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Suppose that we are given an contagious in-

fection that has hit a few members of a com-

munity already, and that the only way it can

spread to others in the community is through

interpersonal contact. Then a very natural

question to ask in Epidemiology is:

About how many people in a community are

likely to become infected?
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That depends on

• how contagious the infection is,

• the contact between community members,

and

• precautions, etc...
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Modeling this problem mathematically....

For every two people u and v in the commu-

nity V , let Au,v denote the event {u passes the

infection directly to v at any point while u is

infected, given that u is infected and v is not

yet}. (Assume that v could catch the infection

from more than one person, so
∑

u∈V P [Au,v]

may sum to more than 1 for some (or all of)

v ∈ V .)

Then whether or not the infection is likely to

spread through a large portion of the commu-

nity (of course) depends on the distributions

of the Au,v’s.
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This is a challenging problem.

• Suppose that all we know is that the infec-

tion starts from a set of r people (but we

don’t know which set, all we know is that

the set has r individuals). Then for general

Au,v (i.e., the Au,v’s are not independent)

it is NP-hard to upper-bound to any non-

trivial factor, how far the infection could

spread. [Kempe, Kleinberg, and Tardos,

2004]

• Even if we do know that the Au,v’s are in-

dependent and we know which set S of ver-

tices the infection starts from, [KKT 2004]

gives an algorithm that estimates how far

the infection will spread, BUT their algo-

rithm uses *repeated* simulation, which

requires a lot of work for large communi-

ties.
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Do we have any hope of analyzing the spread

of an infection through a social network, using

more analytical/efficient methods?
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S. Hartke, and other researchers, have investi-

gated the cases that satisfy

• P [Au,v] is either 1 or 0 for all pairs u and

v, and

• the pairs {u, v} where P [Au,v] = 1 form ei-

ther a d-dimensional grid or tree.

Here we seek to study more realistic models.

We next present a model that we have already

been studying. (Admittingly, they have studied

vaccination strategies as well...)
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The Unbiased Independent Model (UIM).

Define the degree f(v) of v to be
∑

u P [Au,v],
for each v ∈ V . Then under the UIM, the Au,v’s
satisfy

• The Au,v’s are independent events.

• The f(v)’s are not too large; i.e., every
f(v) is no larger than

√
M
2 , where M =∑

u∈V f(u).

• P [Au,v] is proportional to the product of
the degrees of u and v (precisely, P [Au,v] =
f(u)f(v)

M . The premise is that if two people
both have high degree, then their paths are
likely to cross significantly.

Call f the degree sequence of the infection in
V .
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Why have we been using the UIM?

• We expect that the techniques that we

have developed in this model will gener-

alize to a more realistic model that we are

currently studying (and that we will present

later).

• This model is already more realistic than

the ‘grid model’ studied by Hartke and oth-

ers.

• Tractable model to work in.
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We should note that the UIM model is very

similar to a graph-theoretic model studied by

Aiello, Chung, and Lu, and that our results use

techniques related to theirs.
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Thms 1 and 2 (the main results) Consider an

infection spreading through a social network

V , with degree sequence f , where S is the set

the infection starts from. (We assume for both

Thms 1 and 2 that f satisfies f(v) ≤
√

M
2 for

each v ∈ V , where M =
∑

v∈V f(v).)

Thms 1 and 2 give fairly tight upper and lower

bounds that can be computed efficiently from

f and S for σ(S), where

σ(S) is the number of people who eventually

catch the infection (either directly from S, or

from someone who caught it from someone in

S, or from someone who caught it from some-

one who caught it from someone in S, and so

on).
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For Thms 1 and 2, and for any subset U of V ,

denote as f(U) the quantity
∑

u∈U f(u).

(In a random graph Gf on V where the event

Eu,v that u and v form an edge with probabil-

ity f(u)f(v)
M , f(U) is the sum of the expected

degrees of the vertices in U .)

Denote as f(U ; Ū) as f(U)× f(V )−f(U)
M .

(f(U ; Ū) is the expected number of edges be-

tween U and V \ U in Gf .)

12



Thm 1 [Infection contained]: Suppose that f

satisfies the following: there is an ε ∈ Ω(1)

where f(v)’s satisfy either

• (a)
∑

v∈V f2(v) ≤ (1− ε)M , or

• (b) there is a set V ′ of o(|V |) vertices such

that
∑

v∈V \V ′ f2(v) ≤ (1 − ε)M , and also

f(V ′; V̄ ′) is o(|V |).

If f satisfies (a), then E[σ(S)] is only O(f(S)).

Also, σ(S) is no larger than O(f(S) log2 |V |
+log2 |V |) with probability 1− |V |−2.

If f satisfies (b), then E[σ(S)] is no larger than

O(f(V ′) +f(S)). Also, σ(S) satisfies

σ(S) ∈ O(f(V ′) log2 |V | +f(S) log2 |V |)

with probability 1− |V |−2.
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Thm 2 [Epidemic spreads]: Suppose that f

satisfies the following: There exists a ε ∈ Ω(1)

that satisfies (a) and (b).

