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Mathematical and Statistical Challenges for Sustainability 
 

Executive Summary 
 

Learning to live sustainably on Earth is going to require enormous 
advances in our understanding of the natural world and our relationship with it. 
To acquire that understanding, progress in the mathematical sciences is 
essential.  
 

The human population is swelling toward ten billion. All of these people 
need food, clean water, housing and energy. To stay within the planet’s carrying 
capacity, we are going to have to be extraordinarily clever about how we use the 
Earth’s resources. We need to know what the impacts of our actions are on the 
environment we depend on; we need to understand how the natural world 
functions; and we need to plan for the inevitable changes to come. Doing so 
requires answering extremely complex, multi-disciplinary questions in the 
emerging “science of sustainability.” And that science requires the precise, 
quantitative insights that the mathematical sciences offer. 
 

But mathematical scientists are only beginning to become involved in 
sustainability research, and many mathematicians, statisticians, and many other 
scientists are uncertain of the role that mathematics has to play. To redress this, 
six North American mathematical research institutes, together with the U.S. 
National Science Foundation, sponsored the Mathematical Challenges for 
Sustainability Workshop held at the DIMACS Center at Rutgers University, 
November 15-17, 2010, gathering 40 leaders in the mathematical sciences 
together to lay out a roadmap of the mathematical and statistical challenges in 
sustainability science. This report is a distillation of their work. 
 

The participants saw that the mathematical sciences challenges are 
enormous. Sustainability issues are hugely complex, requiring more subtle 
scientific and mathematical and statistical tools than we currently have to unravel 
them. Just asking the right questions is a challenge in and of itself. Climate 
models, for example, are extraordinarily complex, created by scientists from 
many disciplines, and require extremely powerful supercomputers to run, yet they 
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provide only a crude and imprecise approximation of the true processes affecting 
climate. They are raising mathematical and statistical questions that have never 
before been faced, and right now, we don’t have the answers. 
 

Almost every sustainability challenge we face requires new mathematical 
tools. For instance, saving the world’s fisheries will require us to understand the 
mechanisms of evolution of fish populations and to develop intricate strategies 
for assuring a stable and ample supply of fish under environmental stressors of 
various kinds. Addressing these challenges requires countries with competing 
interests to work together, and that cooperation has to be attained with no world 
governing body to enforce it. The only way an agreement will work is if 
participating countries are eager to adhere to it because doing so is in the self-
interest of each one – but such agreements are so difficult to create that they 
demand the power of new mathematical tools for bargaining and fair allocation, 
which have barely begun to be used in creating fishery treaties.  
 

Economic issues, which are deeply interwoven with sustainability issues, 
raise their own mathematical and statistical challenges. To decide how much we 
should spend to protect an ecosystem, for example, we need to be able to 
forecast the economic impacts of our decisions. But our current models of the 
economy are woefully lacking – as the 2008 financial crisis dramatically 
demonstrated. The starting assumptions in these economic models is that the 
market will stay in equilibrium and that all participants will behave rationally, but 
those assumptions are simply not true, and in many cases, they’re not even 
close to being true. Furthermore, economics and the environment are intricately 
connected, with economic issues affecting the environment and the environment 
in turn affecting the economy (as vividly illustrated by the economic impacts of 
the 2011 earthquake and tsunami in Japan). Thus the only way to understand the 
real impacts is to integrate economic models with mathematical models of 
climate, energy, biodiversity, etc., a task that presents dramatic new challenges. 
Moreover, with the increase in the world population, we may have to revisit the 
definition of a healthy economy. Complex issues arise, including issues 
concerning the carbon market, concepts of equity between nations and 
intergenerational equity, etc.  Addressing these issues requires new partnerships 
between mathematical scientists and social scientists. 
 

The examples go on and on: Monitoring the state of our forests requires 
new methods for combining vast streams of data into a single, coherent picture, a 
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mathematical task we can’t yet do very well. The problem is exacerbated by the 
possibility that climate change could cause our forest ecosystems to be replaced 
by more tropical ones or that it might expose our forests to new invasive species 
like the mountain pine beetle. Understanding the mechanisms of changing forest 
health and how to prevent unhealthy forest evolution presents challenges for 
many disciplines, with mathematics heavily involved with each one.  
 

Similarly, transforming our energy infrastructure will require the 
mathematical tools to design a more robust power grid, mathematically guided 
improvements in materials science to build better batteries, and better incentive 
schemes to make cap-and-trade solutions effectively reduce carbon emissions. 
And planning how to respond to the heat waves, tsunamis, hurricanes, and 
floods that some models predict will be unleashed by climate change requires 
new, mathematically-guided strategies for evacuations, for hospital triage, and for 
supply transportation, as well as new approaches to mitigate the effects of these 
natural disasters. 
 

Meeting these mathematical and statistical challenges is going to require 
more mathematical scientists to get involved, new ways for mathematical 
scientists to interact with other disciplines, and greater levels of funding for 
mathematical work in sustainability. This report is designed to lay out the 
mathematical challenges that face us in sustainability science. The field is so 
broad that this report can’t possibly describe every challenge, but it provides a 
number of representative examples that show the range of work that remains to 
be done. The Appendices present white papers written by participants in the 
workshop and go into more detail at a somewhat more technical level. However, 
even these white papers provide only a sampling of the challenges that face us. 
 

The mathematical and statistical scientists at the Mathematical Challenges 
for Sustainability Workshop at Rutgers were divided into groups to brainstorm 
about the mathematical sciences challenges in five different areas. The first, 
Human Well-Being and the Natural Environment, focused on the interrelationship 
between human needs and ecological needs. We depend on being able to use 
the resources of the natural environment. One way of doing so sustainably is to 
use resources no more quickly than nature can regenerate them. Another way, 
which can also be sustainable, is to deplete natural stocks and to convert them 
into another form of capital (manufactured, human, or social) at a rate that is 
capable of maintaining human well-being over the long term. This group laid out 
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the mathematical methods that we need to do this effectively along with some of 
the challenges we face. For example, we need to be able to precisely quantify 
natural capital as well as human and natural well-being, to understand how our 
activities affect natural capital, to calculate how quickly nature can regenerate, to 
develop ways we can adapt to a changing environment, and to make responsible 
decisions balancing the needs of people today with the needs of future 
generations and balancing the needs of different people around the world. 
 

The second group focused on Human-Environment Systems as Complex 
Adaptive Systems. The interactions between humans and the environment are 
both extraordinarily complex and constantly changing, with interacting feedbacks 
between different parts of the system. For example, humans farm, which affects 
the health of the soil; the health of the soil then affects where humans farm, 
which in turn affects the health of the soil. The science of complex adaptive 
systems has been developing to understand interactions like these. This group 
looked at how the mathematics of complex adaptive systems can illuminate the 
interactions between humans and their environment. 
 

The third group discussed Measuring and Monitoring Progress toward 
Sustainability. To learn to live sustainably, we’ve got to know how well we’re 
doing. But measuring the health of a forest or an ocean is an extremely complex 
task: You have to collect a huge amount of data, get the most information 
possible given limited resources, and then make sense of the data you get. Every 
step raises mathematical and statistical challenges.  
 

The fourth group examined Managing Human-Environment Systems for 
Sustainability. The central point of sustainability science is to guide decision-
making. This group examined this final step. For example, given current 
trajectories, society might have to double food production in the next 40 years 
while reducing pollution impacts on lakes and rivers and reducing the rates of 
biodiversity loss associated with land-use change and overfishing. How are we 
going to do it? This group laid out the mathematical sciences tools needed to put 
together what we know into a precisely defined set of questions and into a 
practical course of action. 
 

The fifth group examined Mathematical Challenges in Energy 
Sustainability as an in-depth case study that touches on all four previous groups. 
The energy system needs a radical transformation, fast, and so does the relation 
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of human activity to energy. Oil is becoming depleted. Greenhouse gases 
resulting from the use of fossil fuels appear to be affecting the climate. The U.S. 
is too dependent on foreign energy supplies. Developing countries don’t have 
sufficient energy sources. We face radical challenges with energy, and this group 
discussed how mathematical scientists can help us address them.  
 

Before the workshop, selected participants wrote and shared a set of 
white papers as seeds for the discussion, and, in the end, each group wrote a 
white paper summarizing their discussions and describing the mathematical 
sciences challenges in their area. The full text of the group white papers appears 
in the Appendix of this report, while both sets of white papers appear on the 
workshop website at http://dimacs.rutgers.edu/SustainabilityReport/. This report is a 
distillation of this work for the general mathematical sciences audience and the 
general public.  
 

The structure used was chosen because this workshop was a follow-up to 
a 2009 workshop entitled “Toward a Science of Sustainability” that used a similar 
structure.  That workshop brought together a highly multi-disciplinary team of 
researchers to lay out the scientific challenges in sustainability as a whole. The 
Mathematical Challenges for Sustainability workshop which followed, and which 
is discussed in this report, focused on the mathematical sciences challenges 
particular to sustainability. Perhaps the biggest challenges for mathematical 
scientists, however, are to learn to ask the right questions, to learn how to work 
together with scientists in other disciplines, and to determine how to train their 
students to do so, so as to address these complex but crucial problems facing 
our world. 
 

A word or two about what this report aims to do and what it does not. First, 
the report aims to rally the mathematical sciences community to work on the 
problems of sustainability. This will require more than simply applying their 
methods to small, well-defined problems. It will involve collaborating with 
scientists from many disciplines, and it will involve mathematical scientists in 
using their skills to make the new challenges precise, to ask the right questions, 
and to contribute to making progress to address them. Secondly, the report aims 
to demonstrate to a broader audience, including public servants, government 
agencies, and members of the public, just what some important sustainability 
problems are and why mathematical scientists have a role to play in solving 
them. This report does not claim to provide solutions to problems of sustainability 
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nor does it claim that mathematical scientists will be able to solve them alone – 
they will need involvement with new communities and new applications.  
 

Many thanks to the National Science Foundation (NSF) for making the 
Mathematical Challenges for Sustainability workshop possible and for 
encouraging research involving mathematical scientists on issues of 
sustainability. Particular thanks go to the Division of Mathematical Sciences at 
NSF for their sponsorship of the workshop. Thanks also to the Canadian 
mathematical sciences institutes, which supported Canadian participation in the 
workshop through support from the Natural Sciences and Engineering Research 
Council of Canada (NSERC). 



 

12 | P a g e  
 

CHAPTER 1 
 

Human Well-being and the Natural Environment 
 

Humans depend on the resources of the natural environment. This 
chapter lays out the mathematical sciences methods needed to help 
assess whether our use of environmental resources is sustainable, to 
protect humans from the consequences of environmental change, and to 
meet human needs while limiting environmental damage. 

 
 
A hurricane picks up speed and force as it passes the Carolinas. 

Hurricanes in that region are notoriously unpredictable, but it appears to be 
headed straight for Manhattan. Officials order an evacuation, and bridges, 
highways, and trains clog. Although it’s hours before the storm hits – if it hits at 
all – flooding has already begun, and subways are getting inundated. There 
simply isn’t enough time to get everyone out. 
 

History gives a hint of the damage to come. In 1821, a much smaller storm 
raised the tide 13 feet in an hour, causing the flooded East and Hudson rivers to 
swamp lower Manhattan all the way to Canal Street. Blessedly few people died – 
but that was only because the storm landed at low tide and lower Manhattan was 
much less populated than it is now. In 1938, a hurricane killed around 700 people 
in Long Island, NY and areas of New England. 
 

The next hurricane, though, could be far worse. As the climate changes, 
development increases, and ecosystems become more fragile, hurricanes could 
become more frequent and intense in years to come – along with wildfires, 
tsunamis, floods and heat waves. 

 
And this is one of the worst possible disasters. The New York harbor 

forms a funnel for the incoming storm surge, and with nowhere else to go, the 
water could be pushed 30 feet high. All three airports would end up underwater. 
The damage could keep the port of New York and the New York Stock Exchange 
closed for weeks, causing global economic havoc.  
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Figure 1: Though a hurricane in New York City is not especially probable, the results 
could be catastrophic. A storm surge could endanger millions. Mathematics is essential 
for planning evacuation and response strategies. Credit: Fred Roberts. 

 
Indeed, The Federal Emergency Management Agency has identified three 

“max max” disasters that would cause devastation on a scale never seen before, 
and this is one of them. But the damage remains to be dealt with in the future. 
The immediate question is: What’s the most efficient way to evacuate? 
 

When the time comes that New York City faces that question, the quality 
of its answer could depend significantly on how much we’ve invested in 
mathematical sciences research today. 
 

The odds of a hurricane like this in any given year are extraordinarily low. 
But over the long run, a strong hurricane is virtually certain to hit Manhattan, 
particularly as the climate becomes less stable and sea levels rise. And human 
population along the shoreline has relentlessly increased, magnifying our 
vulnerability. Determining how many people can be evacuated and how quickly, 
what the safest option is for people too frail to travel, the conditions under which 
it would be safe for people to weather the storm in place, where people should 
evacuate to, and many more such questions rely on mathematical models that 
can simulate terrible scenarios we hope never to play out in real life.  

 
Such models cannot be generated by mathematicians acting in isolation. 

They require partnerships between mathematical scientists and scientists in 
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other disciplines. This is true of many questions in sustainability science. In the 
case of the hurricane, for example, there are many more questions that need to 
be asked, increasingly complex and subtle questions. A key role of mathematical 
scientists, collaborating with others, is to help pose the right questions. For 
example: What happens after the evacuation? Or suppose that the hurricane 
occurs at the time of an epidemic when people are in quarantine; how does this 
change our response? Also, how much does it cost to repair the damage? Is the 
economy of the region destroyed? What are the indirect economic effects of the 
disaster and how can they be measured? And is it a good idea to repair the 
damage or should the center of the city be moved over the long term? Could we 
have prevented some of the damage by building dikes? Should we invest in 
dikes for the future, considering that hurricanes are likely to become more 
frequent and stronger in the future? What if there are several hurricanes in a 
period of a few years? These are just some of the questions we can ask. For 
each of the examples given in this report, we could ask many similar questions.  
 

Operations research and discrete mathematics have long studied 
questions like those about evacuation, but answering such questions pushes 
existing tools beyond their capabilities. For example, in an evacuation, decisions 
need to be made about how many doctors and nurses need to stay behind to 
care for those who don’t evacuate, and where those medical personnel should be 
assigned. This “job assignment problem” is a classical one in operations 
research, but existing techniques don’t deal with uncertainty well. In a real 
evacuation, uncertainty is huge: How many doctors and nurses will be willing to 
put themselves at risk by staying behind? How long will the city remain 
inundated? How many people will need care, and what will their medical needs 
be? Planning in the face of this uncertainty will require new tools in the field 
known as “stochastic optimization” (optimization under uncertainty/randomness). 
Similar questions surround stockpiling supplies at evacuation sites. Inventory 
planning has long been studied in operations research, but existing methods 
don’t deal well with uncertainty of the kind we might experience. 
 

Human well-being includes adequate food, housing, and water; good 
health; a secure and pleasant environment (one protected against natural 
disasters as well as threatening changes in the climate, rising sea level, etc.); 
and a prosperous economy so that people have jobs. The hurricane scenarios 
illustrate how human well-being, in all these senses, is intimately connected to 
the health of our ecosystems. We have learned that our decisions enormously 
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affect the robustness of the natural environments that we depend on, in some 
ways that we understand and many that we don’t fully understand. The 
mathematical sciences have a key role to play in elucidating and planning for 
these impacts. 
 

A basic but challenging need is the ability to quantify how well the 
ecosystems we depend on are doing, so that we can see whether they’re getting 
better or worse. Mathematicians are particularly attuned to this need, since 
mathematics is the science of deducing the logical consequences of carefully 
defined statements. So when a mathematician examines ecosystem health, the 
natural first question is, how do we define it? 
 

Biologists have come to realize that the health of ecosystems is intimately 
tied up with the diversity of life within them. The more complex the web of life, the 
more resilient it is – and conversely, the less complex, the more fragile. When the 
potato blight arrived in Ireland in the early 1840s, for example, a third of the Irish 
people depended on the potato for all of their food, only two species of potato 
existed on the island, and both were susceptible to the disease. A million people 
starved. By contrast, when rice grassy stunt virus struck Asia in the 1970s, more 
than six thousand species of rice grew in the area. Scientists tested them all, and 
just one was able to withstand the virus. By hybridizing that type of rice, rice 
cultivation could be saved. Examples like these have proven that an ecosystem 
that is more diverse is more robust and healthier – and the people who depend 
on it are less vulnerable. 
 

But this observation, though helpful, isn’t precise enough for mathematical 
scientists. In partnership with biologists, they need to formulate more specific 
questions. What do we mean by biodiversity? How do we measure it? A first cut 
would be simply to use the number of species: More species imply greater 
diversity. Even so simple a definition as this raises mathematical questions: How 
do you effectively count the number of species, particularly when comparing 
different ecosystems in which species may be easier or harder to find? How does 
the length of time you explore an ecosystem affect the number of species 
discovered? How does the number of new species discovered in a day decrease 
over time? 
 
Furthermore, if a forest has one area that’s all hemlocks, another that’s all pines, 
and another that’s all spruces, it won’t have the interconnected web of 
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relationships between the species that creates robustness. So, mathematical 
scientists have developed measures that account for the spatial distribution of 
species. 
 

That doesn’t capture everything, though, because those species also have 
to occur in appropriate numbers. A forest that is almost all pine, with a few trees 
from a variety of other species sprinkled evenly throughout, isn’t biodiverse, even 
though it may contain a large number of species that are well distributed. But 
equal numbers of individuals of different species also may not be appropriate: 
You don’t want to have the same number of lions as zebras. So, mathematical 
scientists have helped to develop measures that capture the appropriateness of 
the distribution of individuals among species. Developing these preliminary ideas 
further will require close collaboration with biologists to produce new and more 
intricate methods designed to handle problems that address the wide variety of 
criteria that will enter into a more sophisticated definition of biodiversity. 
 

Such more sophisticated measures can be derived by examining the 
entire food web. By mapping out the relationships of who eats whom and 
analyzing the resultant graph, teams of mathematical scientists and ecologists 
can ask questions like: If you were to eliminate a group of animals, would the 
network structure collapse? Which species are critical to the overall robustness 
of the connections in the food web? Is present biodiversity a good predictor of 
future biodiversity?  
 

