Choosing a Random Peer

Jared Saia
University of New Mexico

Joint Work with
Valerie King
University of Victoria
and
Scott Lewis
University of New Mexico

— P2P problems ——

Easy problems on small networks become hard on large networks:

e Storing and finding data items
e Getting the number of nodes in the network
e Getting a random node in the network

o Storing and finding data items ——

A Distributed Hash Table (DHT) is an ADT to facilitate storing
and finding data in p2p networks

e Key space of DHT is a unit circle
e Peers in DHT are the "buckets”
e Peers are distributed uniformly at random on unit circle
e A DHT provides the following functionality:
— h(x): for any point x on the unit circle returns the closest
clockwise peer to x
— next(p): for any peer p returns the closest clockwise peer
to p

Example

—

— Implementing a DHT —

e Possible to implement a DHT in a scalable way:

e If n nodes in network
— Each node maintains O(logn) links
— Calls to h() take O(logn) messages and latency
— Calls to next() take O(1) messages and latency

e Chord is an example implementation of a DHT [Stoica et al.,
'01] (extension of the “Akamai” paper)

e I'm not going to tell you how this works - we'll just treat the
DHT as an ADT

o Our Results

Assume peers are connected in a DHT. We give algorithms which
allow any peer to:

e Get an approximation to the number of peers in the network
e Get a random peer in the network

?
— Why a Random Peer?

Uses for a function which chooses a random peer:

e Create Random Links: Can maintain a network where every
node has small number of links to other random nodes. Such
a network will provably stay well-connected even in the face
of a sudden, massive number of adversarial node deletions.

e Support Randomized Algorithms: Load-balancing and Scal-
able Byzantine Agreement algorithms require uniform sam-
pling of peers

e Collect Data: Can sample peers to collect: peer opinions e.g.
on popular content; physical properties of network nodes e.qg.
for measurement studies; environmental data e.g. for sensor
networks

— Difficulty of Choosing a Random Peer m————

e T he number of nodes in the network, n, is typically very large
(100K is possible)

e [hus, each peer usually knows only small number of other
peers in the network e.g. O(logn)

e Also, want any algorithm to have latency and bandwidth
which is polylogarithmic in n

— Idea 1: Random Walk

e One idea for obtaining a random peer is to take a random
walk through the p2p network

e Require that: 1) the network graph is rapidly mixing and 2)
the network graph is regular

e Then in about O(logn) steps, we would expect to be at any
fixed peer with probability close to 1/n.

— Random Walk Problems —

e [0 uniformly sample with a random walk, we need the net-

work graph to be regular.

e A random walk over a regular network only approximates
uniform sampling

e [he closeness of the approximation is impossible to formally
state without knowledge of the gap between the first and
second eigenvalues of the adjacency matrix

C Our Result ———

We give an algorithm which has the following properties with

high probability (i.e. with probability of error polynomially small
in n):

e Always chooses any given peer with probability exactly 1/n

e Sends O(logn) messages and has O(logn) latency in expec-
tation

(We use a DHT to achieve these properties)

10

— Idea 2: DHT —_

e Given a DHT, a (naive) heuristic is to choose a random point
r on the unit circle. Then return h(r).

e Problem: Some peers have long arc lengths and some peers
have short arc lengths.

e Each arc length is 1/n in expectation. However the minimum
and maximum arc lengths are not ©(1/n).

11

—

Example

h(r)

12

Problem with Heuristic

—

W.h.p. the following is true:

e Maximum arc length is ©(logn/n) (easy Chernoff bound)
e Minimum arc length is ©(1/n?) (Birthday Paradox)

13

— Arc Lengths ———

e [he difference in the min and max arc lengths shows that
the naive heuristic has significant bias

e Max arc length peer is chosen nlogn times more frequently
than min arc length peer

14

— Estimating n ——

e [he bounds on the min and max arc length allow us to get

a pretty good estimate of n, the number of peers in the
network

e Note that we already have a good estimate of logn. [MahlKi
et all.

