | 5        |

"Borrowing strength"

Shrinks estimate towards common mean (7.4%)

Technical detail: can use the data to estimate a and b

This is known as "empirical bayes"

## Relative Reporting Ratio

$$N_{ij}$$
 AE<sub>j</sub> Not AE<sub>j</sub>

Drug<sub>i</sub>  $a=20$   $b=100$ 

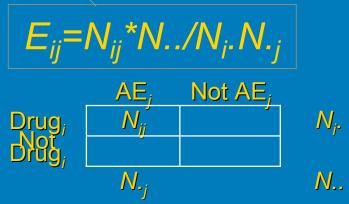
Not  $c=100$   $d=980$ 

- If the Drug and the AE were independent, what would you expect a to be?
  - Overall (a+c)/(a+b+c+d)=120/1200=10% have the AE
  - So, 10% of the "Drug" reports should have the AE
  - That is  $(a+b)^*((a+c)/(a+b+c+d))=120^*10\%=12=E_{ii}$
  - Note  $N_{ii}/E_{ii}=a/(a+b)*((a+c)/(a+b+c+d))=RR$
  - RR = 20/12 = 1.67 = N/E = Pr(AE|Drug)/Pr(AE)

# Relative Reporting Ratio

$$(RR_{ij}=N_{ij}/E_{ij})$$

- > Advantages
  - Simple
  - Easy to interpret
- Disadvantages



- Extreme sampling variability when baseline and observed frequencies are small
   (N=1, E=0.01 v.s. N=100, E=1)
- GPS provides a shrinkage estimate of RR that addresses this concern.

## Same Relative Reporting Ratio!

|                   | $AE_i$ | Not AE,          |
|-------------------|--------|------------------|
| Drug <sub>i</sub> | a=1    | b=5 <sup>°</sup> |
| Drug;             | c=5    | d=49             |

Chi-square = 0.33

$$\begin{array}{c|c} AE_{j} & \text{Not } AE_{j} \\ \text{Drug}_{i} & a=20 & b=100 \\ \text{Not } & c=100 & d=980 \end{array}$$

Chi-square = 6.58

$$AE_{j}$$
 Not  $AE_{j}$ 

Drug;  $a=200$   $b=1000$ 

Not  $c=1000$   $d=9800$ 

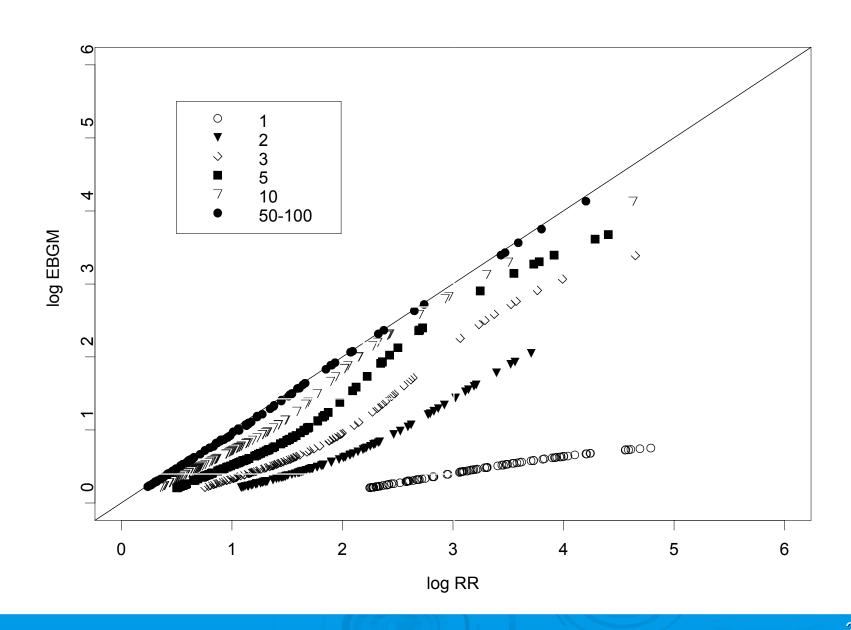
Chi-square = 65.8

#### GPS/MGPS

- GPS/MGPS follows the same recipe as for the hospitals
- ightarrow Denote by  $ho_{ii}$  the true RR for Drug i and AE j
- $\succ$  Assumes the  $ho_{ij}$ 's arise from a particular 5-parameter distribution
- Use empirical Bayes to use the data to estimate these five parameters.

## GPS-EBGM

- $\rightarrow$  Define  $\lambda_{ij} = \mu_{ij} / E_{ij}$ , where
  - N<sub>ij</sub> ~ Poisson( μ<sub>ij</sub> )
  - $\lambda_{ij} \mid \lambda \sim p * g(\lambda; \alpha_1, \beta_1) + (1-p) * g(\lambda; \alpha_2, \beta_2)$ a mixture of two Gamma Distributions
- > EBGM = Geometric mean of Post-Dist. of  $\lambda_{ij}$ 
  - Estimates of μ<sub>ij</sub> / E<sub>ij</sub>
  - "Shrinks"  $N_{ij} / E_{ij} \rightarrow 1$
  - Smaller variances than N<sub>ij</sub> /E<sub>ij</sub>

