
Choosing a Random Peer

Jared Saia

University of New Mexico

Joint Work with

Valerie King

University of Victoria

and

Scott Lewis

University of New Mexico



P2P problems

Easy problems on small networks become hard on large networks:

• Storing and finding data items

• Getting the number of nodes in the network

• Getting a random node in the network

1



Storing and finding data items

A Distributed Hash Table (DHT) is an ADT to facilitate storing

and finding data in p2p networks

• Key space of DHT is a unit circle

• Peers in DHT are the “buckets”

• Peers are distributed uniformly at random on unit circle

• A DHT provides the following functionality:

– h(x): for any point x on the unit circle returns the closest

clockwise peer to x

– next(p): for any peer p returns the closest clockwise peer

to p

2



Example

p

h(x)

next(p)

x

3



Implementing a DHT

• Possible to implement a DHT in a scalable way:

• If n nodes in network

– Each node maintains O(logn) links

– Calls to h() take O(logn) messages and latency

– Calls to next() take O(1) messages and latency

• Chord is an example implementation of a DHT [Stoica et al.,

’01] (extension of the “Akamai” paper)

• I’m not going to tell you how this works - we’ll just treat the

DHT as an ADT

4



Our Results

Assume peers are connected in a DHT. We give algorithms which

allow any peer to:

• Get an approximation to the number of peers in the network

• Get a random peer in the network

5



Why a Random Peer?

Uses for a function which chooses a random peer:

• Create Random Links: Can maintain a network where every

node has small number of links to other random nodes. Such

a network will provably stay well-connected even in the face

of a sudden, massive number of adversarial node deletions.

• Support Randomized Algorithms: Load-balancing and Scal-

able Byzantine Agreement algorithms require uniform sam-

pling of peers

• Collect Data: Can sample peers to collect: peer opinions e.g.

on popular content; physical properties of network nodes e.g.

for measurement studies; environmental data e.g. for sensor

networks

6



Difficulty of Choosing a Random Peer

• The number of nodes in the network, n, is typically very large

(100K is possible)

• Thus, each peer usually knows only small number of other

peers in the network e.g. O(logn)

• Also, want any algorithm to have latency and bandwidth

which is polylogarithmic in n

7



Idea 1: Random Walk

• One idea for obtaining a random peer is to take a random

walk through the p2p network

• Require that: 1) the network graph is rapidly mixing and 2)

the network graph is regular

• Then in about O(logn) steps, we would expect to be at any

fixed peer with probability close to 1/n.

8



Random Walk Problems

• To uniformly sample with a random walk, we need the net-

work graph to be regular.

• A random walk over a regular network only approximates

uniform sampling

• The closeness of the approximation is impossible to formally

state without knowledge of the gap between the first and

second eigenvalues of the adjacency matrix

9



Our Result

We give an algorithm which has the following properties with

high probability (i.e. with probability of error polynomially small

in n):

• Always chooses any given peer with probability exactly 1/n

• Sends O(logn) messages and has O(logn) latency in expec-

tation

(We use a DHT to achieve these properties)

10



Idea 2: DHT

• Given a DHT, a (naive) heuristic is to choose a random point

r on the unit circle. Then return h(r).

• Problem: Some peers have long arc lengths and some peers

have short arc lengths.

• Each arc length is 1/n in expectation. However the minimum

and maximum arc lengths are not Θ(1/n).

11



Example

r

h(r)

12



Problem with Heuristic

W.h.p. the following is true:

• Maximum arc length is Θ(logn/n) (easy Chernoff bound)

• Minimum arc length is Θ(1/n2) (Birthday Paradox)

13



Arc Lengths

• The difference in the min and max arc lengths shows that

the naive heuristic has significant bias

• Max arc length peer is chosen n logn times more frequently

than min arc length peer

14



Estimating n

• The bounds on the min and max arc length allow us to get

a pretty good estimate of n, the number of peers in the

network

• Note that we already have a good estimate of logn. [Mahlki

et al].