• (a)
∑

v∈V f2(v) ≥ (1 + ε)M , and

• (b) If V ′ is a subset of V that satisfies the

inequality
∑

v∈V \V ′ f2(v) ≤ (1 + ε
2)M , then

either |V ′| is in Ω(|V |) or f(V ′, V̄ ′) is Ω(|V |).

Then E[σ(S)] is at least min{Ω(f(S)|V |), |V |}.
Furthermore, if σ(S) is at least log |V |, then

σ(S) is almost surely Ω(|V |).
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So what are Thms 1 and 2 saying?

• Theorem 1 says: If the average degree

of the individuals in the community is less

than, say, .95, or if removing a small set

of people makes the average degrees less

than .95, then the infection will be con-

tained (without any vaccination).

• Theorem 2 says: If the average degrees

of the people in the community is greater

than, say, 1.05 even after removing any

‘not too large’ set of people, then with-

out vaccination, the infection will probably

spread to a large group of people (depend-

ing on where it starts from).
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Sketch of (part of) the proof of Thm 1

Suppose that f satisfies (a). Then we show

that σ(S) is O(f(S) log2 |V |+log |V |) with prob-

ability 1− |V |−2.

Then we observe

(i): for any subset U of V , f(U) is an upper-

bound on the expected number of vertices to

become infected directly from a vertex in U .
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Sketch of the proof of Thm 1 (continued)

Set S0 = S, and for each i, set Si+1 be the set

of vertices v such that v catches the infection

directly from a vertex in Si.

(ii): If f satisfies Condition (a) of Thm 1, then

E[f(Si+1)|S0, . . . , Si] ≤ (1− ε)f(Si)

But (ii) implies, via Kolmogorov-Doob Inequal-

ity, that

P [f(St) is at least |V |−2] is |V |−2 for some t ∈
O(log |V |).

By (i), this implies that

(iii): |St+1| is almost surely 0 for some t ∈
O(log |V |).
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Sketch of the proof of Thm 1 (continued)

However, note that the r.v. |Si+1|S1, . . . , Si is a

sum of independent 0-1 r.v.’s, and has expec-

tation no larger than f(Si). Also note that the

r.v. f(Si)|S0, . . . , Si−1 is a sum of independent

0-1 r.v.’s. This and (ii), and Chernoff bounds,

imply

(iv): |Si+1| ≤ f(S) log2 |V |+ log2 |V | w/ prob-

ability 1− |V |−2.

However, (iv) and (iii) together imply that the

r.v. σ(S) = |S0 ∪ . . . ∪ St| is almost surely no

larger than O(f(S) log2 |V | +log2 |V |).

If f satisfies (b) of Thm 1, then proceed in a

similar fashion to finish the proof.
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Sketch of (part of) the proof of Thm 2

We show the following: If f(S) is at least

log2 |V |, then almost surely σ(S) is at Ω(|V |).

As we used (ii) in the proof of Thm 1, we use

(ii′) in the proof of Thm 2.

(ii′): If f satisfies Conditions (a) and (b) of

Thm 2, then either

E[f(Si+1)|S0, . . . , Si] ≥ (1 + ε
2)f(Si),

or S0 ∪ . . . ∪ Si has Ω(|V |) vertices already.
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Sketch of the pf of Thm 2 (continued)

In fact, we can use (ii′) and Chernoff bounds
(in a similar fashion as we did in the proof of
Thm 1) to show (iii′).

(iii′): If f satisfies Conditions (a) and (b) of
Thm 2, and each f(Sl) is at least log2 |V |, then
either

f(Si+1)|S0, . . . , Si] ≥ (1 + ε
4)f(Si)

with probability 1 − |V |−3, or S0 ∪ . . . ∪ Si has
Ω(|V |) vertices already.

Then, we use (iii′), along with the fact that f

satisfies (b) to show that S0 ∪ . . . Si does not
stop growing (with probability 1−|V |−2), until
S0 ∪ . . . Si is ‘large’.

This indeed implies: If f(S) is at least log |V |,
then almost surely σ(S) is at Ω(|V |).
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Extension of our model

First, let V be a large population, and let f be
a nonegative real function on V , and let M =∑

v∈V f(v). Then for every pair u, v of people,
let Au,v be the event {v catches the infection
from u|v is not yet infected but u already is },
and as before, the Au,v’s are independent.

To give the P [Au,v]’s, let us first partition V

into neighborhoods V1, . . . , Vm. Then, if u and
v are in the same Vj, then P [Au,v] satisfies

P [Au,v] = f(u)f(v)
M .

Otherwise, if u ∈ Vi, and v ∈ Vj, then the
P [Au,v]’s satisfy

P [Au,v] = f(u)f(v)
Ki,jM

,

for some scaling factor Ki,j. (We are first
working with the case where Ki,j = 1 for i = j,
and Ki,j = K for i 6= j.)
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Specific questions that we are addressing

Let Hf be a random graph on V , where the

probability that there is an edge between u and

v is f(u)f(v)
Ki,jM

, where i and j are such that u ∈ Vi,

and v ∈ Vj.

• What is an efficient way (if one such exists)

to calculate the likely size of the largest

component of Hf , using f and the Ki,j’s?

• How large are the components that most

of the vertices of Hf are in?

• If the above two questions are too hard to

answer, what about the special case where

Ki,j is 1 for i = j, and K > 1 for i 6= j?
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