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Data Mining for Drug Safety

Spontaneous reports
• Disproportionality and Bayesian smoothing
• Computer environment—Drilldown, signal management
• Drug interaction signals
• Logistic regression on spontaneous report databases

Clinical trial safety data analyses
• CDISC standard—pooling events from many trials
• Multiple comparisons—Many events, many subgroups
• Bayesian smoothing of rare-event probabilities
• Searching for unexpected syndromes due to treatment
• Subgroup analyses using Bayesian logistic regression
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Databases of Spontaneous Adverse 
Drug Reaction Reports

US FDA Spontaneous Report System (SRS/AERS)
• Post-Marketing Surveillance of all Drugs since 1969
• Renamed AERS (Adverse Event Reporting System) in 1997

– New ADR Coding System (COSTART vs. MedDRA)

• Version without Identifiers Available Publicly

US FDA/CDC Vaccine Adverse Events (VAERS)
• Stricter US Laws for Vaccine Adverse Event Reporting

Other Databases for Medical Devices, etc.

World Health Organization VIGIBASE
• Includes Data from many Countries
• ADR Coding System WHOART
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Objectives and Limitations of 
Analyses of Spontaneous Reports

Explore for Drug-Event Associations
• Estimate a Measure of Association for every Combination
• How Can a Rate Be Defined without a Denominator?

– Matching External Sales or Prescription Counts Not Feasible
– Construct Internal Denominators from Independence Model

• Screening Objective – All Findings Require Follow-up

Severe Limitations of Data Reliability
• No Research Protocol
• Adverse Event Report Rates Vary from Year to Year
• Report Rates Vary by Drug and by ADR Type
• No Certainty that a Reported Reaction Was Causal
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Constructing a Denominator for N

For every DiEj pair = (Drug of Interest, Event of Interest)
• Use the database to tabulate a 2 x 2 table of report counts
• Compute an expected or baseline count  e from (a, b, c, d)

– Based on assumption of no association between Drug and Event
– e = b(a + c)/(b + d) [Proportional Reporting Ratio method]
– e = bc/d [Reporting Odds Ratio method]
– e = (a + b)(a + c)/(a+b+c+d) [Relative Report Rate: MGPS method]

• This method works best when adjusting for trend or demographic covariates in computation of e

• n/e = Measure of Disproportionality for this Drug and Event

Reports 
With Drug i

Reports
W/O Drug i Total

Reports 
With Event j nij = a b a + b

Reports 
W/O Event j c d c + d

Total a + c b + d a+b+c+d
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Disproportionality Analyses

Although the idea of computing n/e ratios for all or some drug-event 
combinations is simple, its widespread use is very recent

• Computer and database advances enabled ease of use and evaluation

Biostatisticians were uncomfortable with performing formal analyses on 
tabulations of spontaneous reports

• Unknown reporting mechanism can lead to reporting biases
• Frequent noncausal associations with indications and comorbidities
• All large values of  n/e require follow-up for medical validity

Small values of  n and/or  e require statistical sophistication
• PRR requires threshold values of n and 2 x 2 table chi-squared value
• Bayesian statistical methods produce “shrinkage” values of  n/e

– Help avoid the “multiple comparisons” fallacy
• US FDA, UK MHRA and WHO UMC have each adopted Bayesian 

disproportionality methods
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Combined Analysis of Drug-Event 
Counts in a Database

Large Two-Way Table with Possibly Millions of Cells
• One Column for each Drug, One Row for each Event
• Rows and Columns May Have Thousands of Categories
• Most Cells Are Empty, even though N.. Is very Large

“Bayesian Data Mining in Large Frequency Tables”
• The American Statistician (1999) (with Discussion)
• SRS Database with 1398 Drugs and 952 AE Codes
• Nij = Count of Reports Containing Drug i and Event j
• Only 386 000 out of 1 331 000 Cells Have Nij > 0
• 174 Drug-Event Combinations Have Nij > 1000
• Develops and Illustrates Bayesian Estimation Method “GPS”
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Empirical Bayes Gamma-Poisson 
Shrinker (GPS Method)