Each of these questions captures a different aspect of biodiversity, and all 
of them are relevant in different contexts. Scientists have sensibly abandoned the 
idea that they may find the one true perfect definition, and instead they use each 
definition to get a different view of the overall issue of diversity. That raises the 
challenge, however, of finding systematic ways of combining the measures. 
Furthermore, current measures are rather crude, capturing only the least subtle 
aspects of biodiversity.  
 

Biodiversity not only indicates the health of ecosystems that we depend on 
but also directly contributes to human well-being. Wild varieties of domestic crops 
provide a wealth of genes with valuable properties like pest-resistance, greater 
hardiness, or faster growth. Many of our pharmaceutical drugs are derived from 
wild plants. Recent work has also shown that humans are more susceptible to 
disease spread when biodiversity decreases. For example, forest fragmentation 
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has led to lower numbers of opossums (which are poor hosts for the pathogen 
that causes Lyme disease) and higher numbers of white-footed mice (which are 
excellent hosts), leading to more Lyme disease cases in humans. 

 
 

 
 
Figure 2: Mathematical models have helped officials manage foot-and-mouth disease in the U.K. 
and in particular led to a series of ring culling strategies that helped control the potentially 
devastating 2001 epidemic. (Getty images) 
 

This points to another mathematical need: Mathematical models are a key 
way to plan effective responses to disease outbreaks. The need could be even 
greater if diseases emerge in new locations or re-emerge in old locations 
because of changing climates. (See for instance the map in Figure 3, which 
shows places where malaria might re-emerge in the U.S.) Suppose, for example, 
that a deadly new virus emerges in Africa: Would we be better off sending our 
national stockpiles of medicines to Africa in the hope of containing it, or should 
we hang onto them for our own use? Or if terrorists were to release the plague in 
Chicago, would it be more effective to administer antibiotics widely, or to impose 
mass quarantines? These questions are at the heart of mathematical approaches 
to epidemiology. Mathematical models guided the response to cholera in Haiti as 
it unfolded after the recent earthquake, helping decide where to put treatment 
centers, where to provide palliative care, and how to distribute the very scarce 
resources among a huge number of sick people. Models have also been 
essential to planning immunization strategies and managing foot-and-mouth 
disease in the U.K. 
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Figure 3: Currently, about 1,200 malaria cases are reported each year in the United 
States, almost all in people who were infected in other parts of the world. But small 
outbreaks of malaria have occurred within the U.S. when imported cases have been 
transmitted to others. So far, the outbreaks have been quickly and easily contained, but 
the potential exists for malaria to re-emerge as a native disease throughout much of the 
U.S. Credit: CDC. 

 
Another effort being pursued now is to develop models to guide triage 

decisions. Ordinarily, the sickest patients are treated first, while those who can 
wait without getting much worse do so. In the midst of a crisis like a major 
earthquake or an epidemic outbreak, however, medical resources may be 
insufficient to treat everyone, and more people will benefit if resources are 
allocated first to those who can best make use of them. At the moment, nurses 
may have to make a gut decision about when to switch protocols. A 
mathematical model could provide guidance to help make a more informed 
decision. 
 

Epidemiological models like these are developed enough to have proven 
their worth, but much work remains to be done, and we have to be especially 
vigilant to make sure that we are not just solving interesting mathematical 
problems whose solution will have no useful connection to true public health. 
Agent-based models are one promising approach, for example. They create 
individuals inside the computer and model their movement along with the 
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movement of any pathogens they carry, but they’ve only recently been used in 
this context. Current models often make simplifying assumptions that aren’t 
borne out in real life. For example, they assume that if the government imposes a 
quarantine, people will obey it. In Singapore during the SARS epidemic, 
however, the threat of fines and jail time proved insufficient to persuade 
quarantined people to stay home. Authorities ultimately installed webcams in the 
homes of everyone quarantined, telephoned them three times a day, and 
required them to take their temperature on camera. Such measures probably 
wouldn’t be tolerated in a less authoritarian state. To deal with similar public 
health challenges in the future, we need to foster collaborations between 
mathematical scientists and researchers from the economic, social, and 
behavioral sciences.  

 

 
 
Figure 4: A cholera hospital can be set up relatively quickly, saving the lives of those 
infected and helping to control the spread of the disease. Mathematical models were 
used to help officials decide where to place such hospitals during the 2010 cholera 
epidemic in Haiti. Since a cholera epidemic was first confirmed in October in Haiti’s 
Artibonite region, hospitals were set up and teams have treated more than 10,000 
suspected cases nationwide. Credit:  Richard Accidat/MSF, Nov 11, 2010. 
 
Mathematical and statistical models need to be developed that allow for 

imperfect compliance with quarantines and that help to determine the 
combination of punishments and rewards that will be sufficient to keep 
quarantined individuals in their homes with minimal intrusions on their freedom 
and privacy. Similar issues arise in introducing model assumptions about 
compliance with vaccination orders, travel restrictions, or other public health 
interventions. Developing mathematical models for issues like these – much of 
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which hasn’t yet been undertaken at all – is valuable both for the specific 
predictions they make and for the deepened understanding they create. 
Developing the models takes scientists from a general, qualitative understanding 
of the dynamics driving disease to a concrete, quantitative understanding of 
which forces are truly critical and why.  

  

Models also have a role to play in elucidating water quality issues, such as 
how pollutants like phosphorous runoff from farmland can affect the health of 
lakes. A lake is able to accommodate runoff without significant ecological 
damage as long as the levels don’t get too high. A sudden, intense rainstorm, 
however, might wash enough phosphorous into the lake to kill off fish, disrupt the 
ecological function of the lake, and destroy much of its economic value. It’s then 
difficult for the lake to return to its previous, functional state. Mathematically, 
these two states (healthy and unhealthy) can be understood as “basins of 
attraction” in state space, stable states that the lake can be in. While 
mathematicians have worked on the local dynamics of these basins of attraction, 
the theory underlying how systems can stochastically shift from one state to 
another is poorly understood. 
 

These are just a few examples of how the mathematical sciences can help 
protect human well-being as ecosystems change, among many more. Changing 
migration patterns of birds affect human well-being because birds help control 
insect populations that can destroy crops. As the climate changes, birds 
sometimes arrive in places before or after their traditional food sources have 
arrived. But the effects of climate change have not yet been included in migration 
models. Similar issues affect fish migration, and understanding and predicting 
fish movement is key for protecting fisheries over the long term. Fish migration is 
also impacted by the increasing acidification of the oceans caused by climate 
change, and mathematical questions abound in models of ocean acidification.  

 
Some of the mathematical sciences challenges in the area of human 
well-being and the natural environment are:  
 

• Climate models strongly need new mathematical methods for 
understanding uncertainty. Additionally, better models are needed of 
extreme events like heat waves or hurricanes, or gradual events such 
as increase in sea level, at the scale of cities rather than large regions 
of the globe. And we need statistical tools for analyzing the impact 
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(both spatial and temporal) of extreme or gradual events. 
 

• To prepare for rare extreme events, classical problems in operations 
research need to be expanded to deal with uncertainty. Furthermore, 
mathematical models are needed to help understand how human 
health will be impacted by events like heat waves. 

 
• We need clear, mathematically precise criteria to measure biodiversity 

that are robust even given the difficulties of gathering data in 
sometimes harsh environments.  We need ways of combining multiple 
measures to create an overall picture of biodiversity. We then need 
methods to use these measures to attain sustainable ecosystems. All 
of this must be done in the context of uncertain, but potentially large 
impacts on biodiversity of changing climate, and global environmental 
change more generally. 

 
• We need models of animal migration that take climate change and 

other human disruptions into account. New tools such as network 
theory and others might offer an opportunity to develop richer models 
of migration than our existing ones.  

 
• We need mathematical models that will describe how agriculture both 

affects and is affected by the availability and quality of fresh water. 
Improved models of ocean acidification are needed. We need 
improved monitoring methods using statistics, machine learning and 
remote sensing to allow us to detect changes in the health of bodies of 
water much more quickly. 
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CHAPTER 2 

 
Human-Environmental Systems as  

Complex Adaptive Systems 
 
Interactions between humans and the environment are both extraordinarily 
complex and constantly changing, with interacting feedbacks between 
different parts of the system. The science of complex adaptive systems has 
been developing to understand interactions like these. This chapter looks at 
how the mathematics of complex adaptive systems can illuminate the 
interactions between humans and their environment. 
 
 

Sustainability science is hard! 
 

The problem is that answering the questions we care about – How can we 
stop a new virus from spreading? How many tuna can we sustainably catch? 
What will the climate be like in fifty years? – requires understanding systems that 
are enormously complex and constantly changing. 
 

Historically, science has tackled complex questions by breaking them 
down into simpler components that can be understood separately. For example, 
legend has it that Newton worked out his laws of motion by studying a falling 
apple. Once he discovered those laws, he could use them to understand such 
complex questions as how the planets wheel about the heavens. Predicting 
planetary motion with perfect precision gets tough – after all, every object in the 
universe is simultaneously pushing and pulling on the Earth, and Einstein’s 
relativity theory tweaks the orbit as well – but Newton was able to get an 
excellent approximation using the simple principles that govern the apple. 
 

That’s not possible with many of the problems in sustainability, because 
the parts of the system interact in much more subtle ways, with changes that 
feed back into one another. For example, when the planet gets warmer, sea ice 
melts. The dark ocean that is then exposed absorbs more heat than the white 
sea ice does. That makes the planet get warmer, which melts more sea ice, 
which warms the planet, which melts more sea ice… As a result, to predict future 
temperatures, it’s not enough to understand the isolated questions of how sea ice 
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melts in response to rising temperatures or how temperatures rise in response to 
melting sea ice: You also have to understand how the melting ice and the rising 
temperatures affect one another. And until you do, your predictions – unlike 
Newton’s excellent approximation – may be grossly inaccurate. 
 

 
 

Figure 5:   Larsen_B_Collapse. In 2002, a 12,000-year-old Antarctic ice shelf the size of Rhode 
Island collapsed as a result of rising temperatures. This exposed the dark seawater beneath the 
ice, which absorbs more of the sun’s warmth, contributing to further warming. Credit:  Robert A. 
Rohde 
 

Unfortunately, most human-environment systems (HESs) will behave 
more like the climate than like Newton’s planets. Feedbacks are inherent in an 
HES: Human behavior impacts the environment, and environmental changes in 
turn impact human behavior, forming a feedback loop. Systems like this, with 
many interacting parts that change over time, are called complex adaptive 
systems. And the mathematics of complex adaptive systems is still poorly 
understood.  
 

The field has only emerged in the last thirty years, and it’s a challenging 
one because the large-scale behavior of such systems as a whole can be 
remarkably different from the small-scale behavior of the interacting parts. For 
example, ants, which individually behave in thoughtless, preprogrammed ways, 
form colonies that can build bridges, carry dead insects hundreds of times an 
ant’s bodyweight, and find the shortest path between two points. 
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One of the most fundamental discoveries that has come out of the study of 
complex adaptive systems is a rather appalling one: These systems sometimes 
behave in ways that cannot be predicted – no matter how good the science is or 
how powerful our computers are. That means that on a practical level, even the 
wisest and most well-informed policymaker can make decisions that have 
unintended consequences. One lesson of the science of complexity, then, is that 
humility and caution are essential in the face of this irremediable uncertainty. The 
uncertainty applies to all complex adaptive systems, including cities, fisheries, 
forests, ocean-atmosphere systems, water supplies, financial markets – really, 
any interaction between humans and a natural system. 
 

Nevertheless, the study of complex adaptive systems can guide decisions, 
even if it can’t guarantee particular outcomes. Mathematical scientists can 
describe the range of behaviors a system might have, find critical thresholds 
where the behavior might suddenly change, understand how different parts of the 
system interact, and give decision makers a good sense of the most likely 
outcomes.  
 

Climate models are an example where this kind of information could be 
hugely helpful, but so far, few mathematical scientists have been deeply involved 
in developing these models. These models are extremely complex computer 
programs that draw in expertise from mathematics, physics, chemistry and other 
sciences, thus forming the collaborative brainchildren of hundreds of scientists 
working in parallel. Chemists model how reactions among airborne molecules 
affect the transparency of the air; oceanographers model how the currents stir 
the oceans; atmospheric scientists model how clouds reflect sunlight. Each of 
these parts and many more are then assembled into a giant model that gives us 
the clearest view we can get of what our climate future is likely to hold. Analyzing 
such models requires months of time to run on our fastest supercomputers. Yet, 
when all is said and done, these models are only crude and imprecise 
representations of the true processes affecting climate. 
 

Since climate is a complex adaptive system, mathematicians know that 
the interactions of all these different parts deeply matter. And climate scientists 
know it too: The El Niño effect, a climate pattern that occurs about every five 
years and changes the weather throughout the tropical Pacific ocean area, is 
created by the interaction of the ocean and the atmosphere. Until climate models 
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allowed the two to influence one another, they couldn’t capture this critical 
phenomenon. 
 

Nevertheless, climate modelers have only just begun to include such 
feedbacks into their models. The delay hasn’t been because they haven’t thought 
such feedbacks were important; it’s been because modeling them is extremely 
tricky. Feedback effects can make tiny inaccuracies blow up into massive errors 
over time. The models need to be designed with enormous care to control for 
this.  
 

And no one really knows how to do it. Climate modelers are trying to figure 
it out in the context of these enormously complex models, ones which no single 
person could possibly understand in their entirety. It’s an overwhelmingly 
confusing and difficult task (that can come down to the impossibility of solving a 
large system of partial differential equations exactly through “discrete 
approximation”). What they need is something analogous to what biologists have 
in the fruit fly: a simpler case to study to develop a basic understanding of how 
things work. Long before tackling the horrifically complex human genome, for 
example, biologists cut their teeth by sequencing the fruit fly. Armed with a 
simple model like the fruit fly, climate scientists would have a vastly easier time 
unraveling how the various components of climate interact with one another.  
 

Mathematical scientists can play a leading role in providing this simpler 
model. They specialize in abstraction, reaching beneath the messy details of real 
life to expose the skeleton beneath. They can learn from climate scientists what 
the most important elements are and then explore how those elements interact 
by analyzing relatively simpler mathematical models that can be thoroughly 
understood.  However, there is a danger here: We must be careful not to think 
that solving a simpler, though still relatively complex, mathematical problem is 
the end of the story. It is only the beginning. 
 

Mathematical scientists can also work with climate scientists to deal with 
the uncertainty in their models that is inevitable because these models are of 
complex adaptive systems. Scientists will never, for example, be able to produce 
a model that can tell us the precise lowest wintertime temperature in Manhattan 
in fifty years. Accepting that limitation allows scientists to focus on the questions 
that can be answered, like, what’s the best estimate they can make, and what is 
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the range of uncertainty? Or how can we remove the rapid oscillations and 
variations that come from meteorology to concentrate  
 
on the long term variations that we need in climate science? So far, climate 
modelers have been so focused on making the best predictions possible that 
they have not devoted as much effort to quantifying the uncertainty. But for 
practical decision-making, the uncertainty is as important as the prediction. If, for 
example, a utility is laying water pipe that will be used for 50 years, they need to 
know not only the coldest wintertime temperatures that are expected, but a range 
of the coldest temperatures with their probabilities, and the possibility that 
extreme temperatures may become more likely in a new climate regime. The 
mathematical and statistical tools required to understand this kind of uncertainty 
don’t yet exist. 
 

These kinds of mathematical tools and insights are needed to understand 
HESs of all types. Contrary to the central lesson of complex adaptive systems – 
that understanding how the components interact is key to predicting how the total 
system will behave – the environment and human activity are almost always 
studied in isolation. For example, demographic trends are used to predict how 
much farmland people will demand, while a separate study might look at how 
human migration patterns are affected by landslides. But as people move into an 
area they need more farmland, so they farm steeper, less suitable land and as a 
consequence make the land more susceptible to landslides – and in turn, when 
landslides destroy farmland, people are forced to migrate away. Understanding 
the system as a whole requires integrating these two types of studies. In fact, 
population is a primary driver of every environmental challenge that threatens 
sustainability: generation of greenhouse gases, other pollutants and toxic waste; 
depletion of resources, including water, oil, fisheries, topsoil; resource wars and 
civil conflicts; malnutrition and world hunger; lack of resources for education and 
health care, especially in poor countries; best farmland converted to urban and 
suburban sprawl; garbage disposal and the need to find more landfill space; 
species extinction. But, the classic mathematically-based topic of population 
science does not begin to address the true complexity of factors affecting and 
affected by population.  
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Figure 6: Human-nature interactions can be complex and surprising. As parks in Africa protect 
ecosystems and the animals that thrive in them, animals sometimes leave the park and cause 
problems in nearby farms. Baboons in particular are a serious source of crop destruction in the 
areas near national parks in Africa, as are elephants and other species. Protecting farmers is 
critical for maintaining public support for wildlife protection. Credit: Fred Roberts. 
 

So to properly understand any of these problems involving HESs, the 
model of the human system and the model of the environmental system need to 
be fully coupled.  
 

Such fully coupled systems are still in their infancy, and building them will 
require solving a host of mathematical problems. First, we have to tease out how 
the different aspects of the system interact, which requires identifying all the 
feedbacks in the system. Particularly when linking human and natural systems, 
this can be extremely tricky. For example, integrated assessment models attempt 
to predict the impact of climate change on the economy. However, they rely on 
United Nations projections for population and don’t consider the effect variations 
in climate might have on population size. This extremely complex feedback loop 
presents a challenge for mathematical modelers. The problem is further 
complicated by the differing time scales over which environmental systems and 
human systems evolve.   
 

Next, we have to encode interactions in a computer model, which 
inevitably requires clever simplifications. For example, models inevitably require 
parameters – that is, numbers that capture an aspect of how the system works. 
In a climate model, for example, the reflectiveness of the clouds might be 
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captured by a single number. In reality, of course, cloud reflectiveness varies, but 
some reasonable estimate has to be given. Finding the best values for these 
parameters in a way that is effective and is based on well-defined mathematical 
and physical principles is extremely difficult. 
 