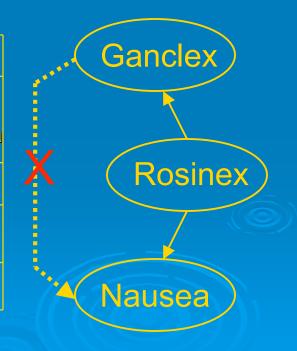


## Simpson's Paradox

Contingency table analysis ignores effects of drug-drug association on drug-AE association

Simpson's Paradox

|               | Ros    | inex         | No Ro      | osinex       | Total  |              |  |
|---------------|--------|--------------|------------|--------------|--------|--------------|--|
|               | Nausea | No<br>Nausea | Nause<br>a | No<br>Nausea | Nausea | No<br>Nausea |  |
| Ganclex       | 81     | 9            | 1          | 9            | 82     | 18           |  |
| No<br>Ganclex | 9      | 1            | 90         | 810          | 99     | 811          |  |
| RR            | ,      | 1            |            | 1            | 4.58   |              |  |

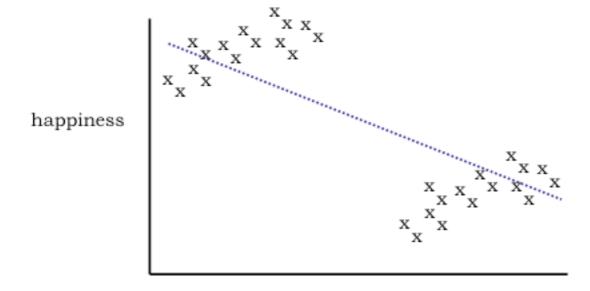


# Bad Things Can Happen...

#### **DATA**

happiness

#### simple regression line



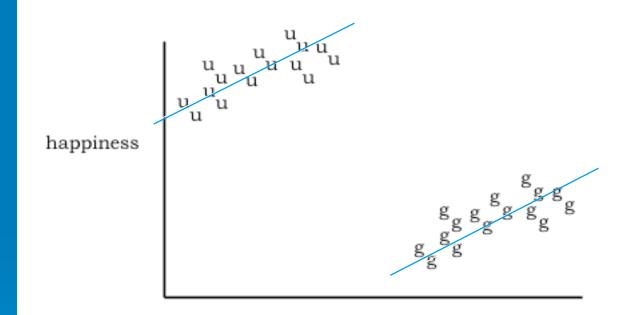
hours per week on studies

HAP =  $\beta_0$  +  $\beta_1$  x HOURS,  $\beta_1$  will be estimated to be negative

