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The first Network Approach to
Epidemiology

“Riddle of the Cholera Outbreak”
solved by Dr. John Snow

• Made an implicit network between
people and water pumps
• People who drank water from 
Broad St. pump died
• also proved that cholera spreads
through water
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EpiSims/Simdemics1 - a network
approach to epidemiology

Main steps:
1. Construct a realistic social network

•  Not readily available
2. Develop an efficient disease simulation

•  Must scale to millions of people
• Static analysis to guide simulation

3. Help in policy questions
• Abstract out a simpler combinatorial 
      model for the disease dynamics 
• whom to vaccinate/quarantine
•  where to place sensors

1S. Eubank et al., http://ndssl.vbi.vt.edu/
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Constructing a Social Network

Main steps:
• Synthetic population from
  census data
• Location Information from 
  census, land use, GIS, etc.
• Individual activities from
  surveys, traffic data, 
  behavioral models, etc.

Main Difficulty: Slow and expensive
Can we construct graphs that look “like” real social networks?
Common approach: generative random graph models
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The Social Network
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Generative Graph Models: Chung-
Lu model
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Connectivity in the people-people
graph

Assume: d(p)=c, for each p∈ P
 d0≤ d(l) ≤ d1, for each d(l) ∈ L
 ni: #locations with degree i ~ c’|L|/iβ

⇒ GP of Bipartite Chung-Lu
    has a giant component
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The Configuration Model
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The Configuration Model

d(p1)

d(p2)

d(p3)

d(p4)

d(p5)

d(l1)

d(l2)

d(l3)

Choose a random matching



Network Dynamics and Simulation Science Laboratory

Chung-Lu vs Configuration
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Fast Generation of CL

• Speed up (naive CL takes ~ 10 hours) random generation
• Preserve degrees
• Be “similar” to CL
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Fast Generation of CL

• Speed up (naive CL takes ~ 10 hours) random generation
• Preserve degrees
• Be “similar” to CL

Negative
correlation
constraints
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Dependent Rounding1

1R. Gandhi, S. Khuller, S. Parthasarathy, A. Srinivasan, Dependent Rounding, FOCS 2004

l

x(p,l)
p

P

Given:
Fractional x(p,l) ∈ [0,1]

Round x(p,l) to  X(p,l) ∈ {0,1} s.t.:
•  Pr[X(p,l)=1] = x(p,l)
•  ∀ l ∈ L: pX(p,l) ∈ {d(l), d(l)}
• ∀ p ∈ P: lX(p,l) ∈ {d(p), d(p)}
•  ∀ P’ ⊂ P, ∀ b(p) ∈ {0,1}
   Pr[ p ’ X(p,l)=b(p)] ≤ ∏p ’ Pr[X(p,l)=b(p)] 

Time taken: O( # fractional variables x(p,l) )
⇒ O(|P| |L|) time overall 
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Graph generation by Dependent
Rounding

l

x(p,l)
p

p’x(p’,l)

α = min{ 1- x(p,l), x(p’,l)}
β = min{ x(p,l), 1- x(p’,l)}

x(p,l) + α 

x(p,l) - β 

x(p’,l) - α 

x(p’,l) + β 
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Graph generation by Dependent
Rounding

l

x(p,l)
p

p’x(p’,l)

x(p,l) + x(p’,l) ≤ 1

x(p,l) + α 

0 

0

x(p’,l) + β 
Assume

α = min{ 1- x(p,l), x(p’,l)} = x(p’,l)
β = min{ x(p,l), 1- x(p’,l)} = x(p,l)
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Graph generation by Dependent
Rounding
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Graph generation by Dependent
Rounding

l x(p,l)

p

w(B) = p∈ B x(p,l) ≤ 1

w(B) 