 
 

Figure 7: Clouds vary in their reflectiveness, but in order to be computationally manageable, 
climate models have to approximate their reflectiveness with a single number called a parameter. 
Much mathematical work needs to be done to come up with the best values for these parameters. 
Credit: Fred Roberts. 
 

Once the models are built, they need to be analyzed so that they can 
provide useful information. This is also tricky, since precise predictions are 
impossible, but mathematicians can still pull out a qualitative understanding of 
how the system behaves. For example, some systems have tipping points, 
thresholds where the system suddenly starts acting very differently: With climate, 
if global temperatures rise enough to melt the Greenland ice sheet, the climate 
would be irreversibly changed; with infectious disease, if a virus spreads enough 
to reach people who fly, it could become a global pandemic rather than a local 
contagion; with fisheries, when fish populations dip below some threshold, the 
entire species may disappear. Understanding when the tipping points can occur 
within a system and identifying where those tipping points are, as precisely as 
possible, is critical. 
 

Pulling predictions from the model raises another set of mathematical and 
statistical questions. Scientists have found that the “wisdom of the crowd” applies 
to models as well as people: under the right conditions, when multiple models 
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describing the same system have been built, an average of the output of the 
different models can be better than any single prediction. It’s therefore 
immensely valuable to have an ensemble of models, each designed somewhat 
differently. But what’s the best way to put their predictions together into a single 
best estimate? The most straightforward is to just average them, but sometimes, 
one model is known to be better than another much of the time. In that case, it 
may be that weighting the output of the models according to quality would 
produce a better prediction. But mathematical scientists don’t yet know the best 
ways to combine the forecasts of different models, so a huge amount of work 
remains to be done in this area. 
 

The importance of ensembles also points to the need for the same 
problem to be modeled in different ways. Mathematicians are working to build 
and understand entire new classes of models for this purpose. Infectious 
disease, for example, can be studied using network models, in which each 
individual is modeled as a node in a network and the people they have contact 
with (and might spread disease to) are connected to them by an edge. Network 
models have the potential to be very powerful, but their application to the 
understanding of complex adaptive systems is sufficiently new that their 
theoretical underpinning requires further development. Studying complex 
systems from multiple perspectives, using different modeling paradigms, helps 
deal with their inherent difficulty. 

 
The economy points to another kind of model that needs to be built. 

Economic concerns are essential to almost all sustainability issues, but our 
current ability to forecast the economy is very limited. Current economic models 
entirely ignore its complex adaptive nature; instead they imagine the economy as 
a fundamentally unchanging structure that stays in equilibrium. The complete 
failure of such models to predict the 2008 economic collapse points out their 
deep limitations. A bubble is essentially a positive feedback loop that is carried to 
its limits, and these static models are by their fundamental design incapable of 
predicting them. So, new models of the economy, using the principles of complex 
adaptive systems, need to be built. Then these models need to be linked to 
models of the environment. 
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Some of the major mathematical sciences challenges in the area of 
human-environment systems as complex adaptive systems are: 
 

• New mathematical models need to be built that can describe complex 
adaptive systems. Such models need to operate at a variety of scales: 
for example, on a small scale, an individual subsistence farmer 
interacts with the land he’s cleared from the Amazon forest, while on a 
large scale, the clearing of the rainforest has an impact on the global 
climate. An individual farmer and his land would be described by one 
model, while the rainforest’s relationship with global climate would be 
captured by another. These models need to be designed so that they 
can be put together into a super-model capturing both levels of 
interaction. The output of the model needs to shed light on the 
behavior of the system at all its different scales, both describing how 
the farmers and their land will act differently over time and how the 
rainforest and climate will develop. 

 
• These models need to be powerful enough to deal with the 

complexities of messy, real-world data, which has the mathematically 
unpleasant characteristics of being “discrete” and “non-smooth.” 

 
• Once such multi-scale, composable models have been developed, 

they need to be understood theoretically. In particular, what happens 
when two models that are designed in very different ways – for 
example, a network model and a traditional differential equation model 
– are put together? 

 
• Modern techniques in network models allow us to understand and 

utilize huge and complex networks. These are especially important, 
and the practical and theoretical basis for utilizing such massive 
network models needs to be developed. In particular, new techniques 
are needed to understand how the shape of these networks changes 
over time.  

 
• An expanded mathematical toolkit is needed to couple model of the 

environment with models of human activity. A particular challenge is 
that the cycles of human activity are often at odds with the cycles of 
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environmental change; for example, a politician is usually in office for 
only a few years, while the effects of his or her decisions on the 
environment may not be seen for decades. New mathematical 
methods are needed to characterize this discrepancy and to develop 
strategies for managing it, including subtle uses of discounting to better 
understand the tradeoff between short-term economic gain and long-
term environmental degradation and the development of the science of 
uncertainty to better understand the likelihood of long-term impacts of 
current activities.  

 
• HESs often involve very complex datasets that are then reduced to 

many fewer variables in order to make the problems tractable. The 
health of an individual forest, for example, emerges from the health of 
all the species in the forest and the way they interact – a very complex, 
high-dimensional dataset – but in a model of the world’s forests, that 
health might be captured in a single number. This process of reducing 
a high-dimensional dataset to a lower-dimensional one is called 
projection geometry, and it needs further development in the context of 
HESs. 

 
• Using ensembles of models to improve prediction has emerged as an 

especially important tool in forecasting HESs. This technique is poorly 
understood theoretically and needs more development.   
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CHAPTER 3 
Measuring and Monitoring Progress Toward Sustainability 

 
To learn to live sustainably, we’ve got to know how well we’re doing. But 
measuring the health of a forest or an ocean is an extremely complex 
task: One has to collect a huge amount of data, get the most information 
possible given limited resources, and then make sense of that data. Every 
step raises mathematical challenges. Chapter 3 focuses on these 
challenges. 

 
What’s the climate like right now? 

 
This question might seem bone-headedly obvious, answerable in a 

moment of poking your nose out the door. But that would be confusing two things 
that are very different: climate and weather. Weather describes what the 
atmospheric conditions are at a given moment, while climate describes the 
average atmospheric conditions for a particular place at a given time of year. In 
sustainability science, we are interested in both, one for short-term effects that 
could become more drastic and the other for long-term trends that have 
implications for the health of our planet. Short-term weather forecasts, over five 
to seven days, have become quite good, but long-term prediction of weather – 
such as whether Chicago will have a white Christmas next year – is impossible. 
Predicting climate is even more involved, particularly for a small region, like a 
city. 
 

So, what’s the weather like right now?  
 

It’s that question that we might feel can be answered by going outside and 
looking. But figuring out the current weather around the entire globe turns out to 
be a remarkably difficult problem. 
 

If weather forecasters had a nice, tidy grid of perfectly reliable weather 
stations evenly spread around the world and extending up into the atmosphere, 
all they would have to do is to consider the readings. But what they have is far 
from that. See Figure 1, which shows weather monitoring stations in Europe, 
which are located according to funding and local interest. That’s not so 
convenient for weather forecasters, whose models need to know the temperature 
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at evenly spaced points of a tidy grid extending across oceans and up into the 
atmosphere. Weather stations are rare in the middle of the ocean or in tropical 
jungles. Satellites help fill in the gaps, but their data aren’t always reliable: For 
example, they infer wind speed from cloud motion, which requires guessing the 
height of the clouds. And thermometers and wind gauges sometimes break. 
 

This is a real nuisance for meteorologists, because to predict the coming 
weather, they really need to know the current weather everywhere. After all, the 
seeds of the next hurricane get hatched in some unmonitored corner of the 
Atlantic, not in the middle of New York City bristling with thermometers. 
 
 

 
 
Figure. 8. Weather monitoring stations in Europe are located according to funding and local 
interest. Mathematicians are creating ever-improved methods to infer the temperature at each of 
the models’ grid points from the messy spread of real-world data. Reprinted from “A European 
daily high-resolution gridded data set of surface temperature and precipitation for 1950 – 2006,” 
Journal of Geophysical Research, vol. 113, Oct. 30 2008, with permission from American 
Geophysical Union. 
 

Fortunately, forecasters have another source of information about the 
state of the weather, one perfectly tuned to their needs. that gives the current 
state precisely at every grid point: the forecasts themselves. Six-hour forecasts 
are remarkably good, usually predicting temperatures accurately within half a 
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degree. Indeed, these forecasts are usually more accurate than the information 
inferred for a given location from scattered weather stations at other locations. 
 

Paradoxically, though, if the models that generate the forecasts aren’t 
regularly updated with real-world data, the forecasts will rapidly become no better 
than the predictions from the Farmer’s Almanac. That’s because weather is 
chaotic (in both a technical and nontechnical sense). Left undisturbed, the output 
of even the best model will get further and further away from the real weather 
over time. 
 

So the best approach is to use a bit of each: Rely on the forecasts when 
they’re reliable, turn to the weather station data when they’re not. The problem of 
combining the two effectively is called data assimilation, and solving it requires 
some pretty fancy mathematical tricks. 
 

The challenge is to figure out when the forecasts are likely to be right and 
when they’re questionable. When a strong cold front pushes through the eastern 
U.S. in September, for example, several days of clear weather will almost 
certainly follow. In that case, the forecast is likely to be better than the 
measurements. But when a hurricane is churning northward along the East 
Coast, its path is hard to predict, so the forecasts can’t be relied on and real-
world measurements are essential. Mathematics is needed to distinguish 
between these situations. 
 

One of the best approaches to this at the moment is called a “Local 
Ensemble Transform Kalman Filter” (LETKF). A LETKF creates a collection of 
forecasts, not just one: Researchers run the model fifty times using slightly 
varying initial data. If those simulations lead to fifty very different results in one 
area, the researchers know that the forecast is highly uncertain there, and they 
rely heavily on the data from the weather stations. But in regions that come out 
pretty much the same, they trust the model’s forecast more than the data. In 
areas with few weather stations (like the middle of an ocean), the LETKF is as 
much as 65% better than the techniques currently in use. But even better 
techniques are still needed. 
 

Data assimilation was initially developed in the context of weather 
forecasting, but it could be used in areas as diverse as oil recovery, CAT scans, 
forestry, fisheries, or maybe even climate. Any situation in which a model makes 
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predictions and measurements create data could benefit from data assimilation 
techniques, and so far, that potential has been little explored. Each context will 
raise its own mathematical demands. 
 

Data assimilation has hardly been used at all in the context of climate 
models, and some researchers believe that it has great promise. One of the 
critical problems in climate modeling, which statistical methods, whether data 
assimilation or other methods, are needed to address, is assessing how certain 
the models’ predictions are. Currently, the uncertainty is estimated in a very ad 
hoc way: Different modeling centers build different models that take somewhat 
different approaches, and the spread of the predictions of the models is 
presumed to give a reasonable sense of the degree of certainty. If they vary in 
their prediction of average global temperature in 2100 by, say, 5 degrees 
Celsius, it is imagined that the best prediction lies somewhere within that range, 
and that the 5 degree spread roughly describes the spread of temperature that it 
might end up being. But while the models certainly do help us understand how 
climate is likely to behave, there’s little reason to believe that the spread between 
the models faithfully represents the range of possibilities. An alternate approach 
would be to assess the uncertainty in each piece of the model separately along 
with the uncertainty in the data itself. Statistical methods could then combine 
uncertainty estimates from each model piece and from the data and provide an 
objective, unbiased assessment of uncertainty overall. But this approach has yet 
to be developed. 
 

Sustainability issues raise all kinds of data-modeling issues like this, more 
than most areas of science. Because sustainability problems deal with complex 
natural systems, understanding them requires lots of data, and the data are 
never as tidy, reliable, consistent, or meaningful as is needed. So when scientists 
march out and install thermometers, count tree species, drill ice cores, and tally 
malaria cases, filling their hard drives with millions and billions and trillions of 
data points, they usually find that they don’t have exactly the information that 
they need when they bring those hard drives back to the lab. They then turn to 
statisticians or other mathematical scientists and ask them how to manipulate the 
data into the necessary from – but often, the mathematical tools needed for the 
job haven’t yet been invented.  
 

Part of the problem is that sustainability issues often require merging 
datasets produced at different times for different purposes. In the U.S., for 
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example, many different government agencies and others collect data that is 
relevant to understanding the health of forests: The Forest Service does an 
inventory of plots around the country every five to ten years that assesses the 
trees, the ground vegetation, the soils, and the air quality; the U.S. Environmental 
Protection Agency assesses water quality around the country; the Census 
assesses population levels and housing densities; private groups monitor at-risk 
species; the list goes on and on. Understanding the true state of our forests and 
the threats to them requires integrating this data coherently. 
 

“Forests on the Edge” is a project that is doing just that, combining all 
those data sources into a single map and analyzing the results. But the data 
doesn’t line up neatly. The plots the Forest Service analyzes, for example, are 
different from the plots the Geological Survey analyzes. The data are of varying 
quality and are gathered in different ways. Scales vary. The project has 
developed techniques to use the combined data to produce the clearest picture 
of the state of our forests and the threat to it, but new techniques are needed to 
quantify the uncertainty of the combined data they produce.  
 

In other situations, the hard data scientists need simply don’t exist. It’s 
difficult and expensive too, for example, count all the caribou in a ten-thousand-
square-mile area. In some such situations, however, knowledgeable, 
experienced folks have some good ideas about what is going on – they just can’t 
back their opinions up scientifically. Inuit in northern Canada, for example, may 
have a strong sense of whether the caribou population is rising or falling, based 
on their long experience traveling across the land and sharing information with 
one another. Mathematical scientists are working on developing unbiased ways 
based on mathematical and biological principles to combine this “soft” data with 
the limited available hard data. For caribou, as an example, scientists could 
survey a few, limited areas carefully and then test out how accurate the expert 
knowledge is on those particular areas in order to determine how much weight to 
give it in an overall assessment. This approach has only begun to be explored. 

 
Even when the funding exists to gather the data needed, mathematical 

questions arise about how to do so most efficiently. For example, the National 
Ecological Observatory Network (NEON) is collecting data at twenty sites across 
the U.S. to get a continent-wide picture of the impacts of climate change, land 
use change and invasive species on natural resources, and biodiversity. Those 
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twenty sites needed somehow to represent the entire continent ecologically, so 
their selection was critical. 
 

 

 
 
Figure 9: Ecology is rife with uncertainty. For example, any estimate of the number of harbor 
seals covered with oil following the Exxon Valdez oil spill is going to be approximate, since you 
can’t come close to counting every last one. Even finding a representative sample is hard. New 
methods are being developed to separate out sources of uncertainty. Credit: Getty image of seal 
and NOAA National Marine Mammal Laboratory for the map. 
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Their first step was to divide the U.S. into twenty ecologically 
homogeneous regions using methods based on firm scientific principles. They 
divided the country into eight million patches, and for each patch, they collected 
nine pieces of information about its ecology and climate. They then used a 
supercomputer to cluster the patches into similar regions and picked a 
representative site within each region. They then reanalyzed the data to make 
sure that the twenty sites were as different from one another as possible and 
represented the full spread of ecological conditions. This method worked well, 
but it would be better to consider 100 different ecological properties rather than 
just nine. New techniques will be needed to make that computationally practical.  
 

 
 
Figure 10: The National Ecological Observatory Network had to choose twenty ecologically 
representative sites across the United States to monitor to see what effects changes in land use, 
climate, and invasive species might be having. They started by dividing the country into eight 
million patches, which they classified by ecological type. This generated the map above. Credit: 
William Hargrove, U.S. Forest Service. 
 

Measuring progress toward sustainability might require us to understand 
how to measure the health of specific “indicator species” that, like the canary in 
the coal mine, indicate the overall health of an ecosystem. For example, lichens 
respond to changes in forest structure (air quality, climate) and disappearance of 
lichens may indicate environmental stress (high levels of sulfur dioxide, nitrogen 
oxides, etc.). Algal species in aquatic systems may indicate organic pollution and 
nutrient loading (e.g., nitrogen, phosphorus). Mussels are sensitive to siltation 
and low dissolved oxygen in water. Efforts have been made to build 
mathematical models that show how one can find “clusters” of unhealthy plants 
such as lichens. These “dynamical spatio-temporal models” of the distribution of 
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healthy/unhealthy plants are challenging, particularly using messy real-world 
data. Thus, understanding how the health of indicator species can give early 
warning of problems in an ecosystem will require new mathematical and 
statistical tools.  
 

Finally, we need better methods to figure out just how good our 
mathematical models are. For example, we have models that describe how 
substances move between the atmosphere, land and oceans over time, using a 
series of non-linear ordinary differential equations. This cycle is critical for marine 
life, which relies on the balance between nutrients, phytoplankton, and 
zooplankton, which are in turn influenced by temperature, light, and resource 
availability. The equations of the model are, of course, approximations, but 
standard analyses commonly ignore this, and the result is that the model doesn’t 
properly predict the size distribution of phytoplankton and zooplankton. Similar 
difficulties arise in the highly complex problem of modeling air quality. If air 
quality is substantially worse than our large reaction-diffusion models predict, we 
need to know whether that is because the underlying dynamics are different from 
what we thought, because of inherent randomness in the system, or because our 
models captured those dynamics badly. Models have become vastly more 
complex over time, making existing methods of evaluation inadequate. 
 
Mathematical sciences challenges in the area of measuring and 
monitoring progress toward sustainability include development of the 
following: 
 

• Tools for uncertainty quantification via probabilistic modeling 
approaches, including tools to deal with the following challenges in this 
area alone:  

 Characterizing the bias or discrepancy between models and reality 
(data); 

 Recognizing that cost constraints often mean that models can only 
be run for certain combinations of input parameters, requiring 
extrapolation of model output to other input parameters; 

 Accounting for uncertainties in the initial conditions;  
 Estimating unknown parameters in the process models; 
 Accommodating stochastic features of the process models; 
 Producing predictions that arise by combining models and 

observational data, as might occur via data assimilation methods. 
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• Methods for estimation of parameters to use in our models. 

 
• Sampling designs for monitoring and measuring quantities relevant to 

sustainability. 
 

• Data fusion methods for integrating diverse datasets. 
 

• Computer experiment methods to help us deal with sustainability data 
and models. 

 
• Model diagnostics for complex, hierarchical models. 

 
• Model assessment tools for integration or comparison of multiple 

models.  
 

• New methods of developing and applying complex networks and 
network theory.  