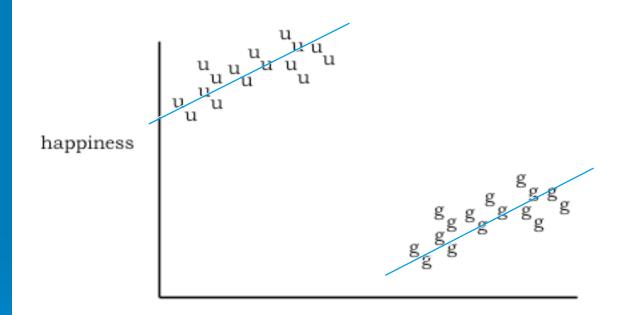
#### A 2<sup>nd</sup> Look at the DATA

happiness

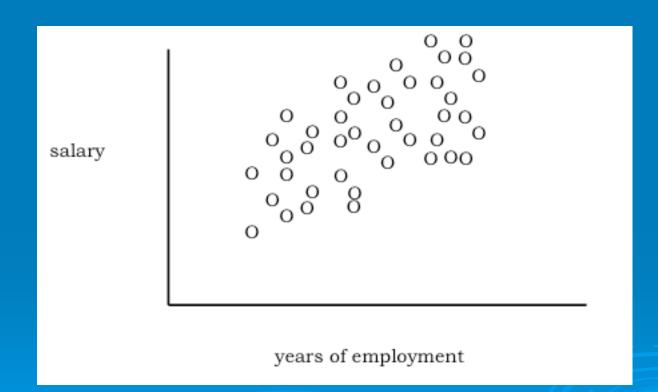
#### A 2<sup>nd</sup> Look at the DATA



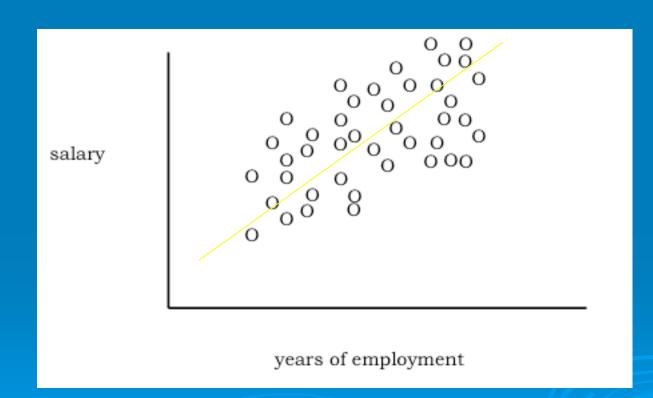
#### A 2<sup>nd</sup> Look at the DATA

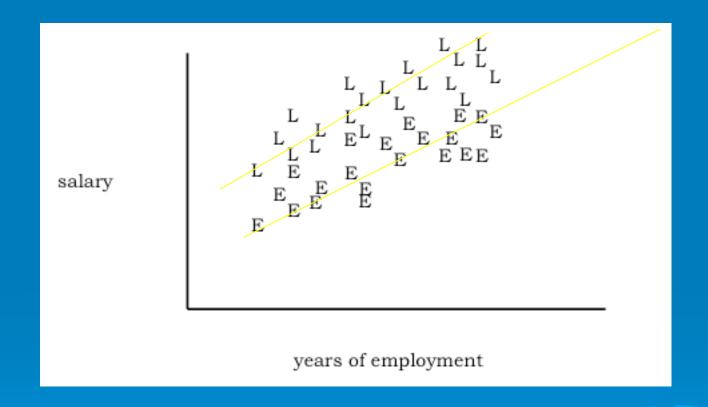


## Other Odd Things Can Happen...



## Other Odd Things Can Happen...





P(Vax B=1)=0.1
Vaccine B

P(Vax A=1|Vax B=1)=0.9 P(Vax A=1|Vax B=0)=0.01

Vaccine A

P(Sym1=1|Vax B=1)=0.9 P(Sym1=1|Vax B=0)=0.1

## Symptom 1

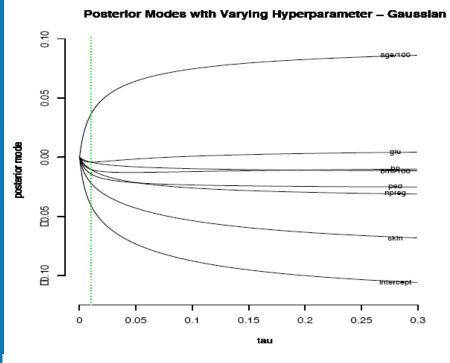
|          |             | Sym1 vs   | Vax A | Sym1 vs Vax B |      |  |
|----------|-------------|-----------|-------|---------------|------|--|
|          |             | Value     | Rank  | Value         | Rank |  |
| N        |             | 1673      | 2     | 1826          | 1    |  |
|          | Normal      | -3.05E-02 | 4194  | 4.69          | 5    |  |
| Bayesian | Normal-CV   | 0.885     | 151   | 3.44          | 6    |  |
| Logistic | Laplace     | -3.00E-02 | 9136  | 4.69          | 13   |  |
| Method   | Laplace-CV  | 0.00      | 9127  | 3.99          | 7    |  |
| GPS EBGM |             | 2.84      | 73    | 3.02          | 68   |  |
| Obser    | Observed RR |           | 744   | 3.03          | 681  |  |

## Logistic Regression

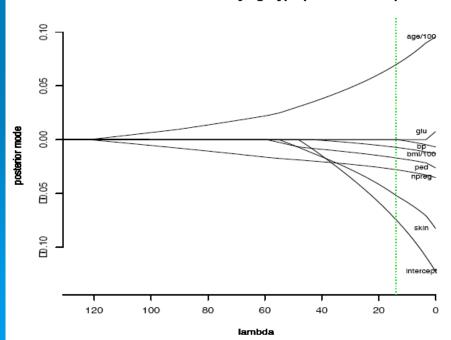
- $> \log [P/(1-P)] = intercept + \sum (each drug effect)$ 
  - P = Pr (report with these drugs will have the AE)
- > Classic logistic regression hard to scale up
  - Huge number of predictors (drugs)
- Bayesian Logistic Regression (Shrinkage Method)
  - Put a prior on coefficients  $(\beta_1, ..., \beta_p)$ , and shrink their estimates towards zero
    - Stabilize the estimation when there are many predictors
    - Bayesian solution to the multiple comparison problem

# Bayesian Logistic Regression

- > Two shrinkage methods
  - Ridge regression Gaussian prior  $\beta_i \sim N(0,\lambda)$
  - Lasso regression Laplace prior  $f(\beta_i)$  ∝ exp{-  $\lambda \mid \beta_i \mid^{\lambda}$ }
- > Choosing hyperparameter λ
  - Decide how much to shrink
  - Cross-validation: choose prior to fit left-out data
  - Aggregation method by Bunea and Nobel (2005)