Estimate λij = µij /Eij , where  Νij ~ Poisson(µij )

Assume Superpopulation Model for λ
• Prior Distribution Is Mixture of 2 Gamma Distributions
• Estimate the 5-Parameter Prior from All the (Nij , Eij) Pairs

Posterior Distributions of each λij Are Used to Create 
“Shrinkage” Estimates

• EBGM = Empirical Bayes Geometric Mean of Posterior Dist.
– Estimate of µij /Eij Has Smaller Variance than Nij /Eij

• Rank Cells by EB05ij = Lower 5% Point of Posterior Dist.
• More “Interesting” than Ranking Cells Based on “P-Values”

– Compare (N = 10, E = 0.1)  to  (N = 2000, E = 1000)
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Plot of Classical Estimate with Conf. Int. 
and Bayesian “Shrinkage” Estimates [O]
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Example of Large Signal with Small N

Rotovirus  Vaccine

The RV Vaccine Was Used in U.S. in 1998-99 and Was 
Withdrawn from the Market when the Association with 
Intussusception, a Severe GI Condition, Was Confirmed. 
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Computerized Safety Signal Analysis
Data mining and statistical signal detection

• Empirical Bayes estimates of relative reporting rate (EBGM)
• Proportional Reporting Ratios (PRR)
• Graphical and tabular presentation

Access to safety report data
• Drilldown to case data from data mining associations
• A case series feature to organize and record evaluations
• Analyses of both public and private safety databases

Modern web-based software
• All processing on server
• Simple web browser client – operates through firewalls

In-House Data Can Be Combined with Public Databases
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Cardiac Signals for Rofecoxib
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Comparisons of NSAIDS in AERS

AERS to 3Q03 (Suspect drugs)
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Importance of Studying Drug 
Interactions

Drug interactions cause up to 2.8% of hospital admissions

(Grymonpre et al. J Am Geriatr Soc 1988)

50% of elderly take 5 drugs/week; 12% take 10 drugs/week

(Harvard Health Letter: March 2004)

The more medications you take, 
the greater your chance of a drug interaction

Brand Name Generic Name
Baycol Cerivastatin

Propulsid Cisapride
Seldane Terfenadine
Hismanal Astemizole
Posicor Mibefradil

Drugs withdrawn due to severe drug interactions
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Interaction Analysis Approach
Overview of Method

• Yang, XM, Pharmacoepidemiology and Drug Safety 2004, 13, suppl 1: S247

• Introduce observed drug pairs as additional “pseudo-drugs”
• Reports with 3 drugs can be treated as reports with 6 “drugs”

Abacavir
Cisapride
Erythromycin
Abacavir-Cisapride
Abacavir-Erythromycin
Cisapride-Erythromycin

Abacavir
Cisapride
Erythromycin pseudo

drugs

Drug Event N EBGM PRR
Cisapride Torsade de pointes 92 19.525 69.919 
Erythromycin Torsade de pointes 58 20.425 13.227 

Cisapride-Erythromycin Torsade de pointes 18 228.733 755.355
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More Torsade de Pointes Examples

Torsade de pointes signal scores where the 
difference between the signal score for each 
drug alone and for the combination is large
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Masking – Effect of Background Rate

A relative reporting rate needs a denominator
• This background or “noise” rate should ideally exclude effects 

of predictors having very large signals

MGPS, PRR and similar methods naively assume that 
all reports excluding the one drug being focused on are 
background noise

• The “control group” may include other drugs with very high 
signals for the event of interest

• Analysis should estimate the effects of more than one drug at a 
time

– 2 x 2 Table analysis is too simple
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Confounding

Unless multiple predictors are themselves uncorrelated, one-
predictor-at-a-time analyses can be biased

• GPS, PRR and similar methods don’t account for effect of Drug-Drug 
associations on Drug-Event associations

• Drugs that are often prescribed together can be confounded
– Co-prescribed drugs partially inherit each other’s associations

• Synonymous terms
– Signal leakage
– Innocent bystander effect

Need a multivariate methodology
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Multiple Regression Analysis
Standard method for deconfounding predictors 