0 

0

Suppose

 prob x(p1,l)/w(B)
B

0
0

0 
0 

w(B) 

p1

P|B|

 prob x(p|B|,l)/w(B)

w(B) ≤ 1 ⇒ dependent rounding
equivalent to sampling pi ∈ B with
probability x(pi,l)/w(B)
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Fast Generation of CL

l

B1

B2

Bq

1. Partition into maximal blocks B1, B2, …, Bq
• Bk = {p(jk),…, p(jk+1)-1}
• w(Bk) = j ∈ Bk d(pj) d(l)/ σ
• 1 - d(p(jk+1))d(l)/ σ < w(Bk)  ≤ 1

2. Reduce to smaller graph H on {l, B1, B2, …, Bq}
3. Run Dependent rounding on H and choose
       subset B’ ⊆ {B1, B2, …, Bq}

4. For each block Bi ∈ B’, choose p ∈ Bi
       with prob. x(p,l) / w(Bi)

p1

p2

p3

p|P|

B1

B2

Bq

l

x(Bi, l)= p∈ Bi x(p,l) 
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Fast Generation of CL: Analysis

Observation: q <= 2(d(l) + 1)
Proof:
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Fast Generation of CL: Running
Time

1. Partition into maximal blocks B1, B2, …, Bq
• Bk = {p(jk),…, p(jk+1)-1}
• 1 - d(p(jk+1))d(l)/ σ < w(Bk)  ≤ 1

2. Reduce to smaller graph H on {l, B1, B2, …, Bq}
3. Run Dependent rounding on H and choose
       subset B’ ⊆ {B1, B2, …, Bq}

4. For each block Bi ∈ B’, choose p ∈ Bi
       with prob. x(p,l) / w(Bi)

O(q log |P|) time

O(q) time

O(q) time

O(log |P|) time

⇒O( q(l) log |P|) time overall
  = O( (l) log |P|) = O(|E|  log |P|)

0.   Construct prefix sumsO(|P|polylog) time
overall
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Fast Generation Properties

1. Partition into maximal blocks B1, B2, …, Bq
• Bk = {p(jk),…, p(jk+1)-1}
• 1 - d(p(jk+1))d(l)/ σ < w(Bk)  ≤ 1

2. Reduce to smaller graph H on {l, B1, B2, …, Bq}
3. Run Dependent rounding on H and choose
       subset B’ ⊆ {B1, B2, …, Bq}

4. For each block Bi ∈ B, choose p ∈ Bi
       with prob. x(p,l) / w(Bi)

Equivalent to
running Dependent
Rounding on
G({l},P, {(p,l): p∈ P})
with fractional
solution: 
x(p,l) = d(p)d(l)/ σ

⇒  1. Pr[edge (p,l)] = x(p,l) = d(p)d(l)/σ
     2. Rounded-degree(l) = p∈P x(p,l) = d(l)
     3. Negative correlation property
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FastGen
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A network approach to epidemiology

Main steps:
1. Construct a realistic social network

•  Not readily available
2. Develop an efficient disease simulation

•  Must scale to millions of people
• Static analysis to guide simulation

3. Help in policy questions
• Abstract out a simpler combinatorial 
      model for the disease dynamics 
• whom to vaccinate/quarantine
•  where to place sensors

1S. Eubank et al., http://ndssl.vbi.vt.edu/
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Policy Planning problems

• Disease detection
– Fast detection + response, instead of mass vaccination
– Sensor Location: dominating set problem

• Quarantining
– Remove some edges so that disease is contained

• Vaccination
– Remove some nodes so that disease is contained
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The Sensor Placement Problem
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locations

l3

Dominating set problem: choose
L’ ⊆ L s.t. N(L’) = P

(1-ε)-Dominating set problem: 
choose L’ ⊆ L s.t. |N(L’)|≥ (1- ε)|P|
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Temporal Dominating Set

p1
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l1
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p3

locations

l3

The Temporal Dominating set problem: choose
L’ ⊆ L, and time interval [t1, t2] for each l ∈ L’
s.t. ∀ p ∈ P, ∃ l ∈ L’ s.t. I(p,l) ∩ [t1, t2] ≠ Ø

[4pm, 6pm]

[11am,2pm]

[6pm, 8pm]

I(p, l): interval during which p visits l
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Sensor Placement: Results