#### Posterior Modes with Varying Hyperparameter Laplace



# Bayesian Logistic Regression

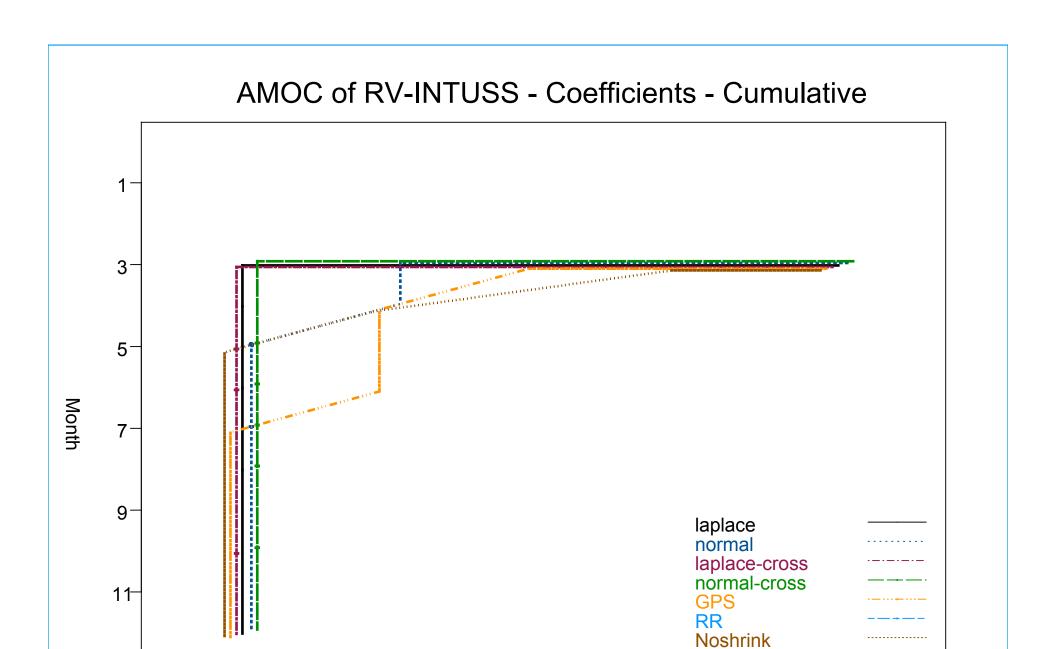
- > Software: Bayesian Binary Regression (BBR)
  - http://stat.rutgers.edu/~madigan/BBR
  - Two priors: Gaussian and Laplace
  - Hyperparameter: fixed, default and CV
  - Handles millions of predictors efficiently
- Safety Signal: an apparent excess of an adverse effect associated with use of a drug
  - Coefficients β's logs of odds ratios
  - Pr( $AE_j \mid drug_i$ ) Pr( $AE_j \mid not drug_i$ )

## **Evaluation Strategies**

- Top-Rank Plot for Safety Signal
  - To compare the timeliness of outbreak detection
  - Similar to AMOC (Activity Monitor Operating Characteristic) curve in fraud detection
  - Y window (month in 1999)
  - X Top rank of association from window 1 to corresponding window

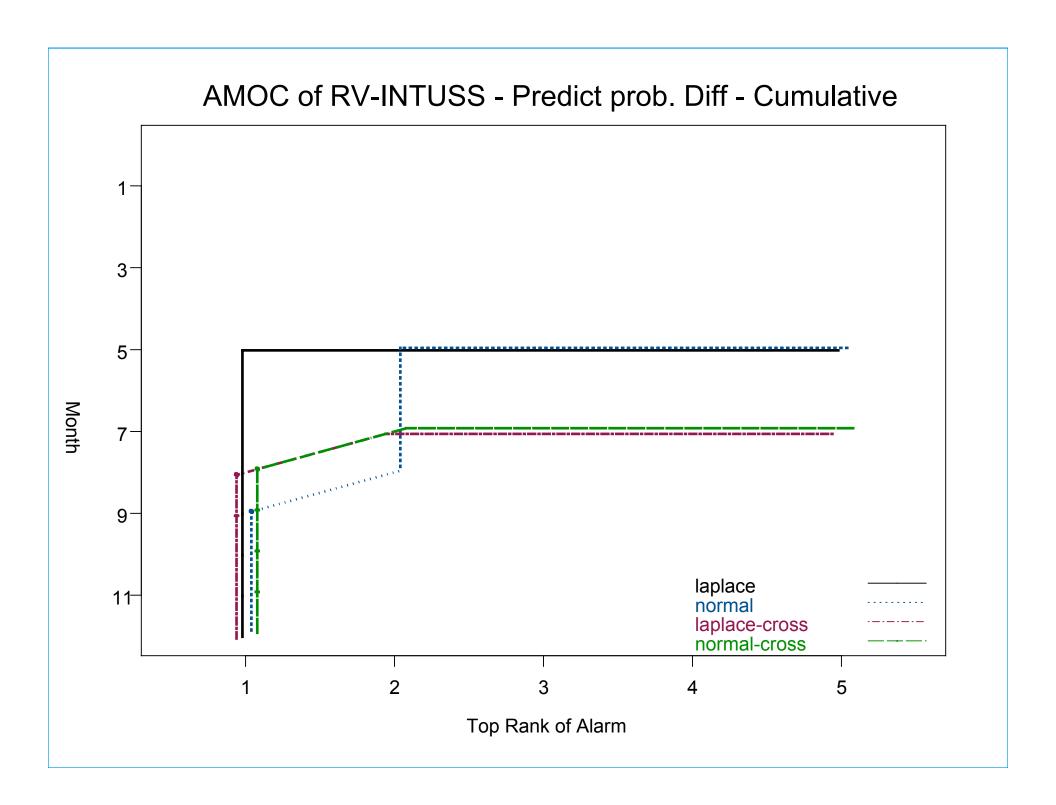
### RV v.s. INTUSS

- > Rotavirus
  - Severe diarrhea (with fever and vomiting)
  - Hospitalize 55,000 children each year in US
- Intussusception (INTUSS)
  - Uncommon type of bowel obstruction
- RotaShield (RV)
  - Licensed on 8/31/1998 in US
  - Recommended for routine use in infants
  - Increased the risk for intussusception
    - 1 or 2 cases among each 10,000 infants
  - On 10/14/1999, the manufacturer withdrew RV



