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P2P problems

Easy problems on small networks become hard on large networks:

• Storing and finding data items

• Getting the number of nodes in the network

• Getting a random node in the network
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Storing and finding data items

A Distributed Hash Table (DHT) is an ADT to facilitate storing

and finding data in p2p networks

• Key space of DHT is a unit circle

• Peers in DHT are the “buckets”

• Peers are distributed uniformly at random on unit circle

• A DHT provides the following functionality:

– h(x): for any point x on the unit circle returns the closest

clockwise peer to x

– next(p): for any peer p returns the closest clockwise peer

to p

2



Example

p

h(x)

next(p)

x
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Implementing a DHT

• Possible to implement a DHT in a scalable way:

• If n nodes in network

– Each node maintains O(logn) links

– Calls to h() take O(logn) messages and latency

– Calls to next() take O(1) messages and latency

• Chord is an example implementation of a DHT [Stoica et al.,

’01] (extension of the “Akamai” paper)

• I’m not going to tell you how this works - we’ll just treat the

DHT as an ADT
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Our Results

Assume peers are connected in a DHT. We give algorithms which

allow any peer to:

• Get an approximation to the number of peers in the network

• Get a random peer in the network
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Why a Random Peer?

Uses for a function which chooses a random peer:

• Create Random Links: Can maintain a network where every

node has small number of links to other random nodes. Such

a network will provably stay well-connected even in the face

of a sudden, massive number of adversarial node deletions.

• Support Randomized Algorithms: Load-balancing and Scal-

able Byzantine Agreement algorithms require uniform sam-

pling of peers

• Collect Data: Can sample peers to collect: peer opinions e.g.

on popular content; physical properties of network nodes e.g.

for measurement studies; environmental data e.g. for sensor

networks
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Difficulty of Choosing a Random Peer

• The number of nodes in the network, n, is typically very large

(100K is possible)

• Thus, each peer usually knows only small number of other

peers in the network e.g. O(logn)

• Also, want any algorithm to have latency and bandwidth

which is polylogarithmic in n
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Idea 1: Random Walk

• One idea for obtaining a random peer is to take a random

walk through the p2p network

• Require that: 1) the network graph is rapidly mixing and 2)

the network graph is regular

• Then in about O(logn) steps, we would expect to be at any

fixed peer with probability close to 1/n.

8



Random Walk Problems

• To uniformly sample with a random walk, we need the net-

work graph to be regular.

• A random walk over a regular network only approximates

uniform sampling

• The closeness of the approximation is impossible to formally

state without knowledge of the gap between the first and

second eigenvalues of the adjacency matrix
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Our Result

We give an algorithm which has the following properties with

high probability (i.e. with probability of error polynomially small

in n):

• Always chooses any given peer with probability exactly 1/n

• Sends O(logn) messages and has O(logn) latency in expec-

tation

(We use a DHT to achieve these properties)

10



Idea 2: DHT

• Given a DHT, a (naive) heuristic is to choose a random point

r on the unit circle. Then return h(r).

• Problem: Some peers have long arc lengths and some peers

have short arc lengths.

• Each arc length is 1/n in expectation. However the minimum

and maximum arc lengths are not Θ(1/n).
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Example

r

h(r)
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Problem with Heuristic

W.h.p. the following is true:

• Maximum arc length is Θ(logn/n) (easy Chernoff bound)

• Minimum arc length is Θ(1/n2) (Birthday Paradox)
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Arc Lengths

• The difference in the min and max arc lengths shows that

the naive heuristic has significant bias

• Max arc length peer is chosen n logn times more frequently

than min arc length peer
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Estimating n

• The bounds on the min and max arc length allow us to get

a pretty good estimate of n, the number of peers in the

network

• Note that we already have a good estimate of logn. [Mahlki

et al].

• Fix a peer. Let q be the inverse of the distance between that

peer and its nearest clockwise neighbor. Then:

n/ logn ≤ q ≤ n2

• Which implies that:

logn − log logn ≤ log q ≤ 2 logn
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Estimating n

• We can now use, q, which is Θ(logn) to get a good estimate

of n

• Let r be the distance between the fixed peer and the q-th

closest clockwise neighbor

• r is Θ(logn/n)

• Thus q/r is Θ(n)
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Idea 3: Naive with restarts

• We can use this estimate of n to create a correct but slow

algorithm

• New algorithm: Let r be a random number between 0 and

1. If h(r) is within distance 1/n2 of r, then return h(r), else

repeat

• Since the min arc length is Θ(1/n2), each peer will be chosen

with probability exactly 1/n2

• Problem: This algorithm is slow : calls h O(n) times in ex-

pectation
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Our Algorithm

• Can think of this slow algorithm as mapping Θ(1/n2) length

of “real estate” to each peer.

• Need to ensure that each peer has the same amount of “real

estate” mapping to it

• However, also want to have about Θ(1/n) length of real

estate map to each peer (in order to get a fast algorithm)

• Idea: peers with short arc lengths get extra real estate from

peers with long arc lengths
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dp and tmaxp

Our algorithm requires estimates dp and tmaxp with the following

properties:

• dp = Θ(lnn/n) and tmaxp = Θ(lnn);

• Any arc of length dp has at most tmaxp peers in it

A simple procedure will give us such estimates with high proba-

bility
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Our Algorithm (Arc-Length)

• In each round, we choose a random number, r, in (0,1]

• We put all peers within dp of r into a bag

• We add enough “dummy peers” to that bag to ensure that

the bag contains tmaxp peers

• We choose a peer uniformly at random from all peers in the

bag

– If the chosen peer is a dummy peer, we go back to the

first step

– If the chosen peer is a real peer, we output that peer
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Arc-Length

1. While TRUE do :

2. r ← random number in (0,1];

3. x ← random integer in [1, tmaxp];

4. i ← 1; p′ ← h(r);

5. While i < x and d(r, p′) ≤ dp:

6. i ← i + 1; p′ ← next(p′);

7. If d(r, p′) ≤ dp return p′;
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Correctness (Sketch)

• Each peer has probability dp of being put in the bag

• Given that a peer is put in the bag, it has probability 1/tmaxp

of being chosen from the bag

• Thus each peer has probability exactly dp/tmaxp of being

chosen
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Resource Costs

• dp/tmaxp = Θ(1/n), so, every time we choose a new random

seed, there is constant probability that the algorithm will map

that seed to a peer.

• Thus expected number of rounds is Θ(1)

• This implies that the expected latency and message cost is

O(logn).
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Empirical Results
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Unstructured Networks

• Imagine we have a completely unstructured network (i.e. no

DHT), that all nodes have random IDs between 0 and 1, and

that the “choosing” node knows the approximate size of the

network

• Can still use the Arc Length algorithm in the following way:

• The choosing node broadcasts a random seed to all other

nodes

• The Θ(logn) nodes which have IDs sufficiently close to this

seed reply to the choosing node

• The choosing node node simulates the Arc Length algorithm

on all nodes that replied to its messages

• This gives the choosing node a node selected uniformly at

random from entire network
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Open Problems

• Can we choose a random, or near random, peer efficiently in

a less structured p2p network like gnutella? I.e. can we do

better than a random walk?

• Empirical evaluation - Can this algorithm (or something like

it) do well in practice?

• Can we choose a peer with a biased probability? For example,

many gossiping protocols require the ability to choose a node

with probability proportional to the inverse of the distance

from us. Is there an efficient algorithm to choose a peer with

this biased probability?
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