• FastGreedy: choose large locations in non-increasing order of
degrees sum of degrees is (1-ε’)|P|

• FastGreedy gives (1+o(1))-approximation to optimum dominating set in Chung-
Lu model
– Same approximation in FastGeneration model

• FastGreedy works well in practice
– 10% of the locations can dominate ~90% of people in Portland network
– Very close to Greedy
– Takes ~15 sec

• Temporal version hard to approximate within Ω(nε)
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Dominating Set in the Chung-Lu
model

Theorem: FastGreedy is a (1+o(1))-approximation to the (1-ε)-Dominating
Set in the Chung-Lu and Fast Generation models

Non-increasing
order of degrees
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Dominating Set in the Chung-Lu
model

Theorem: FastGreedy is a (1+o(1))-approximation to the (1-ε)-Dominating
Set in the Chung-Lu and Fast Generation models

d2: largest degree s.t. S(L(d2)) ≥ (1-ε’)|P|

L(d2) L(d) = {locations l with d(l) ≥ d}
S(L’) = l∈ L’ d(l)

To prove:
1. |N(L(d2))| ≥ (1-ε)|P|
2. Approximation ratio = |L(d2)|/|OPT| = 1+o(1)
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Property 1

L(d)
Lemma: 

N(L(d))

Proof:

Chernoff bound,
also holds for
Fast Generation

⇒ Fast Greedy gives a (1-ε)-Dominating Set
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Property 2

Lemma:
OPTN(OPT)

∴ S(OPT) is large

d3 = largest degree s.t. S(L(d3)) ≤ |P|

⇒ |OPT| ≥ |L(d3)|
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Approximation factor of
FastGreedy

Approximation factor 

Power law ⇒

∴ Approximation factor

≈ 1+o(1), w.h.p.
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Policy Planning problems

• Disease detection
– Fast detection + response, instead of mass vaccination
– Sensor Location: dominating set problem

• Quarantining
– Remove some edges so that disease is contained

• Vaccination
– Remove some nodes so that disease is contained
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Policy problems: whom to vaccinate

• a social network G(P,E)
• initial infected set A
• budget B on # vaccinations

Given
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Policy problems: whom to vaccinate

• a social network G(P,E)
• initial infected set A
• budget B on # vaccinations

Given A

B=4

Assume: highly infectious
disease
⇒ any node with a path
to A gets infected

choose S ⊆  P to vaccinate
so that  |S| ≤ B, and # nodes 
reachable from A in 
G[P\S] is minimized

Goal
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Policy problems: whom to vaccinate

• a social network G(P,E)
• initial infected set A
• budget B on # vaccinations

Given A

B=4 OPT

Sopt

choose S ⊆ P to vaccinate
so that  |S| ≤ B, and # nodes 
reachable from A in 
G[P\S] is minimized

Goal

Result Bicriteria approximation: Vaccinate
(1+ε)B nodes so that at most 
(1+1/ ε) OPT infected people1,2

1S. Eubank, V.S. Anil Kumar, M. Marathe, A. Srinivasan and N. Wang, AMS-DIMACS special volume, 2005
2A. Hyrapetyan, D. Kempe, M. Pal and Z. Svitkina, ESA 2005
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The Vaccination Problem

In reality: initial infected set is not known

Goal: Choose S ⊆ P, s.t. every component in G[P\ S] is small

ρ-separator problem: polylog approximations known, but algorithms
are not scalable
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The “High Degree” Vaccination
Policy

Vaccinate people of high degrees

Giant component remains after
deleting a large fraction of nodes

Also true for GP in the Chung-Lu and FastGen models
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Open Problems

• Social Networks
– Models for temporal and demographic aspects
– Distance function

• Other network design problems for policy planning
– Remove nodes/edges so that expansion is reduced
– Remove nodes/edges so that average distance increases
– Faster algorithms on large graphs

• More realistic disease models (SIR, SIS)
– Dynamics on social networks
– Policy planning problems

• Problems on temporal graphs
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Thank You