• Adverse event as response (dependent variable)
• Stratification variables and drug presence/absence as predictors
• Background noise rate automatically estimated
• Can be extended to estimate drug interactions 

Several variants of multiple regression are available
• Logistic regression most often used when response is event 

presence/absence
– Assumes log[P/(1-P)] is a sum of predictor effects
– Coefficients are interpreted as logs of odds ratios

• Must verify assumptions of particular regression model 

Different regression fit for each adverse event
• Each regression has coefficients for many different drugs
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Shrinkage Methods for Regression

Put a Prior Distribution on the Coefficients (B1, B2, …)
• The Prior Distribution Moves the Estimated Bs Toward 0

– Stabilizes the estimation when there are very many predictors
– Bayesian solution to the multiple comparisons problem

• Combining regressions on different responses (events)
– Medically related events (e.g. same SOC) may have similar coefficients
– Bayesian hierarchical model can allow “borrowing strength” across events

Common Ways to Choose the Prior Distribution
• Must Decide How Much to Shrink
• Cross-Validation: Choose Prior to Fit Left-Out Data
• Bayes: Fit Prior Parameters at Same Time as the Bs
• Methods Are Well-Developed in Data Mining Literature
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Szarfman (2005 FDA Science Forum)
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Clinical Trial Safety Data
Similarities with spontaneous report data

• Could use 2 x 2 table analyses or logistic regression
• Must cope with multiple comparisons

Differences
• Smaller sample sizes
• Usually just two treatments vs. thousands in database
• Prospective study
• Randomized allocation of treatment
• More valid comparison group

Active surveillance studies
• Large longitudinal database of medical records
• Attempt to match users of two drugs with propensity scores
• Maybe closer to clinical trial data than to spontaneous reports
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Pooling Data Across Trials

Combined analysis of multiple trials comparing the same 
treatment

• May be the best option for studying rare adverse events
• Analyses can adjust for varying background rate per trial
• Similar to pooled-data meta-analyses

CDISC data format standard for clinical trials
• Consortium of FDA, drug companies, and software firms
• FDA has announced eventual requirement for all NDAs
• Several such NDAs have been submitted already
• Some FDA reviewers are now doing partial conversions to CDISC 

SDTM format to allow combined safety reviews
• Software to take advantage of the data standard available or under 

development by various vendors
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Bayesian Shrinkage Models
Statistical validity of searching for extreme differences

• Most significant adverse event or patient subgroup

Classical approach to post-hoc interval estimates
• Maintain centers of CI at observed differences
• Expand widths of every CI 
• Expansion is greater the more differences you look at
• If you look at too many, the CI’s are too wide to be useful

Bayesian approach 
• Requires a prior distribution for differences

– Can estimate it from the multiple observed differences available
• Centers of CI’s are “shrunk” toward average or null difference

– High-variance differences shrink the most
• Widths of CI’s usually shrink a little too
• The more you look at, the better you can model the prior dist.
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Searching for Event Clusters
An event cluster (associated with treatment) is a set of at least three AEs 
for which all pairs of said AEs tend to show up in Treatment patients more 
often than Comparator patients and also more than expected if the AEs 
are independent within each arm of the study

• Defining potential syndromes by event frequency distributions rather than by 
theoretical medical mechanisms

We declare a potential syndrome if all pairs within a cluster meet some 
distributional threshold 

• Syndromic Odds Ratio for 2 events (Treatment vs. Comparator)
– SOR(E1,E2) = OR(E1*E2)/max[OR(E1), OR(E2), 1]

• Bayesian statistical methods estimate smoothed probabilities for AEs and 
pairs of AEs for each arm of the studies

– EB versions of Beta-binomial model seem to work well

• Clustering algorithms find groups of events having high SORs
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Empirical Bayes Beta-Binomial Model

Assume K different binomial distributions
• Nk ~ Binomial(nk, Pk) k = 1, …, K
• Pk ~ Beta(βXk1, βXk2) N, n, X known; Pk unknown