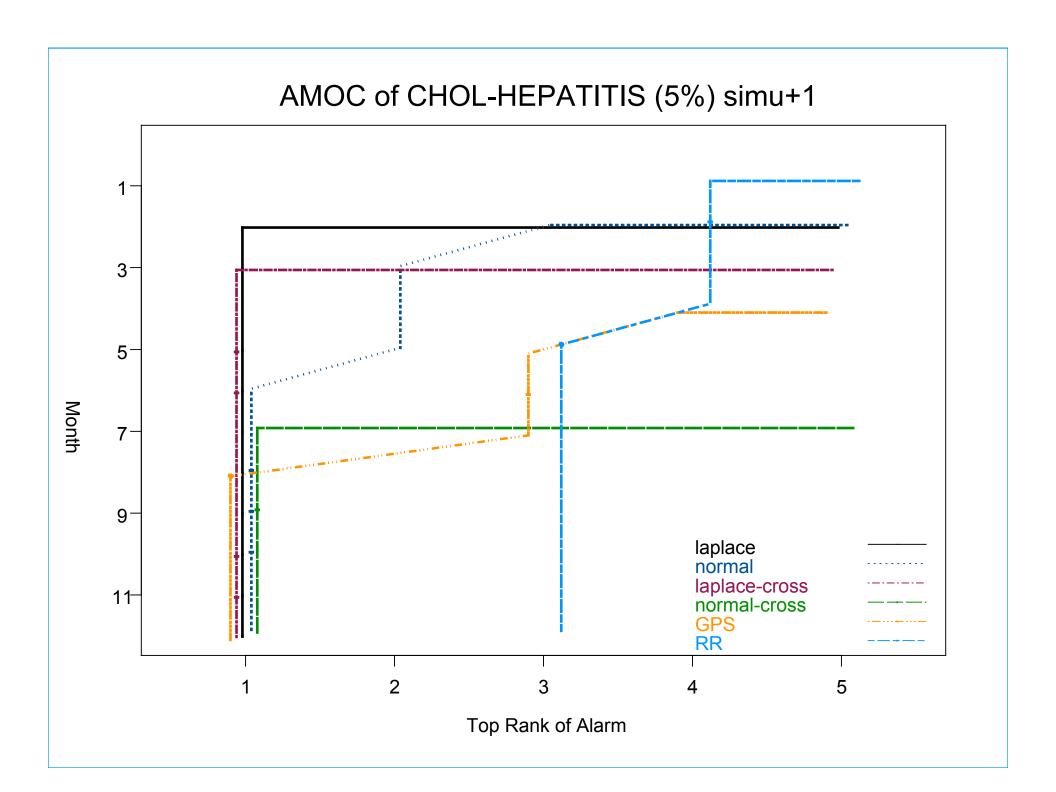
3

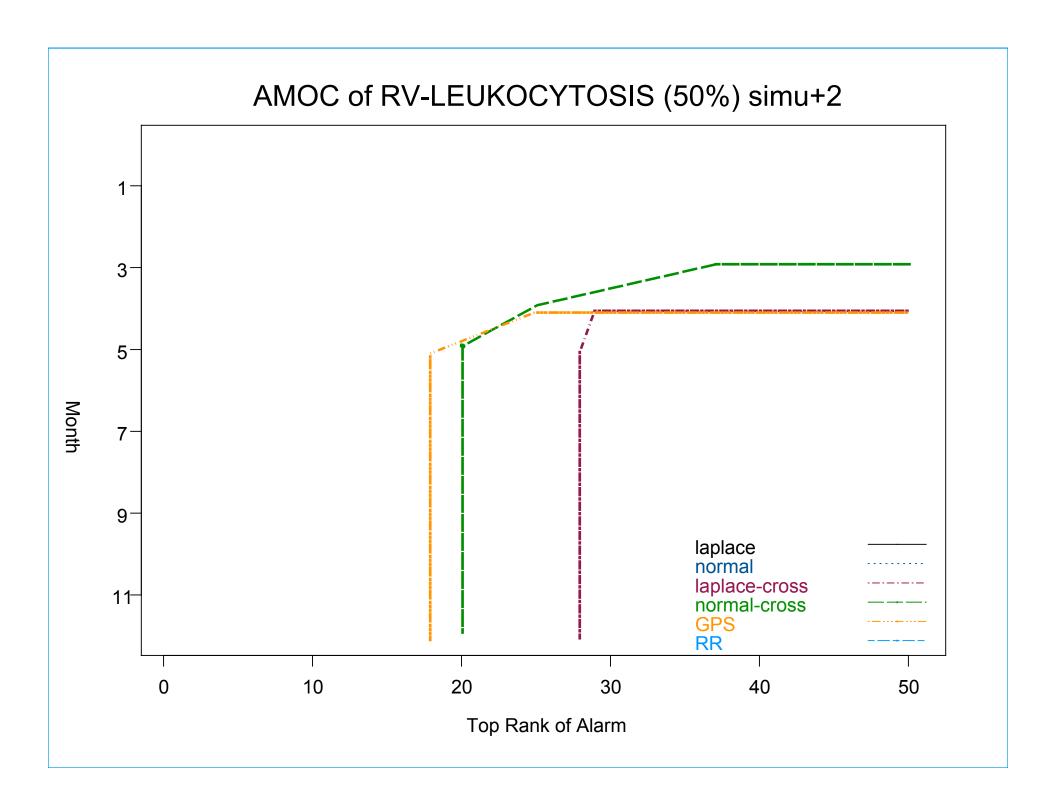
Top Rank of Alarm

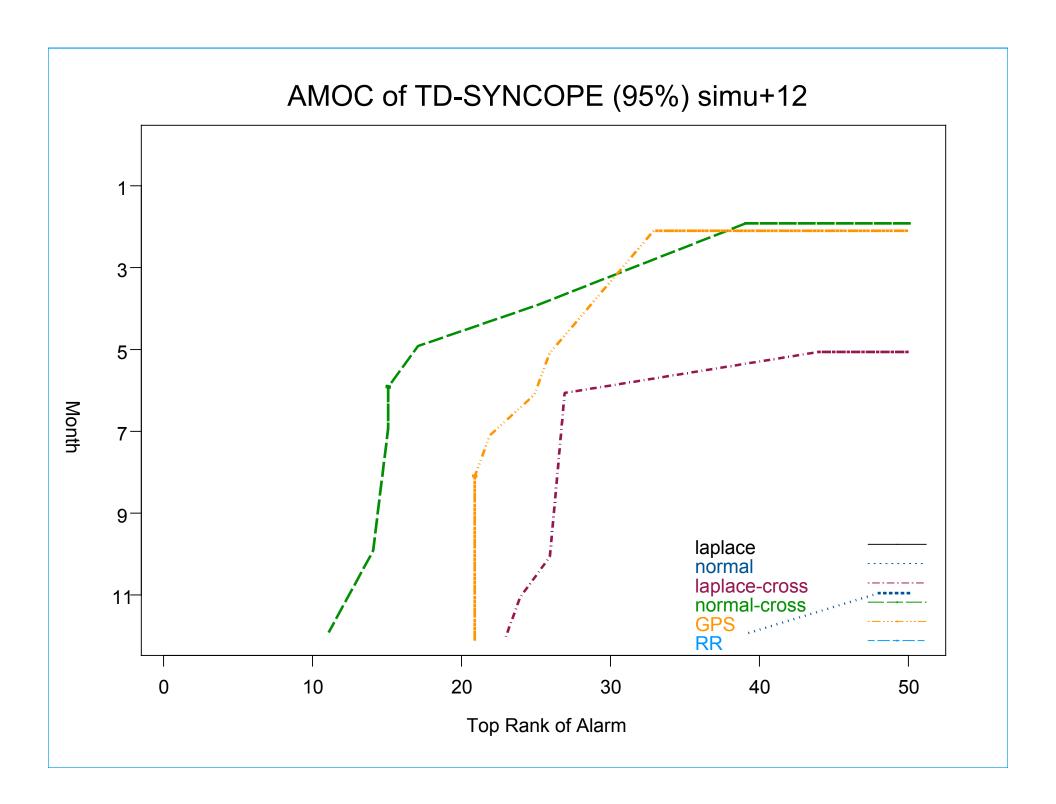


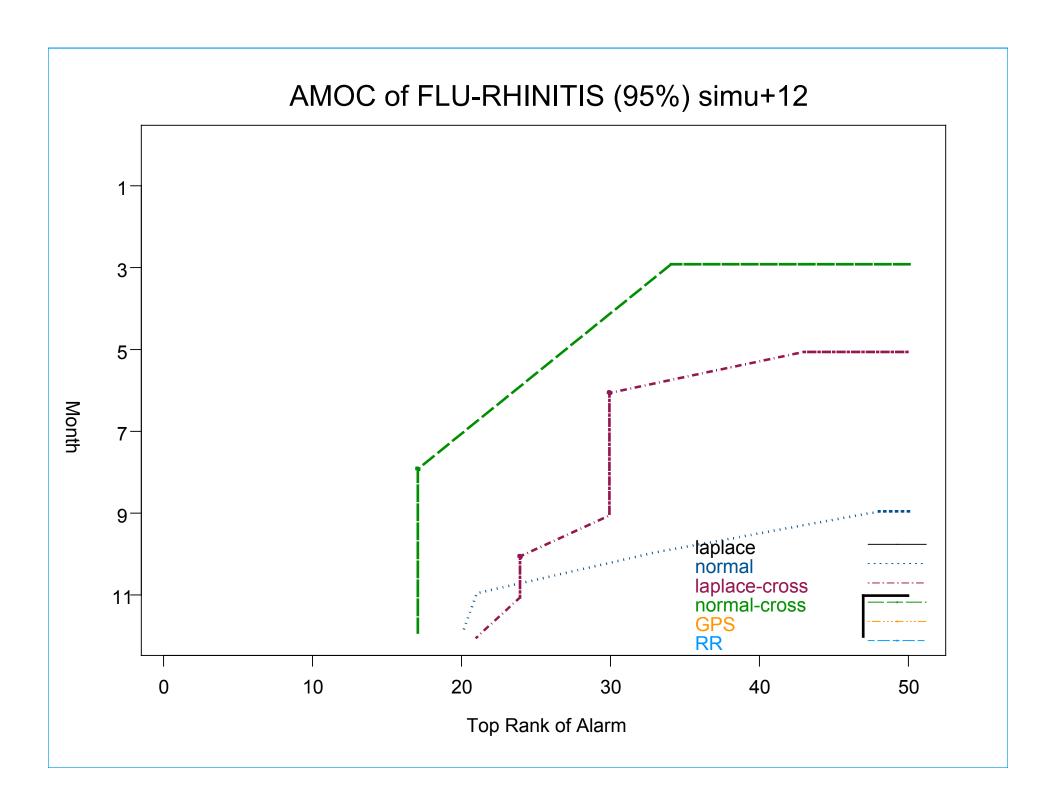
#### Simulation

- Step-by-step procedure
  - Choose either a rare (5%, 1), intermediate (50%, 3), or common (95%, 100) vaccine adverse event (V-A) combination
  - Use year 1998 data as baseline
  - Add extra report(s) per month of 1999 containing the chosen V-A combination
  - Generate the AMOC curve