 
Methods to address these challenges should be developed in the context of 
dynamic spatio-temporal models. 
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CHAPTER 4 
 

Managing Human-Environmental Systems for Sustainability 
 
To be useful, sustainability science needs to guide decision-making. 
Chapter 4 lays out the mathematical sciences tools needed to put together 
what we know into a precisely defined set of questions and into a practical 
course of action. 
 
Fish don’t stop at international borders. They swim where they will, paying 

no heed to which country owns the territorial waters they’re swimming in. This 
willfulness creates nasty problems for fishery managers – problems that have led 
to disputes between nations, broken agreements, and the collapse of fisheries. 
And some of these problems are ones that only mathematics can solve.  
 

Pacific salmon are a prime example: They migrate along the Pacific 
Northwest coast of the U.S., past Canada, and along the coastline of Alaska 
before looping back to return to the precise river they hatched in themselves to 
lay their eggs and die. The result is that Canadian fishermen inevitably catch fish 
hatched in U.S. waters and vice-versa – and if either country overfishes, both 
lose. 
 

In 1985, the two countries came to an apparently simple solution to the 
problem: fish trading. Each country would harvest fish in proportion to the 
number produced in their own rivers. That way, if one of the countries invested in 
habitat restoration, say, and increased its fish population as a result, it would 
reap the benefits of its efforts. 
 

The solution turned out to be a bit too simple. Climate shifts (unrelated to 
global warming) caused the number of adult salmon in Alaskan waters to explode 
while the number along the Pacific Northwest and Canada dwindled. Alaskan 
fishermen harvested record numbers of fish, many hatched in Canada. Canada 
couldn’t catch enough salmon from the reduced numbers in their own waters to 
balance it out. Worse yet, Alaska had no motivation to change the agreement, 
since it was profiting handsomely. 
 

By 1993, the agreement had broken down entirely. The results were 
predictable: Some fish stocks crashed. It was a classic case of what game 
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theorists call the “Prisoner’s Dilemma”: Even though both the U.S. and Canada 
were better off cooperating, without an agreement their individual interests 
pushed them toward competition – with devastating consequences for both.  
 

At this point, fishery managers in both countries started talking with 
mathematicians about how game theory could offer a way out of the impasse. 
Game theory models offered several insights. The most fundamental was that at 
all times, any agreement had to be in the self-interest of every player involved 
(i.e., every entity with bargaining power). The failure of the existing treaty to do 
this for Canada is what led to its downfall.  

 
Another insight was that although two countries were involved, the actual 

number of players was higher, because individual states in the U.S. have more 
authority over their own fishing policies than the federal government does. So 
Alaska, Washington and Oregon acted as separate players, with the interests of 
Washington and Oregon closely enough aligned that they acted as a block. A 
final insight was key to breaking the impasse: The mathematicians noted that it 
wasn’t necessary for the two countries to harvest fish in proportion to their 
production; instead, the essential thing was that they harvest economic benefits 
from the fish in proportion to their production. 
 

 
 
Figure 11: Pacific salmon migrate in a huge loop through US, Canadian and international waters, 
before returning to their home river to spawn. This necessitates international agreements 
between the countries to prevent overfishing and ensure that each country is able to harvest its 
fair share of salmon. Game theory can guide the design of such agreements so that they’ll be 
self-reinforcing. Credit: Getty images. 
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Five years after the agreement broke down, both the U.S. and Canada 

were near disaster. As the Canadians fished frantically in an effort to balance out 
the Alaskan harvest, the coho and Chinook stocks that dominated their waters 
dwindled, affecting both Canada and the Pacific Northwest states. The famous 
“tragedy of the commons” was unfolding. 
 

So both countries went back to the bargaining table. They adjusted the 
harvesting limits to take a longer-term view, account for the prevalence of each 
species of fish, and better protect against overfishing. In addition, the U.S. began 
to indirectly compensate Canada for the extra Canadian fish caught by U.S. 
fishermen. This system, which the mathematicians had recommended based on 
their game theory models, allowed the two nations to balance the economic 
benefits from the fish rather than balancing the number of fish harvested. This 
also created greater flexibility to respond to future shifts in fish abundance or 
migration patterns. The 1999 agreement has proven to be sufficiently robust that 
it was re-ratified in 2005, with only minor changes. 
 

Because of experiences like this, fishery managers have started to 
recognize that it’s impossible to understand what’s really going on with fishery 
agreements without game theory. The dynamics are too complex. Nevertheless, 
game theory is still underutilized in fishery management. Side payments, like the 
U.S. payment to Canada, are rare and usually smaller than ideal when 
implemented. Every fishery represents its own game theoretic challenge, and the 
rules of the game change over time as the fishing fleets of different nations rise 
and fall and as international laws around fishing evolve. The contribution game 
theory has to make to fishery management has only begun to be exploited. 
 

Even within a single country, management issues are tricky and need 
mathematical guidance. A nation, of course, has the power to regulate how much 
fish each fisher is allowed to catch, rather than having to rely exclusively on self-
interest. The first way this was tried was by limiting the fishing season. This 
backfired, though: Fishers developed faster boats and better ways to find the 
fish, so as to catch as many fish as possible as fast as possible. Managers tried 
limiting the number of boats, but fishers then built bigger boats. Recently, 
managers have moved to giving fishers individual quotas that they can trade 
among themselves, where the quota size is determined by the fish population. If 
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designed carefully, these can give fishers a long-term stake in the health of the 
fishery.  
 

 
 
Figure 12: When fishing managers tried to control fish harvests by limiting the number of fishing 
boats, fishers responded by increasing the size and capacity of their boats. Mathematics can be 
used to predict the impact of fishing regulations in advance and avoid such unintended 
consequences. Credit: Skagman  
 

That careful design requires mathematics. Agent-based mathematical 
models represent each individual fish and each individual fisher in a computer 
model and can play out the consequences of strategies before implementation, 
avoiding a continuation of the costly trial-and-error approach that dominated early 
attempts at regulation.  
 

Mathematicians are also working to develop models that will help predict 
the fish populations from year to year. “Age-structured models” can determine 
the age at which a caught fish will have the least impact on the population as a 
whole. By adjusting the size of the mesh of their nets, fishers can ensure that 
they won’t catch younger fish – and if the quotas are designed well, fishers will 
support such rules even if it reduces their catch in the short run. But so far, these 
models only work well in fish whose populations aren’t subject to large changes 
from outside forces – and there aren’t very many of those. Most fish are strongly 
impacted by ocean circulation, which changes based on weather patterns from 
year to year in ways that aren’t predictable.  Predicting fish populations precisely 
is impossible given this variability, but a mathematical challenge that could be 
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met is to build models of the “spatial dynamics” that will reveal the patterns of 
variability over time. 
 

Another technique managers have used to protect fish populations is to 
create “marine protected areas,” keeping fishers entirely out of areas that are 
particularly important for breeding. This raises another mathematical challenge 
for predicting fish populations, because the marine protected areas create a 
sharp boundary: inside the boundary, the fish are protected, and outside, they’re 
not. Most mathematical models rely on smooth transitions from one zone to 
another. 
 

Fisheries are just one example where math is key to managing the Earth’s 
resources. Lumber, food, and fuel provide other examples. As human population 
grows, we have to be smarter about how we manage resources so that the 
planet is able to produce enough to sustain us. Mathematics is a key tool to 
predict the consequences of our decisions. 
 

 
 
Figure 13: Managing air pollution raises mathematical challenges including modeling how 
pollutants disperse, determining minimum levels of different pollutants that have health effects, 
and developing air pollution indices that provide early warning about unhealthy air. Credit:  Getty 
Images  
 

Forests are another example that demands mathematical models for 
understanding, and new techniques will be needed to capture their complexity. A 
simple interaction that’s easy to model is the three-way dance among fire, 
aspens and ponderosa pines throughout the Rocky Mountains. A mature Rocky 
mountain forest is predominantly ponderosa pine, but when a fire burns hot 
enough to kill the ponderosas, the quick-spreading aspens take over. The 
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ponderosas slowly fill in and displace the aspens. By characterizing this process 
mathematically, it’s fairly straightforward to predict the percentage of aspen and 
ponderosa pine some number of years after a fire. Such predictions can guide 
foresters in managing timber resources or biologists in understanding 
biodiversity. 

 
In the Amazon rainforest, however, a similar interaction might critically 

involve the interactions of 300 species rather than just two. While a model can be 
built to describe such a complicated set of interactions, it would be so complex 
that it would be impossible to analyze or use to generate predictions. So, new 
mathematical techniques are needed to handle these complex interactions – for 
example, statistical methods that can characterize the interaction of many 
species without having to trace the impact on each individual species. 
 

A similar difficult question is to understand the interactions between 
individual trees, rather than species of trees. Since trees compete with one 
another for water, light and minerals, they affect one another’s growth – more if 
they’re closer, less if they’re further away. Mathematical scientists can  
model such interactions effectively for a pair of trees, but with even three trees, 
the problem gets extremely difficult, because the pairwise interactions end up 
affecting one another in an infinite sequence. 
 

 
Figure 14: In southern Brazil, the forest was cleared for grassland, but it is now protected and is 
coming back. Mathematical modeling helps estimate the rate of forest expansion and understand 
the different stable states of the system. Credit: Madhur Anand.  
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A third mathematical challenge for forests is to understand how many 

species can be removed before the functioning of the forest breaks down. 
Northeast forests in the U.S., for example, have lost their elms and their cherry 
trees, and ash trees are in danger of disappearing. So far, the forests have been 
able to absorb these losses, but if too many more species die out, the ecosystem 
will collapse. Mathematicians don’t yet have good ways of understanding the 
resilience of a complex system like a forest. 
 

Agriculture is a third area where mathematical scientists are having a 
growing impact. Spatial planning provides one challenge. Optimization methods 
can be used to determine the mixture of crops that is likely to be most productive 
in a particular area, taking into account growth rates, susceptibility to disease, 
economic value, etc. There’s an additional consideration that so far has been 
little accounted for in such analyses: what crop grows where. One crop may be 
hard to transport (like switchgrass for a biofuel plant, for example); another may 
be susceptible to bacterial contamination from livestock (like spinach); a third 
may be subject to invasive species. The mathematics to determine the best 
spatial placement of crops is only now being developed. 
 

To understand issues of sustainability, mathematical scientists need to 
understand issues of the social sciences and to bring social science issues and 
methods into their models. Agriculture provides a prime example. One of the 
greatest sustainability challenges comes from rising consumption and the need 
for consumption to be divided more equitably around the world. This is 
particularly true for agricultural products. Many different forces are coming 
together to create an increasing demand for certain agricultural products: 
population is rising; the developing world is growing economically; meat 
consumption is increasing. Large models of the economy have been created that 
take into account the different consumption levels in different areas, but there is 
enormous uncertainty that influences their output: How fast will the developing 
world grow? How much more meat will people eat? How fast will population rise? 
How will decisions made by societies affect population growth patterns? All of 
these things impact model output enormously. Improving these models requires 
that mathematical scientists work with social scientists to understand the 
dynamics of the developing and developed world and the impact of alternative 
management plans. 
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Some of the overarching mathematical sciences challenges in the area 
of managing human-environmental systems for sustainability are: 
 

• Management problems often involve finding the optimal solution to a 
set of mathematical equations. For example, we want to know how 
many fish we can catch per year to get the maximum fish harvest over 
the long run, or how we minimize the spread of invasive species. Good 
techniques have been developed for doing this as long as there isn’t 
too much random fluctuation in the system, but when the system is 
impacted by unpredictable outside influences like ocean circulation 
changes or weather, those techniques break down. Methods for finding 
the optimal solutions in systems with large variability are essential to 
solving these management problems. 

 
• It’s usually much easier to make predictions over the short run or the 

very long run. Tomorrow, the condition of the Rocky Mountain forests 
is likely to be quite similar to the condition today. And in the long run, 
climate change will force species northward and to higher latitudes. But 
predicting the intermediate term is tough: How fast will those changes 
happen? Most management problems require information about 
exactly those intermediate time scales. New mathematical methods 
are required to understand the evolution of dynamical systems over 
these intermediate time scales. 

 
• Any large-scale mathematical model has “parameters,” single numbers 

that encapsulate some complex process, for example, biotic variables 
needed to understand forest health that include diameter, height, 
health, and live/dead status for different trees and tree species, and 
plot variables such as proportion of forest, regeneration, and 
understory vegetation.  Better mathematical methods are needed to 
find which of these parameters are most useful and to find the best 
value for these parameters. The problem is particularly complex when 
models are linked together and deal with uncertainty.  
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• Because natural systems are always complex dynamical systems, 

understanding them and predicting them is difficult. Management 
decisions hinge, as a result, on understanding the effects of feedbacks 
in these systems. So new approaches are needed to understand them.  

 
• Mathematical scientists need to work closely with social and behavioral 

scientists to understand the concepts that social scientists use and to 
include these concepts in mathematical models of human and natural 
systems and their interaction. 
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CHAPTER 5 
 

Mathematical Challenges in Energy Sustainability 
 

Chapter 5 examines Energy as an in-depth case study that touches on the 
themes in the other four chapters. The energy system needs a radical 
transformation, fast, and so does the relation of human activity to energy. This 
chapter discusses how mathematical scientists can help us address this huge 
challenge. 
 

In the early morning hours of Feb. 2, 2011, temperatures across Texas 
plummeted into the teens. As people climbed out of bed into their chilly houses, 
they simultaneously reached to turn up their electric heaters. Power drained out 
of the grid, creating a spike in demand so sudden that the power generators 
couldn’t ramp up their production fast enough. Lights dimmed as operators were 
forced to drop the voltages for short periods in order to prevent major blackouts. 
Worse, the computers that controlled traffic systems, elevator banks and 
manufacturing plants couldn’t operate at the lower voltage and failed. 
Speculators were reported to have taken advantage of the chaos to charge 
$2,000 per megawatt-hour, when the price averages around $50. 
 

The power grid these days is remarkably robust, and such events are rare. 
But as we push to increase the use of renewable energy with thousands of wind 
turbines and millions of solar panels on the roofs of homes and businesses, 
avoiding such events is going to become harder and harder. Each time the wind 
drops, the power pumping out of wind turbines falls, and if that happens 
dramatically and unexpectedly, the grid may not be able to compensate. Utilities 
are going to have to manage power grids with a level of uncertainty that has not 
been faced since electricity was first harnessed.  
 

The basic problem is that electric power can’t be stored on an industrial 
scale. It must be made in the exact quantity that users consume it, which varies 
unpredictably. Furthermore, turning power plants on or off is often expensive and 
can’t be done on a moment’s notice. The power produced by wind turbines varies 
as unpredictably as, well, the wind. A given power line can only carry so much 
electricity. Utilities and grid operators need to manage energy generators, 
anticipate customer needs and balance energy resources under uncertainty from 
supplies, prices, customer requirements and equipment failures. Designing 
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algorithms to balance all these needs makes for a massive mathematical 
challenge. 
 

The mathematical problem of planning the operation of power generating 
units has long been recognized, but for decades, utilities resorted to ad hoc 
solution methods, and as a result they’ve typically been forced to schedule 
excess capacity to compensate for the lack of precise solutions. This approach is 
worse than just costly: the fossil fuels wasted are in limited supply, and their 
combustion could be threatening the climate of our planet.  
 

In the late 1990’s, mathematicians brought advances in “mixed integer 
programming” to this problem, which new hardware and software had just made 
practical for large-scale problems. The result of a simple improvement in an 
algorithm was a savings of $250 million per year, along with millions of barrels of 
oil. 
 

Utilities have long lived with considerable uncertainty as to demand for 
power, requiring what are known as stochastic optimization tools and methods of 
reliability analysis in planning for capacity and operation. But now the utilities’ 
problem is getting even more challenging as wind and solar power become more 
prominent. They make the energy supply unpredictable as well as the energy 
demand. That is not so hard to deal with in small quantities, but as the 
percentage of renewables climbs – as new laws are increasingly mandating – the 
difficulty grows dramatically. As long as we know the future, advances in the field 
of integer programming have made it possible to solve power generation 
problems with thousands of variables in a reasonable time.  By contrast, once we 
introduce uncertainty, seemingly toy problems with just a few variables can 
explode, producing algorithms that exceed the capabilities of the largest 
supercomputers. If we are going to find efficient, robust solutions to manage our 
power grid in the presence of uncertainty from wind, solar, weather and human 
behavior, existing mathematics isn’t enough; new techniques are essential. 
 

This is just one of the challenges we face from the enormous task of 
transforming our energy systems. Energy demand is continuing to grow, while 
the costs, both monetary and environmental, are becoming harder to bear. We 
need new energy solutions that make us less dependent on foreign oil, release 
less greenhouse gas into the atmosphere, and are robust and affordable both for 
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us and for the developing world. Doing so is going to require many new 
developments in the mathematical sciences. 
 

The power grid itself is getting pushed to its limits as demand continues to 
increase faster than capacity. Getting close to the limit increases the vulnerability 
of the grid. In 2003, a tree fell on a power line, and the human operators of the 
grid didn’t notice the problem. The result was that the excess power went to 
another line, which became overloaded and failed. That caused even more 
power to go to a third line, causing its failure. At that point, a cascade of outages 
began that ended up making the entire northeastern U.S. and Canada go dark 
for days and cost billions as the lack of electricity snarled traffic, stopped 
subways and interrupted communication. Increasing the robustness of the grid is 
critical to prevent such costly mistakes. 
 

 
 
Figure 15: The increasingly complex distribution network for electricity carries creates both 
increasing vulnerabilities and an increasing ability to manage the system to catch anomalies 
early. Credit: Jeffrey G. Katz 
 

Doing so is tricky because the power grid wasn’t planned; it evolved in 
response to the needs of the community, and is in constant flux. As the 
complexity of the system grows and it is pushed closer to its maximum capacity, 
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it can not be managed by human intelligence alone; we have to have good 
models to guide decision-making. Improved models can also catch problems 
before they occur, guiding the placement of new lines or generating stations or 
extra maintenance on key ones that are vulnerable. Today’s “smart grid” allows 
us to monitor the health of the power system with greater precision and much 
more rapidly than before. However, this calls for new and more powerful 
algorithms and new and more powerful statistical tools to rapidly detect 
anomalies from the massive amount of data generated about the grid, and to 
take corrective actions before dangers cascade throughout the system. 
Mathematical scientists have only recently begun to get seriously involved in 
modeling the power grid, and an enormous amount of work remains to be done. 