Suppose you want to shrink Nk/nk toward Xk1/(Xk1 + Xk2)
• Estimate β by maximum likelihood for beta-binomial distribution 
• Only one parameter to estimate
• Posterior mean of Pk = (Nk + βXk1)/(nk + βXk1 + βXk2)

Various choices of X for different applications
• Xk1 = p0, Xk2 = 1 – p0 [Shrink every Nk/nk toward p0]

The shrinkage estimators are useful when many of the counts are 0 and 
you want to estimate odds ratios

• Multiple comparisons protection when searching for extreme deviations
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Bayes Model for Event Probabilities
Events 1 to K with Treatment and Comparator Groups

• nt patients in treatment group, (n – nt) in comparator group
• Nkt treatment patients with event k, (Nk – Nkt) in comparator group
• Pk = probability of event k in treatment group  [= Nkt / nt ??]
• Qk = probability of event k in comparator group [= (Nk-Nkt)/(n-nt)??]
• Bayes model shrinks both Pk and Qk toward  Nk / n
• Equivalently, shrink every Nkt/Nk toward nt/n
• “Beta-binomial” Bayesian model for proportions
• Pk = (Nkt + βnt/n) / (Nk + βnt/Nk) [estimate β by EB method]
• Qk = (Nk - Nkt + β (n-nt)/n) / (n-Nk + β(n-nt)/Nk) [same β for all k]

Odds Ratios  OR.EBk = Pk(1 – Qk) / Qk(1 – Pk)
• 90% confidence intervals (OR.05k , OR.95k)
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Bayes Model for Event Pairs
Njk = Number of patients with both AE j and AE k

• Njkt and (Njk – Njkt) in treatment and comparator groups
• Pjk = probability of both event j and k in treatment patient
• Qjk = probability of both event j and k in comparator patient
• If AEs are independent, Pjk = PjPk and Qjk = QjQk

• Another beta-binomial model to shrink Njkt/nt toward PjPk and yet 
another to shrink (Njk – Njkt)/(n – nt) toward QjQk

Odds Ratios for AE pairs 
• ORjk = Pjk(1 – Qjk) / Qjk(1 – Pjk)

Syndromic Odds Ratio  
• SORjk = ORjk / max(1, ORj, ORk)
• AE pairs occur together preferentially in treatment group more 

strongly than can be explained by single-AE associations
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Finding Potential Syndromes
Cluster AEs using distance measure djk = 1/SORjk

Standard Hierarchical Clustering Methods
• Use either complete or average linkage methods
• Example uses average djk < 2/3 [SOR > 1.5]
• Discard clusters with fewer than three AEs

Example from a Trial with n = 902, nt = 676
• Most frequent 50 AEs are analyzed

EVENT N (Overall) N (Treatment) P (Overall) P.EB.Treatment P.EB.Comparator OR.EB OR.05 OR.95
THIRSTPT 152 147 0.1685 0.2104 0.0431 5.92 3.38 10.37

CCFAGGPT 119 91 0.1319 0.1341 0.1253 1.08 0.74 1.58
DIZZYPT 100 69 0.1109 0.1039 0.1318 0.76 0.52 1.12

URINFREQPT 94 89 0.1042 0.1258 0.0396 3.49 1.93 6.31
DRYMOUTHPT 91 82 0.1009 0.1168 0.0532 2.36 1.39 3.99

NAUSEAPT 71 51 0.0787 0.0763 0.0859 0.88 0.56 1.39
CHESTPAINPT 66 50 0.0732 0.0737 0.0715 1.03 0.63 1.69

FATIGUEPT 65 51 0.0721 0.0745 0.0648 1.16 0.70 1.93
DYSPNOPT 62 46 0.0687 0.0683 0.0702 0.97 0.59 1.59

HEADACHEPT 60 46 0.0665 0.0676 0.0633 1.07 0.64 1.80
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Potential Syndromes
Example from a Trial with n = 902, nt = 676

• Most frequent 50 AEs are analyzed
• Example cluster cut height < 2/3 [SOR > 1.5]