#### Conclusions of Simulation

- The Bayesian Logistic Regressions (Normal-CV and Laplace-CV) signal consistently, and are at least as good as GPS method
- Simple RR cannot signal for intermediate and common cases
- GPS is relatively good on rare and intermediate cases, but not stable on common cases

## Discussion of Logistic Method

- Advantages over low-dimensional tables
  - Correct confounding and mask effect
  - Analyze multiple drugs/vaccines simultaneously
- > Limitations
  - Build separate model for each AE
    - Ignore dependencies between AEs
  - Fail to adjust for unmeasured/unrecorded factors
    - health status, unreported drugs, etc.
  - Model-based approach
    - Require model assumptions

#### Causal Inference View

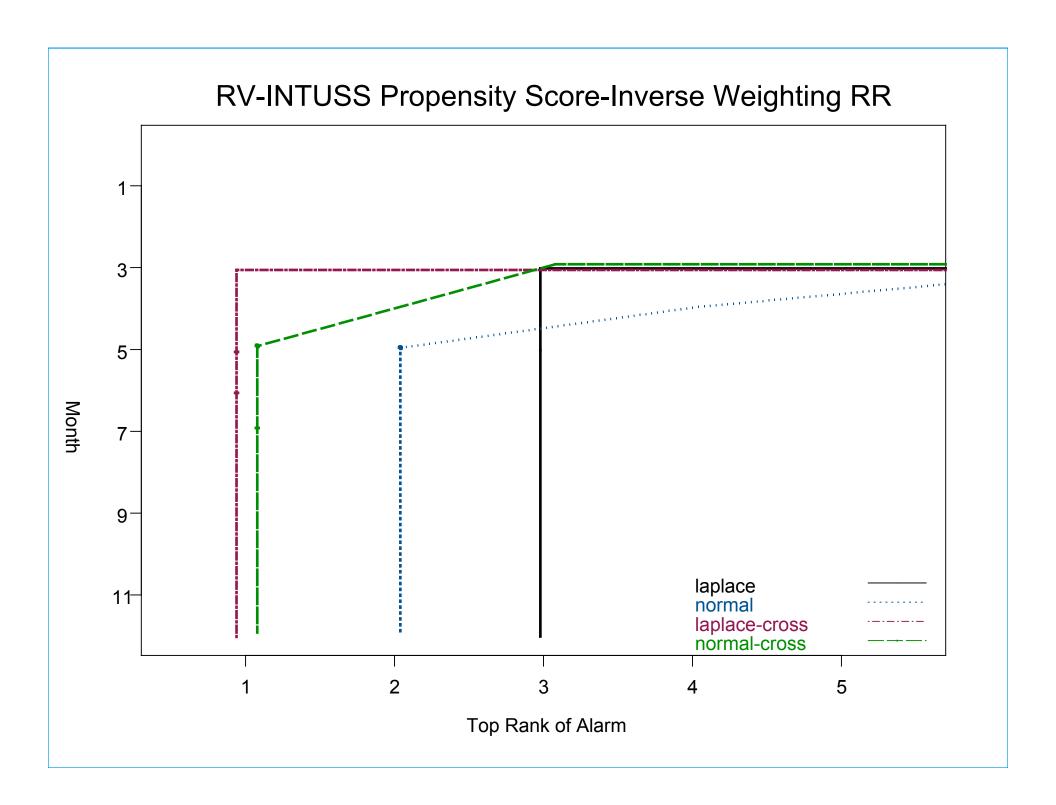
- > Rubin's causal model
  - Potential outcomes
    - Factual outcome
      - I took an aspirin and my headache went away
    - Counterfactual outcome
      - If I hadn't taken an aspirin, I'd still have a headache
- > Define:
  - $Z_i$ : treatment applied to unit i (0=control, 1=treat)
  - $Y_i(0)$ : response for unit *i* if  $Z_i = 0$
  - $Y_i(1)$ : response for unit *i* if  $Z_i = 1$
  - Unit level causal effect: Y<sub>i</sub>(1) Y<sub>i</sub>(0)
  - Fundamental problem: only see one of these!