 
Another major challenge is to find clean sources of energy and effective 

ways to store that energy. This will require new materials to be created, and math 
can dramatically speed up the process of finding materials with the particular 
properties we need. For example, a recently created material can turn low-grade 
heat (which is typically lost as waste) into usable electricity. The material when 
cool is an ordinary, non-magnetic metal that seems like nothing special. But 
when it heats up, it undergoes a phase transformation and becomes strongly 
magnetic.  
 

As Faraday’s Law describes, this change in the magnetic field creates an 
electric current. Many of us as kids created a transformation like this by rubbing a 
magnet along a nail, aligning the electrons and turning the nail magnetic. Unlike 
such a nail, which stays magnetized after the magnet goes away, this new 
material goes back to being almost perfectly non-magnetic once it cools. The 
removal of the magnetic field also induces an electric current, and the material is 
ready to be used again. 
 

This reversibility of the magnetic field is an extremely rare property, and 
researchers would have had great difficulty finding a material that can do this 
without guidance from mathematics. By analyzing the macroscopic properties 
they were looking for, they were able to deduce the microscopic structure the 
material would need to have, and then they could go into the lab and create it. 
The mathematical ideas used are based in the “calculus of variations,” which in 
principle can be used to reveal almost all the properties of interest about a 
material. Realizing this potential fully would lead to a true revolution in materials 
science, but it will require significant advances in the theory. 
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Figure 16: A new alloy in the midst of changing phase. The blue needle is the martensite phase, 
which is growing into the orange-brown austenite phase as the material cools. In a similar alloy, 
one phase is magnetic and the other is non-magnetic, and the resulting material can be used to 
turn low-grade heat into electricity. The clean, undistorted interface between the two phases in 
this picture is extremely unusual, and in the magnetic version, it creates the near-complete 
reversibility of the magnetic field. Credit: R. Delville and D. Schryvers, EMAT, University of 
Antwerp, Belgium. Reproduced from the cover of Advanced Functional Materials 12 (20), 2010, 
with permission. Copyright 2010, WILEY-VCH Verlag GmbH & Co. KGaA. 

 
Another group is creating membranes that can function inside fuel cells 

like artificial versions of the mitochondria that provide energy for biological cells. 
The membranes are made of polymer electrolytes, which consist of a 
hydrophobic polymer backbone with charges stuck on here and there. These 
form a hydrophilic network structure, a bit like a plate of spaghetti – but one that’s 
thirsty and sucks up any nearby tomato sauce (or, in this case, water). 
When the polymer electrolytes suck up water, the charges push the water into 
strange shapes which depend on the stiffness of the backbone and the 
placement of the charges. The water could take the shape of a sheet of paper, or 
tiny soda straws, or a network of pearls of water connected by pores, or a 
fluctuating network of isolated pearls that occasionally meet up. The properties of 
the membrane depend on the shape the water takes, and the mathematical 
challenge is to predict the behavior of the water from the properties of the 
polymer electrolytes. 
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Figure 17: Mathematics is essential to designing electrolyte membranes that lie at the heart of 
fuel cells. The green areas of this image are crystallized polymer, the white areas are 
uncrystallized polymer, and the blue areas are water. The charges on the polymer force the water 
into this convoluted shape. Credit: Zhengfu Xu, Keith Promislow, Andrew Christlieb, and Nir 
Gavish. 

 
The traditional approach has been to do an atom-by-atom simulation, but 

this is untenably slow. Techniques from the field of differential geometry can 
create a rich language to describe the shapes that the water can form and give a 
much more powerful way of modeling them. 
 

To meet the energy challenge, we need promising technologies like these. 
But another huge aspect of the challenge is scaling up laboratory techniques to 
make them into economical solutions that will work on a large scale, which 
requires major investment. A serious challenge is choosing which technologies to 
invest in. 
 

A natural first thought would be to let many flowers bloom and invest a 
small amount in every promising technology. But technologies get cheaper the 
more we invest: Investment spurs innovation and innovation spurs more 
investment, as we’ve seen so powerfully with, for example, the development of 
personal computers over the last few decades. So with new energy technologies, 
we’ll get a much bigger return on our investment if we choose a small number of 
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the most promising technologies to invest in heavily than if we spread the money 
around evenly. 
 

The basic assumption of current finance theory, though, is that any 
individual person’s investment is too small to affect the value of what’s being 
invested in. Even in traditional finance, that assumption is problematic, but in the 
context of new energy technologies, it’s catastrophic, eliminating these virtuous 
cycles of investment and innovation from the very beginning. Essentially what’s 
needed is a more powerful theory of optimization that can deal with these highly 
complex, stochastic (i.e., random), non-linear problems. 
 

Such optimization techniques are needed in a wide variety of other 
contexts as well, for example, deciding when to recharge a battery and when to 
withdraw energy from it, determining which power stations to use and when, and 
deciding on the price at recharging stations for electric vehicles. 
 

Another key to investment is for the market to provide the appropriate 
incentives. When carbon can be emitted without cost, it is very difficult for cleaner 
but more costly technologies to get a foothold. A cap-and-trade system is one 
solution for this. This is a policy in which regulators set a target level of 
greenhouse gas emissions (the “cap”) which can be reduced over time, and 
energy producers either buy or are given permits to emit, which they can 
subsequently buy or sell (the “trade”). The allure of this policy is that it has the 
potential to allow the market to find the most efficient way of reducing emissions. 
A coal plant, for example, wouldn’t be forced to shut down, but it would require 
lots of permits that would make it more expensive to operate. If the plant is 
located in an area with cheap coal and few other energy options, its owners 
might choose to continue to operate it, paying the premium. But in an area with 
abundant sunshine, it might be more profitable to build a solar thermal plant, shut 
the coal plant down, and sell the unneeded permits to someone else. 
 

The downside of cap-and-trade systems is that they can fail spectacularly 
unless they’re carefully designed. When Europe implemented its cap-and-trade 
policy in 2005, for example, the price of carbon emissions collapsed, emissions 
targets were missed, prices to the consumer shot up, and energy companies 
reaped enormous windfall profits.  
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The fundamental problem was that European officials implemented their 
system blindly, with little mathematical analysis to guide them. Many argued after 
the European debacle that the problem was that the emission permits were given 
away for free and that if they had been auctioned off instead, windfall profits 
wouldn’t have occurred. But mathematicians have found that some windfall 
profits are inevitable, regardless of how the permits are allocated. The best way 
of controlling them, current research suggests, is to give producers around 70 
percent of their permits for free and require them to buy the remainder at auction. 
Producers who choose a particularly clean mix might not need to buy any 
additional permits, while those with a dirtier mix would have to buy a lot.  
 

Much more work is needed, however. The key challenges are to set the 
appropriate emissions targets and to choose the right method of allocating 
emissions credits.  

 
Finding the regulations that will most effectively limit emissions without 

significantly raising prices to the consumer remains an open problem, and one 
with major consequences to both humanity and the environment. 
 
 
Some of the mathematical sciences challenges we need to meet in order 
to transform our energy systems are: 
 

• Development of new methods of stochastic optimization of complex, 
dynamic systems that arise in storage, R&D portfolio optimization, 
design of grids, choice of generators, and models of users.  

 
• Our models of the economy need to be vastly improved. Current 

models assume that our economy will always be in a state of 
equilibrium and that everyone will behave rationally, but as the 2008 
financial crisis proved, at the most critical moments, these assumptions 
can be dramatically false. We need these models in order to determine 
how much money we should be spending on alternative systems for 
generation, storage, transmission, and distribution of energy, and to 
predict the economic impacts of our energy policy decisions. 

 
• Design of new materials for energy production, storage, transmission 
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and conversion often requires solving inverse problems for partial 
differential equations and stochastic partial differential equations, 
which present challenging problems. 

 
• We need ways to reduce energy consumption, which leads to 

mathematical challenges involving economic incentives for energy-
efficient construction, new pricing schemes for energy use, and use of 
the “smart grid” to track consumption. 

 
• We need new methods for modeling and simulation of multi-scale and  

multi-physics systems, e.g., downscaling of fluid mechanics equations 
for wind turbines, thin films, and nanoscale materials. 

 
• New statistical methods of optimal sampling are needed for estimation 

of climate change impact on market responses, for identifying signals 
of environmental change, for understanding new materials, for 
comparing readings from numerous sensors providing massive 
amounts of data in a short time, and for placing sensors to maximize 
their usefulness in providing relevant data. 
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CONCLUSION 
 

The mathematical statistical sciences have a leading part to play in rising 
to the challenge of learning to live sustainably on the Earth. 
 

The interaction between humans and the environment create systems of 
enormous complexity. Understanding those interactions will require fundamental 
advances in the mathematical sciences. We need to understand the basic 
principles underlying complex systems. We need to develop new tools to deal 
with the vast quantities of high-dimensional data being created. We need better 
methods to handle uncertainty, both to wring out the best predictions possible 
despite the inherent randomness involved in the interactions between humans 
and the environment and to quantify the uncertainty of those predictions. We 
need to create models that can function at varying scales of both space and time. 
We need to link models of human systems to models of environmental systems 
to capture the feedbacks between them. Essentially every significant question in 
sustainability science has major unsolved mathematical challenges inherent in its 
answer. 
 

As a result, it is critical that more mathematical scientists get involved in 
sustainability research, and it is critical that funding be available to support their 
work.  

 
The mathematicians and statisticians at the Mathematical Challenges for 

Sustainability workshop made the following recommendations: 
 

1. The Institutes, Centers and Professional Societies should play a leading role in 
educating mathematical scientists to the research questions arising in the 
science of sustainability. They should be aware of the new research questions 
that are arising and communicate them to the mathematical sciences community. 
They should organize a series of interdisciplinary activities that will encourage 
the leadership of mathematical sciences in research related to sustainability and 
will enhance linkages among mathematical sciences and other scientific areas 
involved in sustainability. These activities should include workshops aimed at 
developing new mathematical theories for specific research areas, but should 
also include multi-year activities to develop sustained interactions. The focus 
should be both national and international. 
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2. Mathematical scientists, in partnerships with scientists in other disciplines, 
should develop mathematical theories of sustainability science. The integration of 
science, data and computational models is critical. Current or emerging areas of 
the mathematical sciences that are relevant to this activity include uncertainty 
quantification, massive datasets, complex adaptive systems, parameter 
estimation and model selection, integrating data from different sampling designs, 
stochastic optimization and game theory, inverse problems and multi-scale 
systems. 
 
3. Scientists working in areas related to sustainability should form 
interdisciplinary teams with mathematical scientists, including mathematicians, 
statisticians, operations researchers, computer scientists and mathematical 
economists, together with experts from many subject matter fields. Researchers 
should also collaborate with industry. 
 
4. There should be a focus on education at all levels, including new courses and 
research seminars on the mathematics of sustainability for graduate students, 
activities aimed at undergraduates and K-12, and communication with 
policymakers and the general public. 
 
5. It is essential to develop paradigms for sharing data and models. One possible 
mechanism is a national sustainability data center containing links to publicly 
accessible datasets, computer programs and models. 
 
6. Funding agencies should consider the most appropriate funding mechanisms 
for encouraging research in mathematical sustainability science. One possibility 
is a grants competition requiring collaboration between researchers from two or 
more disciplines, similar to NSF's Collaborations in Mathematical Geosciences 
initiative. Funding for such a program needs to include specific resources for data 
processing and computer programming. 
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Appendices:  Group White Papers 
 

Appendix 1:  Human Well-Being and the Natural Environment 
 

Authors:  
Alejandro Adem (University of British Columbia) 
Michelle Bell (Yale University) 
Margaret Cozzens (Rutgers University) 
Charmaine Dean (Simon Fraser University) 
Francesca Dominici (Harvard University) 
Avner Friedman (Ohio State University) 
Fred Roberts (Rutgers University) 
Steve Sain (National Center for Atmospheric Research – NCAR) 
Abdul-Aziz Yakubu (Howard University) 
 
Charge to the Group: 
Under this theme, the group should seek to identify a small set of research challenges in 
the mathematical sciences where progress could advance our understanding of the 
interdependence of human well-being and the natural environment. Understanding this 
interdependence is an essential foundation for sustainability science. Under this theme, 
the group should focus on the challenge of developing an internally consistent 
mathematical sciences-based framework for showing how use, and even depletion, of 
aspects of the natural environment could be consistent with sustainability so long as they 
are converted into other forms of capital (e.g. manufactured, human, social) at 
appropriate rates capable of maintaining human well-being over the long-term. Key 
issues for sustainable development the group should explore involve precise definitions 
of human well-being, and mathematical models of how natural capital contributes to 
human well-being, how human actions impact on natural capital, tradeoffs in benefits 
over space (intra-generational equity) and time (intergenerational equity), and the role of 
institutions, technology and knowledge in promoting sustainable development. Health 
(and freedom from disease) is one sample component of sustainability and of interest 
here, among other things, is the potential for emerging infectious diseases to arise from 
climate change and greatly impact both human and natural systems. Mathematical 
epidemiological methods, linked to climate change, provide a growing area of research 
which should be linked with sustainability science, and the group is asked to explore 
these. 
 
1. Introduction  

      
     Given the impact that humans have on the environment and the fundamental role 

that the environment plays in supporting human well-being, sustainable development 
requires improved understanding of human-environment interactions and intelligent 
decisions to guide human actions so they are consistent with maintaining human well-
being in the long-run.  
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Human well-being requires, at the very minimum, an acceptable level of safe food, clean 
air and drinking water, safe shelter (housing) and protection from diseases. Among the 
large and interconnected problems believed to be facing humanity in this century are 
poverty and global change. It is believed that nearly half of the world population lives in 
poverty (less than $2.00 per day; Shah 2008). At the same time, the high level of use of 
total resources and energy are leading to global changes that threaten the life-support 
system of the planet (Cairns 2010). Increasing the material well-being of people in 
developing countries is considered to be a global priority, yet bringing the entire world 
population to levels of consumption prevalent in developed countries, given current 
technology, does not appear to be sustainable (Ehrlich and Ehrlich 1989). 

Key issues for sustainable development involve precise definitions of human well-
being, how “natural capital” contributes to human well-being, how human actions impact 
natural capital, the nature of multiple tradeoffs among “ecosystem services” and other 
components of human well-being, as well as the role of human institutions, technology 
and knowledge in impacting the natural environment and promoting sustainable 
development. Finding precise definitions of these concepts is a key challenge for the 
mathematical sciences, since a fundamental feature of mathematics is its ability to make 
imprecise concepts precise. A related key challenge is to develop, analyze, and test 
mathematical models involving these concepts as basic parameters. In this report, we 
present illustrative (but by no means comprehensive) examples of areas which address 
the relationship between human well-being and the natural environment that can be 
advanced by research in the mathematical sciences and provide sample research 
challenges for the mathematical sciences. 
 
2.  Overview 
 

In this section we provide a brief general overview of sample areas at the interface 
of the natural environment and human well-being, and the inherent challenges of 
sustainability in these areas, giving a few examples of mathematical sciences 
approaches in each case. We provide more detailed examples of a few specific cases in 
Section 3. 

Human beings depend on ecosystem services for their well-being: clean and 
sufficiently abundant water, clean air to breathe, building material for shelter, fuel to 
power their machines, etc. Most theories of environmental impact assume that 
exploitation of the environment provides benefits to human well-being. However, this 
assumption has not been subject to rigorous empirical study and there is much work to 
be done to make such theories precise through mathematical models. In one 
mathematical approach, Dietz et al. 2009 model human well-being as a function of 
physical, natural and human capital. Using data from 135 nations, they find that 
controlling for physical and human capital, exploitation of the environment has no net 
effect on well-being. This suggests that improvements in well-being may be attainable 
without adverse effects on the environment. The model accounts for trade-offs between 
human and natural capital, but it does not address the important problem of non-
renewable resources such as coal, oil and minerals.  

At the interface between the natural environment and human well-being is the 
issue of climate change. One challenge here is a consideration of the effects of rising 
temperatures on the spread of disease.   Climate change may adversely affect a number 
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of diseases, with malaria a leading example. Five hundred million malaria cases occur 
every year and some scientists predict that, as a result of climate change in the coming 
decades, tens -- even hundreds -- of millions more cases will occur in regions where the 
disease is already present, and that transmission will extend to higher latitudes and 
altitudes. Such predictions, sometimes supported by simple (mathematical) models, are 
persuasive because they are intuitive, but they sidestep factors that are key to the 
transmission and epidemiology of the disease: the ecology and behavior of both humans 
and vectors, and the immunity of the human population. Malaria is not the only disease 
so affected.  The report "Climate Change and Human Health, Risks and Responses" 
(eds. A. J. McMichael et al., published by WHO in Geneva 2003) provides a very broad 
scenario of diseases that may become exacerbated by climate change. No mathematical 
models are described, but some can be found in the references. This is an area that can 
benefit from new mathematical sciences research. 
     The importance of the world's forests on human health cannot be overstated. It is 
essential for us to develop models that articulate the dynamics of the physical and 
ecological phenomena that shape our forests, how these processes interact, and how 
they are affected by and affect humans. The need to understand these processes will 
grow in importance as climate change influences forests, the way they are managed, 
and the increasingly important need for sustainable forest practices (Flannigan et al. 
2005; Westerling et al. 2006; Woolford et al. 2010). The interplay and feedback 
mechanisms between climate and forest need greater consideration. For example, we 
need to precisely model the effects of climate change on onset of fire seasons, length of 
fire seasons, and frequency of extreme fire events, as well as the changing range and 
abundance of severe destructive forest pests such as the pine beetle. The interplay 
between fire, climate and pests, and the aggregate effects of fire, climate, pests, and 
other factors on total forest area involve complex feedback processes, and they are 
closely related to human well-being through the effect of changing forest composition on 
sustainable timber supply and also the spread of disease that is exacerbated or 
influenced by forest conditions. Understanding this complex web of feedback 
encompasses modeling of both physical and ecological processes such as fire spread 
and the spread of infection, and incorporates research tools such as differential 
equations and spatial statistics methodologies to address key forest dynamic issues.  
    Water pollution from human activities, either industrial or domestic, is a major health 
problem in many countries. Mathematical analysis of water-quality problems dates back 
at least to the 1920's. A recent article by Pimpunchat et al. (2007) investigates the 
alleviation of pollution by aeration within a flowing river contaminated by distributed 
sources and the associated depletion of dissolved oxygen. The question of how to 
reduce water pollution by economic stimulation was investigated in Rikun (1992). This 
paper considers a scheme of economic stimulation in which payment for water pollution 
is partially used to compensate for expenses for water conservation measures. A 
mathematical model is used to determine stimulation parameters, when potential 
polluters are interested in the decrease of discharged waste-water volume to an 
optimum level. However, there is much embedded uncertainty requiring identification of 
different mathematical models of water quality and their applications to problems of 
prediction. This reflects a major mathematical challenge in sustainability science: 
uncertainty quantification and how to make optimal decisions under uncertainty. 
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Similar situations arise in the analysis of air quality. In both cases, water and air, there 
are questions related to irreversible degradation of the environment. For example, 
environmental damages due to economic activities may be irreversible, with the level at 
which the degradation becomes irreversible unknown. Particular attention must be paid 
to the situation where agents do not place a high priority on degradation of the 
environment and/or regeneration of the environment occurs slowly. Optimal policy 
decisions vary depending on whether irreversibility is considered and the behavior of 
humans and the environment is uniform. It would be very useful to develop mathematical 
theories for optimal decision-making under uncertainty which reflect constraints 
regarding sustainability, degradation, regeneration and their interactions, and apply 
these in the context of modeling water and air quality. Any criterion of optimality must 
include the condition of sustainability. 