Six Clusters returned (Each cell corresponds to a PAIR of events)
Row Syndrome

1 1 HPRKALPT    
2 1 6/0 RENALIMPPT   
3 1 2/0 3/0 HYPOKALAEMPT  
4 1 3/0 3/0 2/0 ANEMIAPT

5 2 THIRSTPT    
6 2 52/0 URINFREQPT   
7 2 28/0 21/2 DRYMOUTHPT  
8 2 5/0 5/0 7/0 HYPRNATRAEMPT

9 3 AGGRFTGPT    
10 3 6/1 WGTINCRPT   
11 3 4/1 3/0 ORTHOPNPT  

12 4 HEADACHEPT    
13 4 7/0 UTINFPT   
14 4 5/0 3/0 ARTHRALGIAPT  

15 5 NAUSEAPT    
16 5 8/0 DIARRHPT   
17 5 15/2 7/1 VOMITPT  

18 6 CCFAGGPT    
19 6 12/4 CONSTIPT   
20 6 16/2 8/0 INSOMPT  

Counts of Event Pairs (Treatment/Comparator) for Events Belonging to Potential Syndromes.  

4 < SOR < 8
2 < SOR < 4
1 < SOR < 2
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Example for Cluster of 4 Events
Note that Odds Ratio for Event Pair > Odds Ratio for each Event [902 patients, 676 Treated]

• Syndromic OR measures how much OR for pair exceeds maximum of OR for component events
• When SOR threshold is exceeded for all pairs within a group of 3+ events, call it a potential syndrome
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Logistic Regression for Subgroup Analyses 
of Multiple Events

Start from a set of Medically Related events to study
• Set of events from potential signal
• Set of events from SOR clusters (potential syndromes)
• Set of ad-hoc events, or all events within a MedDRA SOC

Fit Logistic Regressions to each AE as a response
• Use exactly the same predictor model for each AE

– Age, gender, concomitant medication, medical history, etc.

• Include treatment and interactions with treatment as predictors
• Generate parameter estimates for predictors and interactions

Empirical Bayes shrinkage of estimated coefficients
• Coefficients of each predictor borrow strength across AEs
• Overall treatment and interaction effects shrink toward 0
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Rationale for EB Model Across Events

Coping with fine grain of adverse event data
• Compare T vs. C on 20 varieties of hepatic issues
• Approach 1—separate analyses of all 20 events

– Small counts lead to non significant comparisons
– Adjustment for multiple comparisons further reduces sensitivity

• Approach 2—define a single event as union of the 20 events
– Significant differences may be washed out by the pooling
– Even if significant, little information about original 20 differences

Compromise approach—EB hierarchical model
• 20 individual estimates that “borrow strength” from each other
• Let Bjk = coefficient of jth treatment effect/interaction on kth AE

– Bjk ~ N(µj, σj
2) [prior distribution shrinks AEs toward each other]

– µj ~ N(0, τ2) [prior for overall treatment effects shrinks toward 0]

• Estimated prior variances σj
2 and τ2 control amount of shrinkage

– Appropriate amount of shrinkage avoids multiple comparisons fallacy
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Display of Subgroup Effects

Logistic Regression Coefficients Are Interpreted as 
Logs of Odds Ratios

• Graphs of confidence intervals for each subgroup
• Confidence intervals that do not overlap are interpreted as 

significant differences in subgroups

Separate graph for each covariate and AE
• Different layouts possible
• Compare original and shrinkage estimates
• Compare overall treatment effects across AEs
• Compare subgroup effects across medically related AEs
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Display of Subgroup Effects
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Comparing Different AEs and 
Subgroups
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Safety Analyses of Clinical Data
Data mining of clinical trial safety data has many of the same challenges 
as analysis of spontaneous reports

• Although the data will be cleaner, there will be less of it and the multiple 
comparisons issues are just as significant

Combined analyses of multiple trials is important
• CDISC data standards make pooling data easier
• This is a form of pooled-data meta-analysis

Bayesian models can be useful here too
• Multivariate estimation of many possibly related AEs
• Searching for potential syndromes (different AEs in the same patients) that are 

associated with treatment
• Searching for subgroup effects
• Borrowing strength across medically related AEs
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