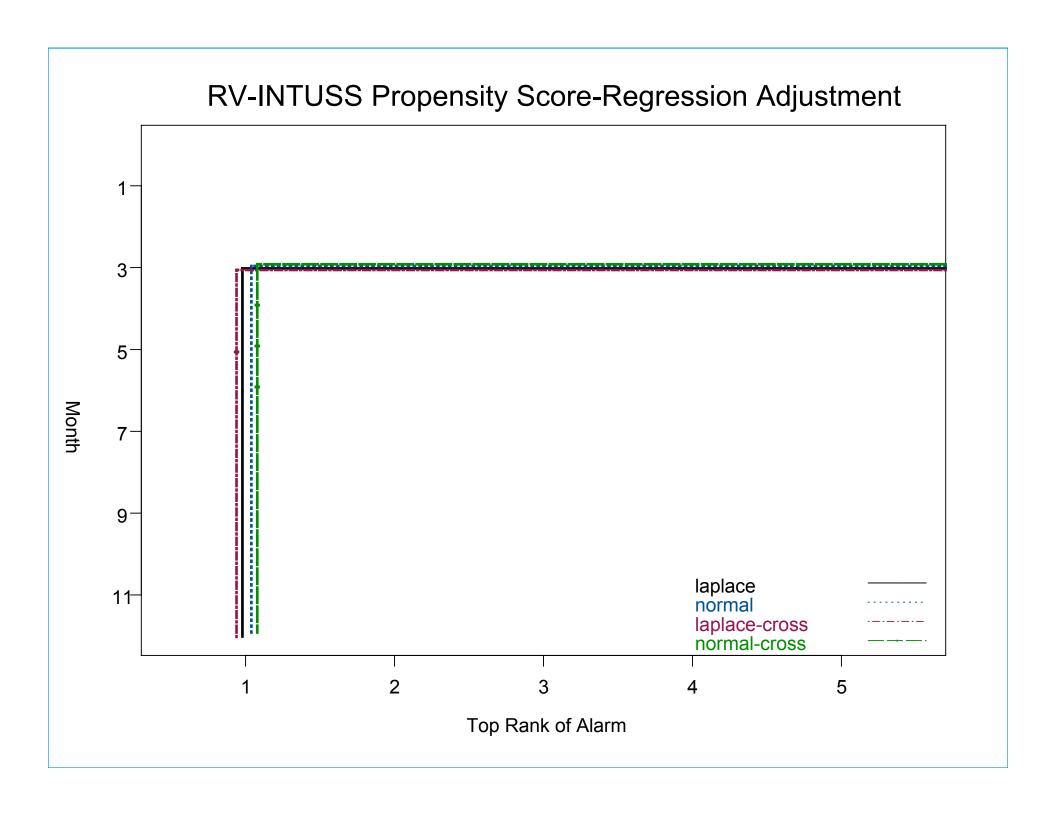
## Bias Due To Confounding

- Individuals are observed already under their respective conditions
- The two groups may differ in ways other than just the observed condition
- Average effects may be biased due to confounding between covariates and group condition
- We can simulate randomization or counterfactual world using information from observational study...sort of

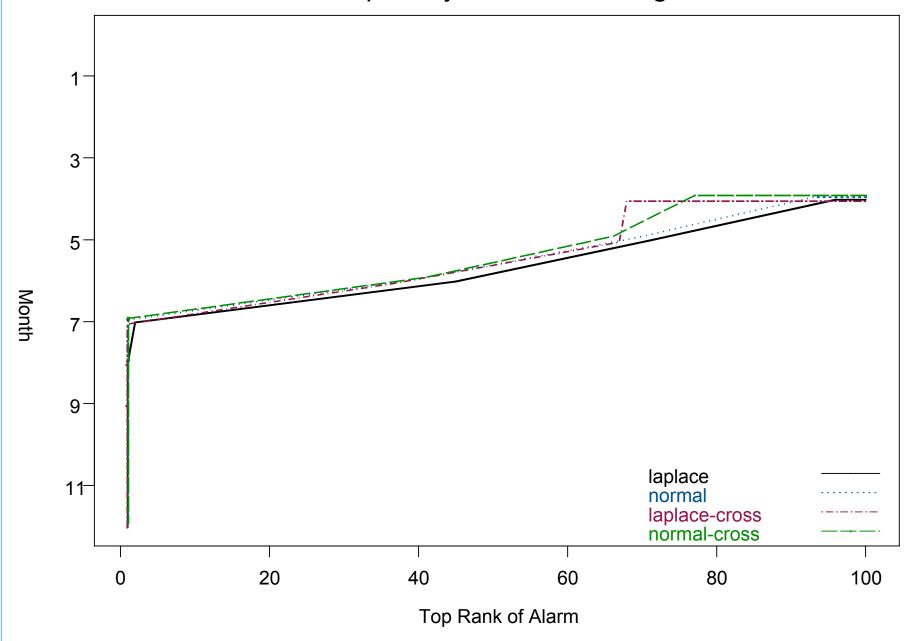
# Propensity Score Method

- > Definition
  - $e(x_i) = P(Z_i=1 \mid X_i=x_i)$ Conditional probability of assignment to test treatment  $Z_i=1$  given observed covariates
  - Assuming no unmeasured confounders, stratifying on  $e(x_i)$  leads to causal inferences just as valid as in randomized trials
- > Methods with propensity scores:
  - Inverse weighting
  - Regression adjustment
  - Matching









#### Conclusion

- "First generation" Method
  - Contingency table methods
  - Deal with each drug and each adverse event in isolation
- "Second generation" Method
  - Bayesian logistic regression
  - Propensity score
  - Deal with large numbers of drugs jointly and with multidrug interactions
- > Ultimate Method
  - Not only interactions and relationships among drugs, but also adverse events
  - Question: which sets of drugs cause which sets of adverse events?