The reserves of coal, oil, natural gas and uranium are limited. In addition, 
products resulting from their use – e.g., carbon dioxide and radioactive waste -- cannot 
be fully absorbed by the environment. Consequently these reserves are not sustainable 
sources of energy, nor is ethanol from corn, which requires fossil-energy input for 
plowing the fields and distilling the mash, as well as large quantities of water. In the long 
run, the only sustainable energy is renewable energy, such as solar, wind and 
hydropower. As demand for renewable energy increases, it becomes important to devise 
optimal strategies to achieve given demands. Iniyan (1998) explores this issue from a 
mathematical point of view. Some mathematical models show that sustainability (in 
energy or other resources) can be achieved if compensation is possible (i.e., stocks for 
renewable resources augmented as production depletes stocks of nonrenewable natural 
resources).  Developing mathematical models and analysis for dynamical network 
models has promise to advance this area of sustainability science.   

Re-use or recycling of natural resources is a key component of sustainability. So 
could be strategies such as “cap and trade” that encourage trade-offs to slow depletion 
of natural resources or production of unwanted byproducts of human processes. Mellor 
et al. (2002) create a model of re-use of natural resources using a methodology that 
considers multiple-use phases by describing material recovery, re-use, and recycling. 
The model serves to generate a set of pareto-optimal choices needed to support multi-
attribute decisions in which technical, economic and environmental performances must 
all be considered.  A recent book by DeLara and Doyen (2008) offers a mathematically-
based course on trade-offs for sustainable management of natural resources. It 
introduces mathematical models of viability; concepts such as decisions under 
uncertainty; tools such as the Pontryagin maximum principle; maximum approaches; 
robust control; and stochastic optimization. In addition, a new mathematical framework 
for competitive equilibrium, in which emissions trading schemes can be analyzed, was 
very recently introduced (Carmona et al. 2010).   

The role of human institutions such as property rights and pricing systems for 
natural resources is pivotal in achieving growth and improved distribution of income and 
wealth, in understanding environmental degradation, and in seeking improved policy 
leading toward sustainability. The role of such institutions in promoting sustainable 
development is addressed using mathematical approaches by Veeman et al. (2003). 
Special management problems exist for ‘critical’ components of natural capital to ensure 
that our heirs receive an undiminished patrimony. It would be very useful to develop 
concrete models that address specific human institutions. Particularly useful criteria and 
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indicators of sustainable development relate to ‘green’ output and productivity measures 
in which the depreciation of natural capital is being considered.  

The above brief snippets indicate the wide variety of problems of sustainability that 
arise from the interplay between natural and human processes and the opportunities for 
mathematical sciences to address these problems. The power of mathematical sciences 
methods is that tools developed for one application are often generalizable and 
applicable to other applications. Still, specific critical applications have historically been 
the driver of new mathematics and problems of sustainability are certainly likely to be 
such a driver. Thus, though we would be tempted to organize a discussion around 
mathematical sciences topics that cross over into a wide variety of applied areas, we 
have chosen to organize the rest of this report around illustrative examples of applied 
topics that are clearly connected to the need for new mathematical sciences 
approaches.  
 
3. Seven Specific Examples 

  
We focus here on seven examples in more detail where mathematical sciences 

methods are already utilized or seen to be relevant. We highlight inadequacies in current 
methods and propose new mathematical sciences frameworks for their investigation. We 
also discuss research areas related to major challenges in sustainability that cannot be 
addressed without these analytical, numerical, computational and statistical tools.  
 
Example 1: Impacts of Climate Change 

As policy makers and politicians formulate the policies and make the decisions 
for a sustainable Earth, the effects of climate change exacerbate the problems and 
issues they face. With the engagement of mathematicians and statisticians and 
scientists, new paradigms for decision making in the face of the Earth’s changing climate 
will be needed to face these challenges which will require novel mathematical and 
statistical tools. Below, we outline some of the issues and the some of the areas where 
mathematics and statistics can contribute. 

Climate projection/prediction is fraught with uncertainty. The natural variability of 
the climate system contributes to such uncertainty, as well as a lack of knowledge about 
the trajectories of future emissions of greenhouse gases and aerosols and how the Earth 
system will respond to these forcings. When climate models are a part of the mix, there 
are additional uncertainties that arise from the parametric uncertainty resulting from 
approximations to processes that exist below the spatial scale of the climate model as 
well as the structural uncertainty resulting from the processes that are unknown and not 
implemented in climate models or processes that are poorly implemented in the climate 
models. Current approaches to studying these uncertainties involve creating climate 
model ensembles that are essentially collections of model runs that result from 
perturbing initial conditions or physical parameterizations, using completely different 
models, or some combination of all of these. 

There is an emerging field of uncertainty quantification that combines many of 
the elements of computational mathematics and statistical science, and there is a great 
opportunity for research in this area to contribute in climate science by working with 
climate models to improve calibration and assessment (although these are serious 
challenges made all the more difficult since the Earth system is not itself in equilibrium), 
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to improve how ensembles are created (experimental design), and to improve how 
information in climate model ensembles is combined. The current state-of-the-art for 
combining climate model ensembles is based on a Bayesian hierarchical model. This 
includes representations of uncertainty that span the sources of uncertainty sampled by 
the ensemble (although these ensembles do not represent any sort of "random sample" 
from elementary statistics -- often the sample space of climate models is not even well-
defined). However, climate model output is complex and highly multivariate, and there 
are still many opportunities for research including spatial and spatial-temporal modeling 
of non-stationary processes, theory and methodology for extremes, and, of course, 
ensuring such methods are scalable to the size of the datasets that will be generated by 
the next-generation climate models (statistical computing). 

Characterizing the uncertainty in climate model ensembles is just the beginning. 
Often the spatial and temporal scales that are native to global climate models are too 
coarse to use in various applications needed for impact studies. Downscaling refers to 
the growing body of work that uses the coarse-scale information in global climate models 
to produce regional and local climate information. Dynamic downscaling uses high-
resolution climate models, often by forcing a regional climate model over a limited spatial 
domain with a boundary condition provided by global models. Statistical downscaling 
involves using empirical relationships. So-called stochastic weather generators are yet 
another alternative. There are strengths and weaknesses of each of these, but there are 
opportunities for the mathematical sciences to contribute to new downscaling methods 
that also allow for the propagation of uncertainty. These new methods will almost surely 
require new tools for spatial and spatial-temporal modeling, data fusion, data 
assimilation, and other methods that incorporate deterministic and statistical models. 

Understanding how a natural system responds to climate and climate change 
typically begins by linking the natural system to weather phenomena (e.g., linking a 
public health endpoint to heat stress, linking mosquito life cycles and effective ranges to 
temperature and precipitation, linking animal migration to seasonal cycles, linking the 
response of crops, grassland, forests, etc. to meteorology, etc.). While there is a growing 
body of mathematical and statistical modeling central to these efforts, there is more work 
to be done in expanding current mathematical models and developing new models. 
Again, the common theme of uncertainty and characterizing uncertainty in such 
mathematical models is crucial, in particular the difficult problem of propagating the 
uncertainty in the meteorological inputs (i.e., weather) through these models especially 
when changes to these inputs are informed by climate models. Another emerging area 
connected to the response of a natural system to a changing climate is adaptation and 
there are opportunities for new mathematical frameworks or modeling strategies to 
better explore how a natural system can or cannot adapt. 

Many of these analyses and modeling efforts that incorporate mathematical 
and/or statistical models of a natural system and that system's response to climate and 
climate change are being used for decision making at various levels. New tools for 
visualizing uncertainty from the analysis of complex systems are required to help inform 
policy makers. While decision making under uncertainty has a long history in statistical 
science and other fields, this is something of a new era where choices are more 
ambiguous. Decision making under ambiguity or deep uncertainty requires new 
mathematical frameworks or even new paradigms, including recognizing the potential of 
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"negative learning" where the scientific belief and technical evidence turns out to be 
incorrect. 
 

There is perhaps a grand-challenge problem inherent in this discussion. Much of 
this work focuses on how natural systems respond to climate and climate change. 
However, this is not strictly a one-way process, as the response of natural systems to 
climate change (potentially resulting from human intervention) will have a feedback to 
the climate system. Such responses are being incorporated in some crude way in 
climate models, but there is much work to be done in this area. 

Research Challenge for the Mathematical Sciences: Find new methods for 
quantifying and visualizing uncertainty in ensembles of climate models; develop 
scalable, spatial, and spatial-temporal models of extreme climate events and adaptation 
of natural systems to climate drivers; explore how changes in human systems affect the 
climate systems; develop new tools for studying spatial and spatial-temporal processes 
and the underlying issues of data fusion and data assimilation.  
 
Example 2: Preparing for and Responding to Rare Extreme Events 

Increasing frequency of extreme events such as floods, hurricanes, wildfires, or 
heat waves is predicted as an outcome of climate change. Reacting to such events 
stresses human beings and the infrastructure designed to protect them; preparing for 
them and responding to them so as to minimize impact on humans leads to challenging 
mathematical problems. For example, extreme heat events overtax energy and water 
needs of cities, eventually compromising infrastructure and safety of homes, offices, and 
public facilities. Increased incidence of heat stroke, dehydration, cardiac stress and 
respiratory distress are commonly resulting health problems. These can be especially 
serious among elderly or juvenile populations. Under severe enough conditions, 
evacuation (transport) to controlled environments can be the best means of ensuring the 
continued well-being of the population. However, the determination of optimal placement 
of relief centers can be difficult. Facilities must be able to maintain energy and water 
supplies and sufficient, hygienically-maintained space for displaced persons. They must 
be able to manage incoming supplies of food and potable water despite the heat-related 
increase in the dangers of food spoilage. Further, the populations at greatest health risk 
from heat events are also those least able to travel long distances, requiring 
consideration of spatial demography for the area being served by the facility. Easy 
access to healthcare will also be of great importance, whether that should ultimately 
include planning for onsite care, or ensuring nearby access to hospitals capable of 
handling the increased patient load. Careful planning for the locations chosen for relief 
centers may be of critical importance to ensuring minimal health impact during heat 
events. The research challenges in this area cut across disciplines, involving spatial 
demographic distribution of vulnerable populations, probabilistic mixed integer 
programming methods, and other aspects of “location theory”. While location theory is a 
classical subject in operations research and discrete mathematics, there are major new 
twists that interrelate choice of optimal location to predictions of duration, onset time, 
and severity of heat events that will require the engagement of remote sensors and the 
expertise of climate change modelers.1  
                                                 
1 This paragraph is taken from the description of the DIMACS Climate and Health Research Initiative. 
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Similar evacuation problems arise during floods, hurricanes, and wildfires, though 
here evacuees are not necessarily limited to certain vulnerable populations but are 
instead those closest to areas of threat. Moreover, evacuation distances for these 
extreme events are frequently longer than in the heat event scenario. Now, uncertainty 
in resulting location problems still arises from duration, onset time, and severity, but also 
involves uncertain spatial distribution of disasters.  

In addition to location theory, various other topics from operations research are 
relevant to the evacuation problem. One involves supplying and staffing evacuation 
sites. The job assignment problem is a classic problem in operations research that 
arises in heat events through the need to assign an appropriate mix of doctors, nurses, 
and support staff to relief centers. New twists on this problem arise from uncertainty. We 
don’t know how long the heat event will take place. We don’t know whether the staff will 
show up for work or instead choose to care for their own families. We don’t know how 
many people will show up at the relief center and what underlying health conditions they 
will have, requiring different skills among the medical staff. Thus, we face assignment 
problems under considerable uncertainty, a major problem in stochastic optimization 
calling for new tools and methods. Similar issues arise from having to decide what kinds 
of supplies to stockpile in or order for a relief center, whether it’s due to a heat event or a 
flood, hurricane, or wildfire. This is related to the classic operations research problem of 
inventory planning, but with complex stochastic twists of the kind described above.  
 The transportation problem is a classic operations research problem that arises 
in evacuation planning. In this problem, we want to move goods from sources to 
destinations. Here, we want to move evacuees from homes to relief centers. But whom 
do we send where? The answer depends upon transportation times (which are 
undoubtedly stochastic), the physical condition of evacuees which may allow the less 
vulnerable people to be transported further away, and the medical expertise available at 
a given relief center that might or might not match the needs of an evacuee. Thus, we 
have a stochastic optimization problem with new twists, including uncertainties, 
combined with a “matching problem” of operations research that involves assigning 
people to relief centers that match their needs and that minimize their travel times. This 
is a multicriteria optimization problem of considerable complexity. 

Under emergency conditions, particular strategies for evacuation are more 
successful than others at maintaining order and maximizing the safety of those being 
displaced. Many natural disasters lead to the progressive loss of motor vehicle access, 
e.g., by making transversal of specific routes dangerous or impossible through flooding, 
making routing strategies that were designed assuming a known and constant set of 
accessible roadways inappropriate. Further, exactly these same conditions are those in 
which medical transport can be most critical, especially if the affected roadways are 
limiting access to local hospitals. As situations change during extreme weather events 
(e.g. water level rises), different areas can experience both greater need of immediate 
access to medical care and fewer accessible means of transportation into and out of the 
area to receive that care. These conditions can lead to very specific and otherwise 
unlikely complications, requiring particular attention. This calls for new algorithms for 
determining optimal routing for emergency transportation on the road systems in real-
time under dynamically changing network structure, as information about current (and 
likely future) access levels change to maximize the efficiency of use of available routes.  
Among the relevant areas of the mathematical sciences are spatial analysis, analysis of 
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dynamic networks, and methods from dynamic queuing theory and Markovian decision 
process analysis, which can be used to develop optimal evacuation strategies.2 In the 
case of floods, we may want to identify which flooded roads to reopen in which order. 
This could involve finding minimum spanning trees in order to achieve connectivity of a 
road network. This is a well-studied problem, but there are new complications arising 
from the need to take other priorities into account, and inaccurate reports about and 
uncertainties concerning which roads are open. 

Research Challenge for the Mathematical Sciences:  Develop new methods for 
classical operations research problems involving multiple criteria in the context of major 
uncertainty as to requirements for and availability of resources, duration of events, and 
stochastic effects of uncontrollable factors such as climate. 
 
Example 3. Climate Change and Human Health: The Case of Heat Waves  
            Climate change is anticipated to influence public health through a wide range of 
pathways, largely through exacerbating current day risks (NIEHS 2010). As an example, 
air pollution levels may be affected, especially for pollutants with photochemical 
formation (Chang et al. 2010, Bell et al. 2007, Barr 2010). The distribution of infectious 
diseases, such as malaria and dengue fever, may shift into populations that have not 
been previously affected (Parham and Michael 2010, Tanser et al. 2003).  

Efforts to quantify the health impact from a changing climate face several 
challenges. A key challenge is estimating future conditions, which is often achieved 
through use of global circulation models (GCMs), often in conjunction with regional 
modeling systems. Researchers have extensively evaluated GCMs and improved the 
representation of the climate system and estimates of extreme conditions (IPCC 2007). 
Still, limitations remain. New mathematical approaches are needed in the area of 
uncertainty quantification and propagation and in the area of linking heterogeneous and 
complex data sets. For example, uncertainty in the estimation of health impacts from 
climate change involves uncertainties inherent in the GCMs, linking of multiple systems 
and downscaling output from GCM models to a finer spatial resolution. To estimate 
health consequences from climate change in the future, we must understand current day 
impacts. Thus, the uncertainties associated with models to estimate modern effects also 
play a role. Mathematical models need to be developed that can incorporate different 
assumptions on baseline, changing demographics and other factors. 

Perhaps the most direct link between climate change and human health is 
through changes in weather patterns, with anticipated higher overall temperatures and 
more frequent and severe extreme events (Meehl and Tebaldi 2004), as also discussed 
in Example 2. Several studies have examined how heat and heat waves affect 
temperature in the current day (Anderson and Bell 2009, Ostro et al. 2009) and some 
have explored heat-related mortality impacts under a changing climate (Gosling et al. 
2007). However, new approaches to generate quantitative estimates are needed (Xun et 
al. 2010,  Kinney et al. 2008). Specifically, mathematical models for estimating current 
day effects and how to apply such models to future conditions are limited. Below, we 
describe many of the challenges to quantitative estimation of the human health 
consequences of higher temperatures under a changing climate, with a focus on the 
                                                 
2 Much of this paragraph is taken from the description of the DIMACS Climate and Health Research 
Initiative. 
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potential contributions of mathematical modeling. Many of the challenges discussed 
apply more broadly to the study of human health and climate change in general. 

