Non-Poisson Contact Processes in Virus Spreading

#### A. Vázquez and A.-L. Barabási University of Notre Dame

www.nd.edu/~networks www.nd.edu/~avazque1

## **Epidemic outbreaks**

- Airborne viruses
  - SARS, Influenza
- Sexually transmitted diseases
   HIV
- Computer viruses and worms
  - LoveLetter, Code-Red
- Rumors ("Infectious of the Mind")
  - Chain Letters, Hoaxes





 $R_0$  Basic reproductive number

 $T_G$  Generation time

## Main questions

- How many?
- How fast?
- How can we stop it?
- How can we avoid it?
- Empirical evidence
- Models



exponential=linear in a linear-log plot

# Code-Red worm (CAIDA)



## Code-red worm (CAIDA)



## Witty worm (CAIDA)



## **Contact heterogeneity**

- P(k)~k<sup>-γ</sup>
  - Sexual contacts
    - Liljeros et al 2001
  - Email contacts
    - Ebel et al 2002
    - Eckman *et al* 2004
  - Urban contacts
    - Eubank et al 2004



## **Contact heterogeneity**

✓ May & Anderson 1988



✓ May & Anderson 1988
✓ Barthelemy, Barrat, Vespignani 2004
→ exp



## Time between contacts



Temporal activity patterns

Airborne viruses Visitation of public places Sexually transmitted diseases Sexual activity patterns Computer viruses Email, Login sessions Rumors Email, SMS, Phone



•Basic assumption:

Contacts take place at constant rate  $\lambda = 1/T_G$ 

•Time interval distribution

$$P(\tau) = \lambda e^{-\lambda \tau}$$

$$P_0(\tau_0) = \lambda e^{-\lambda \tau_0}$$



## Library data / airborne viruses



τ: time between two consecutive loans Deszo *et al*, unpublished

Power law=linear in a log-log plot

## Sexual activity / STD



 $\tau$ : time since the last sexual intercourse

## **Emails / Computer viruses**



 $\tau$ : time between two consecutive emails sent by a user

## Poisson vs heavy tailed

#### Poisson





# Non-Poisson contact processes

# Spreading via Emails

Infected Email user





Renewal process

 $\tau_1, \tau_2, \tau_3, \dots$ : inter-contact times  $P(\tau)$  $\tau_0$ : initial delay  $P_0(\tau_0) = \frac{1}{\langle \tau \rangle} \int_{\tau_0}^{\infty} d\tau P(\tau)$ 

# Spreading dynamics





$$n(t) = \int_0^t dt' n(t')\beta(t',t)$$

## **Spreading dynamics**



 $\beta(t',t) = \langle k \rangle C(t',t)$ 

# Poisson process

$$C(t',t) = \lambda , \quad t' \ge 0$$
$$n(t) = \langle k \rangle \lambda e^{\langle k \rangle \lambda t}$$





$$N(t) = 1 + \langle k \rangle \int_0^t dt' C(0, t') e^{\langle k \rangle \lambda(t-t')}$$

$$t=0 \Rightarrow Average outbreak size$$



## **Power law distribution**

•Power law intercontact distribution

$$P(\tau) = \frac{A}{\tau^{\alpha}}$$

$$\tau_0 \le \tau \le \tau_1$$

$$\tau_0 = 1$$

 $\tau_1 = 10^6$ 



### Final outbreak size



# **Real Email history**

3,188 users 3 month time interval

• pass a virus to a user, and follow its spread

- - Poisson timing,
same contacts as in
the real data



## Immunization

Infected individuals are are removed at rate  $\mu$ 

$$\begin{array}{lcl} \beta(t',t) & \to & \beta(t',t)e^{-\mu(t-t')} \\ \\ n(t) & \to & n(t)e^{-\mu t} \end{array}$$

Final outbreak size

$$N(\infty) = \int_0^\infty dt \ n(t)|_{\mu=0} \ e^{-\mu t}$$

## Immunization



 $\mu_c = \lambda \langle k \rangle$ 

## Conclusions

- Empirical evidence:
  - In many contact processes the inter-contact time distribution is subexponential
- Consequences:
  - Long delay for the first infectious contact
  - <u>Fast</u>→Subexponential→Exponential→Saturation
  - Larger outbreak size
- Outlook:
  - Empirical measurements
  - Epidemic growth models

# **Outlook: Computer worms**

- Email viruses
  - Timing is the main factor
- IP address-scanning Worms
  - Timing may be the main factor: login sessions
- Self-broadcasting Email worms
  - The contact heterogeneity may be more relevant than in the case of Email viruses

# **Outlook: HIV/AIDS**

Contact heterogeneity is also determinant:
 Vazquez 2005 (unpublished)

## **Outlook: Airborne viruses**

Eubank ... next week