e Fix a peer. Let q be the inverse of the distance between that
peer and its nearest clockwise neighbor. Then:

n/logn < g < n?
e Which implies that:

logn —loglogn < logq < 2logn

15

— Estimating n ——

e We can now use, g, which is ©(logn) to get a good estimate
of n

e Let r be the distance between the fixed peer and the g-th
closest clockwise neighbor

e ris ©(logn/n)

e Thus ¢q/r is ©(n)

16

C Idea 3: Naive with restarts —

e We can use this estimate of n to create a correct but slow
algorithm

e New algorithm: Let r be a random number between 0 and
1. If h(r) is within distance 1/n? of r, then return h(r), else
repeat

e Since the min arc length is @(1/n2), each peer will be chosen
with probability exactly 1/n?

e Problem: This algorithm is slow: calls h O(n) times in ex-
pectation

17

o Our Algorithm ———

e Can think of this slow algorithm as mapping @(1/n2) length
of “real estate” to each peer.

e Need to ensure that each peer has the same amount of “real
estate” mapping to it

e However, also want to have about ©(1/n) length of real
estate map to each peer (in order to get a fast algorithm)

e Idea: peers with short arc lengths get extra real estate from
peers with long arc lengths

18

C dp and tmarpy ——

Our algorithm requires estimates d, and tmaxp with the following
properties:

o dp = O(Inn/n) and tmazy, = O(Inn);
e Any arc of length dy, has at most tmaxy peers in it

A simple procedure will give us such estimates with high proba-
bility

19

—— Our Algorithm (Arc-Length) —

e In each round, we choose a random number, r, in (0, 1]

e \We put all peers within dp of r into a bag

e \We add enough “dummy peers’ to that bag to ensure that
the bag contains tmaxy peers

e \We choose a peer uniformly at random from all peers in the
bag
— If the chosen peer is a dummy peer, we go back to the

first step

— If the chosen peer is a real peer, we output that peer

20

— Arc-Length ——

1. While TRUE do :

2 r «— random number in (0, 1];

3. xr < random integer in [1,tmaxyp);
4. i«— 1; p — h(7);

5 While i < z and d(r,p") < dp:

6 i<— i+ 1; p' «— next(p’);

7 If d(r,p’) < dp return p’;

21

—— Correctness (Sketch) ———

e Each peer has probability dp of being put in the bag
e Given that a peer is put in the bag, it has probability 1/tmazy

of being chosen from the bag
e Thus each peer has probability exactly dp/tmax, of being

chosen

22

o Resource Costs —

o dp/tmaxy, = ©(1/n), so, every time we choose a new random
seed, there is constant probability that the algorithm will map
that seed to a peer.

e Thus expected number of rounds is ©(1)

e [his implies that the expected latency and message cost is
O(logn).

23

—

Empirical Results

Number of Messages

250

200 ~

150 |

100 |

FindEstimates —+—
Total ---x---

o

- X

50 M

10°
Number of Peers

24

— Unstructured Networks

e Imagine we have a completely unstructured network (i.e. no
DHT), that all nodes have random IDs between 0 and 1, and
that the “choosing’” node knows the approximate size of the
network

e Can still use the Arc Length algorithm in the following way:

e [he choosing node broadcasts a random seed to all other
nodes

e The ©(logn) nodes which have IDs sufficiently close to this
seed reply to the choosing node

e [he choosing node node simulates the Arc Length algorithm
on all nodes that replied to its messages

e T his gives the choosing node a node selected uniformly at
random from entire network

25

o Open Problems —

e Can we choose a random, or near random, peer efficiently in
a less structured p2p network like gnutella? I.e. can we do
better than a random walk?

e Empirical evaluation - Can this algorithm (or something like
it) do well in practice?

e Can we choose a peer with a biased probability? For example,
many gossiping protocols require the ability to choose a node
with probability proportional to the inverse of the distance
from us. Is there an efficient algorithm to choose a peer with
this biased probability?

26