Studying adaptation: The ability of people to adapt to increasing long-term 
average temperatures as well as increasing frequency and severity of heat waves is one 
of many interrelated variables contributing to the uncertainty about the human health 
impact of climate change (Patz et al. 2000). We consider adaptation to mean a person’s 
ability to adapt to temperature patterns that they commonly experience, thereby 
mitigating potentially negative health effects. Adaptation pathways can be biological, 
structural (e.g., differences in building designs), or behavioral (e.g., changes in clothing 
or indoor/outdoor activity patterns). Studies of temperature and mortality have quantified 
aspects of adaptation in many different ways, and there is no mathematical framework 
that has been developed that comprehensively quantifies adaptation. For example, a 
study of 11 large U.S. cities found that for the years 1973–1994, compared to southern 
cities, northern cities, which typically have milder climates, generally had larger heat 
effects (Curriero et al. 2002).  Central air conditioning is an adaptive factor associated 
with decreasing effects of extreme heat (Bouchama et al. 2007). 

Characterizing susceptibility: A key question of interest is whether extreme heat 
affects individuals and populations equally, and studies have identified a number of 
factors that make people more susceptible to dying from or being hospitalized for heat-
related illnesses, such as medical conditions, age, and socio-economics (Bouchama et 
al 2007). However, results have not been completely in agreement, and current 
approaches have a number of deficiencies. It is not always clear whether differences 
between studies of heat waves are attributable to differences in study populations, 
temperature characteristics, or statistical methodology. Spatial statistics may contribute 
to research on differences in vulnerability across communities. 

Providing evidence toward the mortality displacement hypothesis: A few studies 
have examined whether some heat related deaths would have occurred only a few days 
later even without the elevated exposures, in this case, elevated temperatures, a 
concept known as “mortality displacement”. Again, results for previous studies are 
mixed. Mathematical models could be developed to better characterize the time course 
of temperature effects on mortality. For example, distributed lag models allow one to 
make inferences about the cumulative health effect of a heat wave over a multi-day 
period after the heat wave episode and they have been applied in the context of time 
series studies of air pollution and mortality (Schwartz 2000, Welty and Zeger 2005). 

Developing a comprehensive treatment of both statistical and model uncertainty: 
Understanding the contribution of different sources of uncertainty (uncertainty 
quantification), as well as how these uncertainties are propagated, are integral parts of 
research on health risks under climate change. In order to combine estimates of present 
and historical relative risk of mortality associated with heat waves with output from 
climate simulation models, a measure of the corresponding uncertainty is desired. This 
measure should include both model uncertainty as well as statistical uncertainty 
conditional on a given model. 

Surveillance modeling to track health effects from extreme temperatures. 
Surveillance modeling could include linked data bases with information on weather, 
health, and potential confounders. New methods for developing integrated data bases 
are needed. These linked national data set and statistical and mathematical models 
could be used to: 1) routinely estimate the association between extreme temperature 
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events and health using national data sets; and then 2) predict the health impact of 
future climate change scenarios. 

Research Challenge for the Mathematical Sciences: Develop mathematical 
models that characterize human susceptibility to and adaptability to changing ambient 
temperatures; new statistical tools for public health surveillance of effects of changing 
climate; and new theories of uncertainty quantification and propagation to enhance the 
usefulness and applicability of mathematical models. 

Example 4: Measurement of Biodiversity 
Biodiversity is a term that is used to describe certain aspects of the health of an 

ecosystem. The Convention on Biological Diversity (CBD) (http://www.biodiv.org) defines 
biodiversity as: “the variability among living organisms from all sources including, inter 
alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of 
which they are part; this includes diversity within species, between species and of 
ecosystems” (CBD 1992). Loss of biodiversity is considered an indicator of declining 
health of an ecosystem and there is great concern that climate change and other 
environmental stressors – natural and man-made – are leading to such a loss.  One way 
of measuring progress in controlling the unwanted environmental effects of human 
activities -- effects of human systems on natural systems -- is to determine the extent to 
which the loss of biodiversity has been controlled. CBD set the goal that, by 2010, we 
should achieve a significant reduction of the current state of biodiversity loss at the 
global, regional, and national level (UNEP 2002). But how can we tell if we have 
achieved this goal? We need to be able to measure biodiversity. There are some 
fundamental mathematical challenges arising from the need to do so. Only by putting the 
measurement of biodiversity on a firm mathematical foundation can we be confident that 
we are capturing the true diversity in nature.  

There is a long history of defining biodiversity and it is a multidimensional 
concept. The term was coined by Walter G. Rosen during the 1986 National Forum on 
BioDiversity (Takacs 1996). It was first used in the literature in the proceedings of that 
meeting, edited by E.O. Wilson and F.M. Peters (1988). Since then, there have been 
hundreds of papers attempting to define it precisely. Traditional approaches consider 
two basic determinants of biodiversity: Richness is the number of species and Evenness 
is the extent to which species are equally distributed (Magurran 1991). However, these 
concepts assume that all species are equal, that all individuals are equal (we disregard 
differences in size, health, etc.), and that spatial distribution is irrelevant. These may not 
be appropriate assumptions. Some species are highly “visible” or considered centrally 
important for conservation biology purposes (e.g., lions, elephants). Moreover, some 
species are indicator species of the health of an ecosystem. For example, lichens 
respond to changes in forest structure (air quality, climate) and the disappearance of 
lichens may indicate environmental stress (high levels of sulfur dioxide, nitrogen oxides, 
etc.). Thus, we may want to give the presence or absence of such indicator species 
higher priority.  

Richness is usually interpreted as the number of different species in an 
ecosystem. This has some major disadvantages. It doesn’t pay attention to 
presence/absence of “important” or “indicator” species. Also, richness defined this way 
could increase with the presence of species we don’t want to have, e.g., invasive 
species (Lamb et al. 2009, Magurran 2004). Finally, richness may be dependent on the 
sampling process to detect species and that sampling process could be biased or could 
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depend on the length of time sampling is done, the intensity of the sampling procedure, 
and the size of the area sampled. See, for example, Boulinier et al. (1998), Gotelli and 
Colwell (2001), Soberon and Llorente (1993). The statistical analysis of the interplay 
between species “richness” and the sampling procedure calls for new mathematical 
work. There are already some interesting mathematical approaches to the connection 
between time spent sampling and number of species detected; for instance, as noted  by 
Soberon and Llorente (1993), there is evidence that as time spent collecting increases, 
the number of species identified asymptotically approaches some limit. Soberon and 
Llorente also investigate different assumptions about the probability of detecting a new 
species in a given time period given the number of species that have been detected so 
far. Which model of species richness is most suitable depends on the collecting 
experience/procedure. For example, does the probability of finding a new species 
decrease linearly or become more and more difficult (e.g., exponentially) over time? 
Much more work along these lines is needed.  

Notions of evenness in the biological literature are frequently based on ideas 
going back in the economic literature to the early 1900s, in particular on the work of Gini 
(1909, 1912) on measures of even income or wealth distribution and the work of Dalton 
(1920) on measures of inequality. This work is of interest in its own right with regard to 
sustainability, as we study ways to characterize the human sense of well-being and the 
extent to which we have achieved a stable degree of social or economic equity (see e.g., 
Firebaugh 1999, 2003). Other measures of biodiversity or of evenness go back to work 
in communication theory, in particular work of  Shannon (1948) on the concept of 
entropy in information theory, though they are predated in the biological literature by 
work of Boltzmann (1872).  Still others, such as the well-known Simpson index (Simpson 
1949), measure the probability that any two individuals drawn at random from an infinite 
population will belong to the same species. There are many indices that have been 
proposed over the years. How does one choose among these? One idea is to write 
down some general principles (axioms) that a measure of evenness should satisfy and 
see which of the suggested indices satisfy them. This approach goes back to the work of 
Dalton (1920) in the economics literature and is widely discussed in the literature of 
biodiversity (Egghe and Rousseau 1990, 1991 or Rousseau 1992). Some axiom 
systems lead to theorems that limit the possible measures of evenness very greatly, but 
much more is needed to isolate the appropriate axioms for different contexts and to 
derive the evenness measures that follow from them. Another approach is to derive a 
partial order on vectors giving number of individuals of each kind of species, so-called 
abundance vectors. Then we require that a measure of evenness reflect this partial 
order (Nijssen et al. 1998, Patil and Taillie 1982, Rousseau et al. 1999). While the 
literature has several widely-used ways to define such partial orders, approaches to 
define them axiomatically or derive them from fundamental theories about species 
distributions are lacking. Also, the problem gets to be quite subtle if we compare two 
abundance vectors with different numbers of species, which is often of interest. Another 
challenge is to modify the classic approach to measurement of evenness when we 
incorporate weights of importance for different species, e.g., indicator species or 
invasive species.  

Since biodiversity is more than just richness (number of species) and more than 
just evenness, we can explore ways of combining both measures into one index. This 
presents major challenges for mathematical analysis, including finding axiom systems 
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that characterize a partial order on abundance vectors that reflects the combined effect 
of richness and evenness (Rousseau and Van Hecke 1999, Rousseau et al. 1999).  

Because different indices of biodiversity have different advantages and 
disadvantages, we sometimes look to use several of them in addressing a question and 
see if they yield a consistent conclusion. This raises both mathematical and statistical 
challenges, for example studying families of biodiversity indices that depend upon some 
parameter and giving conditions on the range of values of the parameter where the 
indices will give consistent rankings of biodiversity (Buckland et al. 2005, Ricotta 2003). 

It should be noted that making precise notions of richness or evenness or other 
notions of biodiversity is an example of what is now being termed a hybrid mathematical 
model. For, in many cases we can describe ecosystems in terms of number of 
individuals of different kinds of species (a discrete variable) and other times we can 
describe them in terms of the biomass of different kinds of species (a continuous 
variable), and sometimes, however, we need hybrid models that include both discrete 
and continuous counterparts. 

Finally, a measure of biodiversity is applied to a particular ecosystem at a 
particular instant of time. A goal of biodiversity preservation is to achieve ecosystems 
that are sustainable, i.e., maintain relatively stable biodiversity into the future. A good 
measure of biodiversity should be usable in mathematical models that help us predict 
that under certain conditions of an evolving ecosystem, the biodiversity will remain 
relatively stable. The development of such mathematical models is a key goal of 
sustainability science, and it is intimately connected to finding precise definitions of 
biodiversity. 

Research Challenge for the Mathematical Sciences: Develop clear criteria for 
how to measure biodiversity, derived from mathematically-precise assumptions; devise 
methods for applying the criteria that take into account potential biases and problems in 
data gathering to inform the measures and the multiple criteria for a biodiversity 
measure; understand the uncertainty involved in claims about changes (positive or 
negative) in biodiversity; and find ways to use the measures to understand how to 
achieve ecosystems that are sustainable and maintain stable biodiversity into the future. 
 
Example 5: Migration  

Migration of animals, birds, fish, insects, and plants are key processes in the 
balance of natural systems. These processes can be dramatically sped up by modern 
transportation systems that move “stowaway” species from one part of the world to 
another in a matter of days or even hours. All of these processes interact in a 
fundamental way with human well-being. For example, fish contribute a great 
percentage of our planet’s biomass, while animal migration/invasion affects agriculture 
and disease. Yet, changing environmental conditions, often traceable to human 
activities, threaten to impact these critical migration processes.  

Fish populations are a key case in point. An International Symposium on Climate 
Change, held on April 25-29, 2010 in Sendai, Japan, dealt with forecasting impacts, 
assessing ecosystem response, and evaluating management strategies in ocean fishery. 
Fishery conditions in the ocean are affected by global changes in temperature and by 
acidification arising from increasingly dissolved CO2. Some of the consequences are 
changing migration patterns, and increased ratio of small-to-large fish populations; see, 
e.g. Garcia and Moreno (2003), Yakubu and Fogarty (2006). There are many 
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mathematical models of ocean food-limited fishery. A challenge is to incorporate the 
effects of global change and ocean acidification into such models. The effect of climate 
change on fish migration is clearly amenable to mathematical models.  For example, one 
can readily state a system of partial differential equations that includes a transport term, 
diffusion, and nonlinear interactions among the species. For example, for fish seeking 
cooler environment, the transport term may be proportional to the gradient of the 
temperature and the acidity of the ocean water. The diffusion matrix is such that it tends 
to discourage too many fish converging on one spot. There are many variants in such 
differential equation models and challenging problems arise from analyzing them. Animal 
migration on land including predator-prey relationship and plant migration or invasion 
can be modeled by a similar system, where one incorporates land cover types such as 
water and different kinds of vegetation.  

Birds migrate long distances as seasons change. With changing climate, these 
migration patterns are changing. Not all species react in the same way or adapt as 
quickly to changing environmental conditions. Thus, for example, there are cases of 
birds migrating earlier than before, but arriving at their destination before their traditional 
food sources are available (see, e.g. Miller-Rushing et al. 2008). A key to ecosystem 
health is the delicate balance among interacting cyclic processes, and climate change 
can disrupt long-developed synchronicities in timing among these processes. This type 
of problem – and prediction of its impact on natural populations – leads to serious 
mathematical challenges. It connects closely to human well-being since birds play an 
important role in insect control, which in turn affects the growth of crops and other 
agricultural products for human consumption. 

Understanding animal and plant migrations requires us to understand 
interactions among biological entities from ecological and evolutionary perspectives in a 
dynamic and disturbed global environment (Agrawal et al. 2007).  Graph theory provides 
a flexible conceptual model that can clarify the relationship between structures and 
processes in such applied problems, including the mechanisms of configuration effects 
and compositional differences. Graph concepts apply to many ecological and 
evolutionary phenomena, including interspecific associations, spatial structure, dispersal 
in landscapes, and relationships within meta-populations and meta-communities. Spatial 
graph properties can be used for description and comparison of migration patterns as 
well as to test specific hypotheses about migration. The analysis of animal movement 
can focus either on the attractive or avoidance effects of each patch of land, or on the 
directionality and volume of movement between patches (Croft et al. 2008).  Spatially 
explicit graph analyses of these two aspects can be examined separately or together 
using gravity models, spatial graphs, or other new models not yet developed. Numerous 
questions about migration can be addressed this way, for example: What is the 
relationship between changes in spatial habitat structure and gene flow? How do these 
changes affect species survival? How does the pattern of migration routes affect the 
spread of disease? The mathematical sciences have much to contribute in answering 
such questions. 

Sampling processes create serious limitations for the interpretation of metrics 
that describe the property of a graph when there is no assurance that there is a 
complete census of the objects depicted in the graph. The comparison of metrics is a 
significant problem to be addressed in the mathematical sciences. The distribution of 
degrees of nodes in a graph presents a relevant example, and we need to understand 
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how the sampling procedure affects the properties of the sequence of node degrees in a 
graph representing a physical, biological, or social process. A random graph has a 
binomial or Poisson distribution of node degrees, a scale-free graph has a power law 
distribution of node degrees, and a “small world” graph has an exponential distribution of 
node degrees (Albert and Barabási 2002). Different models of graph evolution lead to 
these different degree distributions in dynamically evolving networks and can be used to 
understand the evolutionary processes underlying changing migration patterns. 
Moreover, the differences among such models of graphs and their formation provide 
information about the processes that may have produced them. The degree parameters 
are also important characteristics of the graph’s structure. For example, they can lead to 
an analysis of the vulnerability or stability of a network under the removal of any 
particular node (under various measures of vulnerability and stability).   

Scientists are predicting human mass migration as a consequence of climate 
change: millions of people fleeing from rising sea levels and drought, leading to serious 
consequences for both migrants and receiving societies. A mathematical approach to 
such mass migration, which modeled the connection between climate change and 
human migration, was developed by Perch-Nielsen (2004). Among the mathematical 
sciences challenges involving the study of mass human migrations are the development 
of models describing analogies to and evolution of patterns of animal migrations, and the 
understanding of the complex adaptive systems involved in mass human migrations.  

Research Challenge for the Mathematical Sciences: Develop models of the 
interplay between climate and migration and the disruption/synchronization of the 
processes that allow for seamless integration of multiple mechanisms relevant to 
migration; model the spatial and temporal spread of animal and plant populations under 
rapidly changing environmental conditions caused by human processes and the impact 
of modified human systems on changing migration patterns; understand the evolution of 
networks that interconnect migratory routes so as to understand forces threatening the 
stability of migration and the resulting impact on human systems. 
 
Example 6: Health of Lakes and Oceans 

The quality of water in our lakes, rivers, streams, and oceans is critical to 
sustaining life on our planet. The natural processes underlying healthy bodies of water, 
large and small, are closely related to processes underlying human activities.  

Human and natural processes are often effectively modeled by linked economic-
ecological models, often capable of exhibiting multiple (coexisting) attractors. A simple 
example is given by the eutrophication of a lake through phosphorous run-off from 
agricultural land, which has been extensively studied by ecologists and economists (see 
e.g. Bennett et al. 1999). The driver of change in this setting is often that fertilizer runs 
off farmland around the lake and into the lake, particularly when it rains. Phosphorus in 
the fertilizer dissolves in water and also is retained by sediment on the lake bottom. At 
low concentrations of phosphorus a lake is clear and productive, with many sources of 
economic value. At high concentrations it is biologically almost dead and of little or no 
economic value. The basic dynamics are that phosphorus leaves the lake through 
outflow in the stream that exits the lake, at a rate that is proportional to the concentration 
in the water; it flows in off the neighboring cropland, and may also move from the 
sediment at the bottom of the lake into solution. 
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A simple deterministic description of this system is given by an ordinary 
differential equation, where the rate of change of the concentration of phosphorous 
equals the difference between inflow and outflow of phosphorus. This simple system 
exhibits three equilibria where inflow and outflow are equal, two of which are locally 
stable and one unstable. Such a system is “normally” in a stable equilibrium at the low 
concentration, and is economically and biologically productive. But a sudden heavy rain 
can wash in enough fertilizer to shift the concentration of phosphorus to within the basin 
of attraction of the right hand equilibrium, leaving it in a far less productive state. So 
could a very hot dry spell, by evaporating water from the lake and increasing 
concentration above a critical level. This is a very simple example of dynamical 
behaviors that can emerge from ecosystems under stress from human economic 
activities. These systems can exhibit multiple attractors (not necessarily equilibrium 
attractors) with complex basins of attraction of varying sizes. Understanding how these 
systems may move stochastically between these attractors is critical. We sometimes 
understand the local dynamics of these basins but questions on the outcomes of 
stochastic movements tipping complex systems from one attractor to another are mostly 
open. 