• Fix a peer. Let q be the inverse of the distance between that

peer and its nearest clockwise neighbor. Then:

n/ logn ≤ q ≤ n2

• Which implies that:

logn − log logn ≤ log q ≤ 2 logn

15



Estimating n

• We can now use, q, which is Θ(logn) to get a good estimate

of n

• Let r be the distance between the fixed peer and the q-th

closest clockwise neighbor

• r is Θ(logn/n)

• Thus q/r is Θ(n)

16



Idea 3: Naive with restarts

• We can use this estimate of n to create a correct but slow

algorithm

• New algorithm: Let r be a random number between 0 and

1. If h(r) is within distance 1/n2 of r, then return h(r), else

repeat

• Since the min arc length is Θ(1/n2), each peer will be chosen

with probability exactly 1/n2

• Problem: This algorithm is slow : calls h O(n) times in ex-

pectation

17



Our Algorithm

• Can think of this slow algorithm as mapping Θ(1/n2) length

of “real estate” to each peer.

• Need to ensure that each peer has the same amount of “real

estate” mapping to it

• However, also want to have about Θ(1/n) length of real

estate map to each peer (in order to get a fast algorithm)

• Idea: peers with short arc lengths get extra real estate from

peers with long arc lengths

18



dp and tmaxp

Our algorithm requires estimates dp and tmaxp with the following

properties:

• dp = Θ(lnn/n) and tmaxp = Θ(lnn);

• Any arc of length dp has at most tmaxp peers in it

A simple procedure will give us such estimates with high proba-

bility

19



Our Algorithm (Arc-Length)

• In each round, we choose a random number, r, in (0,1]

• We put all peers within dp of r into a bag

• We add enough “dummy peers” to that bag to ensure that

the bag contains tmaxp peers

• We choose a peer uniformly at random from all peers in the

bag

– If the chosen peer is a dummy peer, we go back to the

first step

– If the chosen peer is a real peer, we output that peer

20



Arc-Length

1. While TRUE do :

2. r ← random number in (0,1];

3. x ← random integer in [1, tmaxp];

4. i ← 1; p′ ← h(r);

5. While i < x and d(r, p′) ≤ dp:

6. i ← i + 1; p′ ← next(p′);

7. If d(r, p′) ≤ dp return p′;

21



Correctness (Sketch)

• Each peer has probability dp of being put in the bag

• Given that a peer is put in the bag, it has probability 1/tmaxp

of being chosen from the bag

• Thus each peer has probability exactly dp/tmaxp of being

chosen

22



Resource Costs

• dp/tmaxp = Θ(1/n), so, every time we choose a new random

seed, there is constant probability that the algorithm will map

that seed to a peer.

• Thus expected number of rounds is Θ(1)

• This implies that the expected latency and message cost is

O(logn).

23



Empirical Results

 0

 50

 100

 150

 200

 250

106105104

N
um

be
r 

of
 M

es
sa

ge
s

Number of Peers

FindEstimates
Total

24



Unstructured Networks

• Imagine we have a completely unstructured network (i.e. no

DHT), that all nodes have random IDs between 0 and 1, and

that the “choosing” node knows the approximate size of the

network

• Can still use the Arc Length algorithm in the following way:

• The choosing node broadcasts a random seed to all other

nodes

• The Θ(logn) nodes which have IDs sufficiently close to this

seed reply to the choosing node

• The choosing node node simulates the Arc Length algorithm

on all nodes that replied to its messages

• This gives the choosing node a node selected uniformly at

random from entire network

25



Open Problems

• Can we choose a random, or near random, peer efficiently in

a less structured p2p network like gnutella? I.e. can we do

better than a random walk?

• Empirical evaluation - Can this algorithm (or something like

it) do well in practice?

• Can we choose a peer with a biased probability? For example,

many gossiping protocols require the ability to choose a node

with probability proportional to the inverse of the distance

from us. Is there an efficient algorithm to choose a peer with

this biased probability?

26