Eutrophication is just one example of a freshwater water quality problem that is 
related to the interplay of natural and human systems and is amenable to analysis using 
mathematical models. There are many others. For example, novel mixing patterns in 
run-off and natural ground water collection caused by change in climate can lead to 
novel mixing patterns of otherwise benign contaminants whose combination could 
potentially lead to unwanted impacts. Research is required in the fundamental 
understanding of these mixing patterns. For another example, water supply is both 
required for agricultural processes and affected by them. How can we model the effect 
on water supply of changing agricultural practices due to climate change? We also need 
early warning of changing availability of good quality water for agricultural use. How can 
machine learning and data mining give us early warning of areas of shortage of water 
arising from climate change? - see, for example, Dzeroski et al. (2000), Policastro et al. 
(2004). Rain is the input for water in hydrological cycles, yet spatial and temporal 
estimates of water amounts, at the national or regional level, are poorly understood.  
Traditional methods of rain gauging need to be supplemented with remote sensing and 
there are many mathematical challenges arising from placement of sensors to finding 
patterns from reports from a network of distributed sensors; see, e.g., Schultz (1993). 
Speaking more broadly, can we develop mathematical models that will allow us to 
predict regional water shortages due to changing climate? 

Water in the oceans is critical for the health of the planet in that the life cycle of 
many of the world’s species is intimately tied to the oceans and related wetlands, and 
also tied to a major source of food of many of our planet’s inhabitants. There is great 
concern that increased dissolved organic carbon in the world’s oceans and resulting 
ocean acidification, tied to human activities, is a threat to the health of our oceans. 
Large-scale computational models are required to better understand both long-term and 
short-term carbon cycling in the oceans (Caldeira and Wickett 2005). The field of ocean 
science has long emphasized the connection between oceans and climate, and has 
used sophisticated numerical analysis methods to model this interconnection. New 
challenges require adaptation of these models to understand the connection between 
carbon dioxide in the air and dissolved carbon in the water. Getting early warning of 
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change of pH in the oceans requires sophisticated new ocean surveillance systems and 
concomitant methods of machine learning and data analysis.  We need to understand 
what physical, chemical, and biological oceanographic data are most relevant to getting 
early warning of anomalies in pH levels in oceans and what statistical/machine learning 
methods will help us attain such early warning. Finally, models of temporal change of pH 
in oceans carry great uncertainty. How do we lessen such uncertainty?  

Research Challenge for the Mathematical Sciences: Develop mathematical 
models of changes in quality of fresh water resulting from agriculture and the challenges 
for agriculture resulting from changes in quality and quantity of available fresh water; find 
models that will enable us to understand the interconnection between human systems 
and the acidification of the oceans; find ways to utilize sophisticated methods of 
statistical science, machine learning, and the use of remote sensing to get early warning 
of changes in quality and health of our bodies of water. 
 
Example 7: Energy as a Contributor to Human Well-being: Electric Power Grids 

Our models of the interplay among natural and human systems will require us to 
identify factors that underlie “human well-being.” One of these is the availability of a 
sufficiently reliable, sufficiently “inexpensive” source of power for the machines that 
make our lives easier and allow us to sustain the complex societies that have come to 
depend upon power supplies. The design of “sustainable” energy systems is the focus of 
study of another working group. However, here we mention mathematical challenges 
underlying energy systems that reflect some of the mathematical themes our group has 
identified. 

Today’s decision makers in fields ranging from engineering to medicine to security 
have available to them remarkable new technologies, huge amounts of information, and 
the ability to share information at unprecedented speeds and quantities. These tools and 
resources will enable better decisions if we can surmount concomitant challenges: The 
massive amounts of data available are often incomplete or unreliable or distributed and 
there is great uncertainty in them; interoperating/distributed decision makers and 
decision-making devices need to be coordinated; many sources of data need to be fused 
to formulate a good decision, often in a remarkably short time; decisions must be made 
in dynamic environments based on partial information; there is heightened risk due to 
extreme consequences of poor decisions; decision makers must understand complex, 
multi-disciplinary problems. In the face of these new opportunities and challenges, the 
new field of “algorithmic decision theory” (Rossi and Tsoukias 2009, Roberts 2008) aims 
to exploit algorithmic methods to improve the performance of decision makers (human or 
automated). There is a long tradition of algorithmic methods in logistics and planning 
dating at least to World War II, leading to the field of operations research. However, 
algorithms to speed up and improve real-time decision making are much less common. 

Advances in algorithmic decision theory are particularly needed to deal with 
problems of the electric power grid.3 Today’s electric power systems have grown up 
incrementally and haphazardly – they were not designed from scratch; they form 
complex systems that are in constant change (loads change, breakers go out; there are 
unexpected disturbances; they are at the mercy of uncontrollable influences such as 
                                                 
3 Much of the discussion in the rest of Example 7 is based on a presentation by Gilbert Bindewald of the 
U.S. Department of Energy to the SIAM Science Policy Committee on October 28, 2009. 
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weather). Moreover, these systems operate under considerable uncertainty. Cascading 
failures can have dramatic consequences (Amin and Schewe 2007). Research 
challenges relating to sustainability of our electric power system arise from the huge 
number of customers; uncontrolled demand; changing supply mix system not designed 
for complexity of the grid; and the fact that the grid operates close to the edge and is 
thus vulnerable to failures. The grid is managed through large parallel 
computers/supercomputers with the system not set up for this type of management, and 
finding better ways to use these supercomputers to manage the power grid is called for. 
In addition, algorithmic methods are needed to improve security of the energy system in 
light of its haphazard construction and dynamically changing character and to find early 
warning of a changed state, i.e., in anomaly detection. We also need such methods to 
identify and overcome vulnerabilities and to protect the privacy of individuals under new 
data collection methods about electricity use. 

Today’s “smart grid” data sources enable real-time precision in operations and 
control previously unobtainable (see e.g., Amin 2005, Amin and Stringer 2008, Amin and 
Wollenberg 2005, Farrell et al. 2002, Zhao and Villasecca 2008): Real-time data from 
smart meter systems will enable customer engagement through demand response, 
efficiency, etc.; time-synchronous phasor data, linked with advanced computation and 
visualization, will enable enhanced operational intelligence, advances in state 
estimation, real-time contingency analysis, and real-time monitoring of dynamic 
(oscillatory) behaviors in the system; sensing and measurement technologies will 
support faster and more accurate response, e.g., through remote monitoring; advanced 
control methods will enable rapid diagnosis and precise solutions appropriate to an 
“event.” Traditional SCADA measurement provides bus voltages; line, generator, and 
transformer flows; and breaker status with a measurement every 2 to 4 seconds. Phasor 
technology and phasor measurements provide additional data: voltage and current 
phase angles; frequency rate of change; with measurements taken many times a 
second. This provides challenges for the analysis of massive data sets, allowing us to 
get dynamic visibility into power system behavior. New algorithmic methods to 
understand, process, visualize data and find anomalies rapidly are required. New 
measurements will allow rapid understanding of how customers are using electricity, 
thus raising privacy issues, which is another area for research – combining data science 
with statistical and cryptographical approaches to data privacy. Mathematical methods 
will be required to take advantage of monitoring that will give us visibility beyond local 
controls, frequency instability detection, and triangulation to estimate location of 
generator dip or hard drop. They will also be required to assist in analysis/assessment 
for improved state estimation, to assist in planning for dynamic model evaluation and 
forensic analysis, and to assist in protection and control through automatic arming of 
remedial action schemes. 

Mathematical challenges also arise from issues of grid robustness. For example, 
how will the grid respond to disturbances and how quickly can it be restored to a healthy 
state; in other words, how can we design algorithms that enhance grid sustainability? 
Advanced computational tools are needed to gain wide area situational awareness and 
they can help with quick response to dynamic process changes, e.g., using automatic 
switching. For example, can we tell quickly how far we are “from the edge” and thus 
avoid power system collapse when voltages drop too fast? We need to develop reliable, 
robust models to help us achieve system understanding and need a new mathematics 
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for characterizing uncertainty in information created from the large volumes of data 
arising from the smart grid. We also need new methods to enable the use of high-
bandwidth networks by dynamically identifying only the data relevant to the current 
information need and discarding the rest. 

Cyber attacks on the electric power grid are a major concern. “Cyberspace” is 
insecure and faced with attacks by adversaries who wish to take advantage of our 
dependence on it. Use of cyberspace subjects us to loss of information, loss of money, 
and disruption, destruction, or interruption of critical services. Adversaries can launch 
sophisticated “information warfare” (e.g., Russian cyberattacks on Estonia and “botnet” 
attacks by North Korea on the South Korean government and private industry sites). We 
need to find ways to protect against cyber attacks that take advantage of vulnerabilities 
created by dependence on massive amounts of data generated through the smart grid. 
Development of fast methods of anomaly detection, randomized algorithms for botnet 
detection in order to confuse adversaries and increase the cost and risk of attacks, and 
game-theoretic approaches to competition from smart adversaries are all important 
mathematical sciences challenges in cyberdefense. 

Research Challenge for the Mathematical Sciences: Find statistical and 
algorithmic methods of data analysis, advanced computational tools, and new 
cryptographic tools to aid us in making management and policy decisions about the 
electric power grid; learn how to handle the massive amount of data that arise in 
monitoring the grid to give us rapid awareness of anomalies so as to prevent cascading 
failures; find ways to protect it against failures (deliberate and otherwise); and guide us 
to efficient use of power while protecting the privacy of individuals.  
 
4. Concluding Remarks 

As the examples given above show, the concept of human well-being is 
multidimensional, depending on a number of factors, each depending on the local 
environment. We may then represent the relationships between human systems and the 
natural environment as a network whose nodes are the various factors by which we 
measure this complex relationship. This network is dynamic, and the edges correspond 
to evolving relationships that can be modeled by mathematical/statistical tools. Given 
that what happens in one region of the world may affect what happens in other regions, 
we may seek to understand human well-being and that of the natural environment of 
planet Earth through understanding the whole as a network of networks. This network 
consists of dynamically evolving networks, tied together in a network that itself is 
changing over time and space. Sustainability can then be framed in terms of the long 
term stability of networks over the local network and the network of networks. The study 
of dynamically changing networks and the interplay of a complex web of such networks 
presents a major set of challenges for the mathematical sciences. 

We have focused on several examples that demonstrate how mathematical and 
statistical methods can be used to provide new insight for challenging issues in 
sustainability.  However, we also articulate below a longer list of mathematical areas 
which we believe can be transformative to the study of several research areas in 
sustainability and also give a more extensive list of examples of sustainability issues that 
seem amenable to analysis using methods of the mathematical sciences. Neither of the 
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following lists is intended to be exhaustive and they are included simply for illustrative 
purposes. 
 
 
Illustrative Relevant Mathematical Areas 
 
Data/data science (including dealing with massive amounts of data; data mining; data 

presentation/visualization) 
Uncertainty quantification and uncertainty propagation 
Operations research 
Information theory 
Multiscale methods 
Dynamic networks (both networks that are dynamically changing and those whose 

components can undergo dynamic change of state) 
Decision science/theory, policy science 
Game theory 
Stochastic optimization 
Partial orders 
Spatial statistics 
Hybrid models (as a mix of discrete and continuous models) 
 
Illustrative Applied Problems Relating to Sustainability  
 
Climate and disease 
Migration 
Heat events/extreme events 
Biosurveillance 
Population growth 
Power grid (including smart meters) 
Green computing/green living 
Habitat formation 
Urbanization 
Behavioral responses to disasters 
Epidemiology/public health 
Forest health 
Fisheries 
Air pollution 
Water pollution 
Transportation systems 
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Appendix 2:  Human-Environment Systems (HESs) as Complex 
Adaptive Systems 
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Charge to the Group: 
Under this theme, the group is asked to focus on the dynamics, both endogenous and in 
response to outside disturbance, of coupled Human-Environment Systems (HES). Key 
questions regarding the dynamics of HESs relate to the ways in which their behaviors 
emerge from adaptive actions by their constituent agents, interacting across multiple 
scales. Addressing such questions will require new mathematics-based theories that 
must merge holistic and reductionistic perspectives, integrate physical, social, and 
biological sciences, and scale from the genomic to the biosphere. Societies are complex 
adaptive systems, composed of individual agents who have their own priorities, and who 
value the macroscopic features of their societies differently. Resolving those competing 
perspectives is at the core of addressing sustainability. Under this theme, the group is 
asked to develop research themes and related questions that focus on integrating 
advances in the theory and mathematical modeling of complex adaptive systems (CAS) 
with rich empirical work on the actual dynamics of coupled HES and to explore the 
relevance of new tools in CAS research for addressing their interactions. 
 
1. Introduction  
 

Sustainability science spans more fields of science than most other 
interdisciplinary scientific efforts, and yet it can be argued that no science of 
sustainability is complete unless is examines interactions between human systems and 
environmental systems (both physical and biological) at multiple scales.  It is well known 
that environmental systems are heavily impacted by the activities of highly organized 
human societies, and it is also increasingly recognized that environmental systems in 
turn feed back upon human systems.  In addition to this complex feedback loop 
connecting environmental systems and human systems, societies themselves are highly 
complex, consisting of “individual agents who have their own priorities, and who value 
the macroscopic features of their societies differently” (Levin and Clark 2010, p. 22).  

A highly suitable conceptual language for the types of interactions seen in 
coupled human-environment systems is provided by complex adaptive systems (CAS).  
Complex adaptive systems are defined by several key features: “CAS are composed of 
agents that interact locally in time and space based on information they use to respond 
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to their environments.  Macroscopic behaviors emerge from these local interactions and 
are not imposed or predetermined.  Agents (at least some agents) have the capacity to 
process information and modify (adapt) their behavioral strategies.  Finally, CAS 
dynamics are often unpredictable (even if the system is deterministic), and uncertainty is 
pervasive” (Levin and Clark 2010, p. 19).  Likewise, human-environment systems are 
“complex adaptive systems, composed of individual agents that have their own priorities, 
and who value the macroscopic features of their societies differently” (Levin and Clark 
2010, p. 22), but they are also distinguished from other complex adaptive in several 
ways—we will expand upon these differences in subsequent paragraphs.  

The mathematical sciences have made essential contributions to many fields of 
science, once those fields have been put on a firm quantitative foundation.  In the 
coming years, it will be natural to pose the question: “what role will the mathematical 
sciences play in developing our understanding of human-environment systems as 
complex adaptive systems?”  There are many reasons to think the role will be very 
significant, with the primary difference from previous contributions of mathematics to 
other fields stemming from the trans-disciplinary nature of sustainability science.  In the 
remainder of this white paper we will attempt to outline the potential roles of 
mathematical sciences in developing the study of human-environment systems as 
complex adaptive systems.  

The 2010 report “Toward a Science of Sustainability” outlined three major 
themes in the development of HES as CAS: (A) Characterizing and understanding 
complex HESs, (B) Local adaptive response and their global consequences, and (C) 
Characterizing tradeoffs in HESs.  Each of these themes is important, however our 
group discussion focused primarily on (A) and secondarily on (B), with little emphasis on 
(C).  In the following paragraphs we outline more detailed research themes that 
correspondingly fall primarily under (A) and (B) of the 2010 report.  After describing 
some of the research themes that arise in the study of HESs and complex adaptive 
systems (section 2), we give further examples of such systems (section 3), followed by 
general and specific recommendations (section 4).  
 
2.  Research Themes  
 
 The defining property of Human-Environment Systems (HESs) is the two-way 
interaction between humans and the natural environment.  In contrast, the social 
sciences may be concerned with the social dynamics of interactions between humans 
and neglect what is occurring in the natural environment.  Similarly, traditional natural 
sciences research on environmental systems regards dynamic interactions only within 
an environmental system, and the human impact is either absent, or static.  In HESs, it is 
the dynamical presence of humans in the context of the natural environment that makes 
the investigation of HESs particularly challenging. These challenges arise from the range 
of scales, both temporal and spatial, that emerge from these interactions. 
 “Human and environmental systems impact across variety of scales (...that) are 
generally mismatched. This mismatch means, for example, that given a spatial scale, 
social processes (be they economic, or governmental) are likely to be too sluggish to 
deal easily with the rapid changes normally associated with atmosphere, but too rapid 
and impatient to recognize and manage many slow but important ecological changes 
(e.g. soil depletion)” (Levin and Clark 2010, p.60). 
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In trying to identify potential contributions of the mathematical sciences to the 
development of a science of HESs as CASs, we isolate essential features of the latter 
that must be captured in a mathematical approach to the subject. Each of these should 
be included, in one way or another, in any credible mathematical representation, keeping 
in mind that successful model development is an exercise in compromise. Specific 
implementations in the form of examples will be detailed in the following section. 
 The mutual, bidirectional interaction between the composing human and 
environmental elements is an essential feature of HESs. As alluded to above, the way 
humans bidirectionally modify the environment has been neglected in many 
representations of HESs, especially the feedback of evolving environments on human 
behavior.  
In both the temporal and spatial domains, many different time scales are at play. It may 
be that a simplification is equally justifiable and necessary in order to gain insight into the 
modeled system.  Multiscale modeling is a mature subject in classical mathematical 
physics, and uses techniques as such as matched asymptotic expansions and singular 
perturbations to address the problem of differing temporal scales.  Such methods are 
receiving much attention even outside of the environmental sciences, as witnessed by a 
full SIAM journal (“Multiscale Modeling & Simulation”) devoted to this topic; the extent to 
which these techniques are being developed to address environmental problems is less 
clear, but some illustrative examples are presented in the following section. 
 The modeling process itself should be seen as dynamical and hierarchical. There 
is hardly a definitive, comprehensive and “final” representation of a given HES. There is 
thus a need for consideration of a hierarchy of representations, addressing progressively 
more refined incorporation of the details of the description of the HES under study. In 
this respect, diversity pays off: there is considerable insight to be gained by a wide 
variety of model building approaches. The role of stochasticity, for example, can be 
incorporated in many different ways, and most are complementary and provide deeper 
understanding of the robustness of the different hypotheses. Either uncertainty in the 
initial states, which are never known to arbitrary precision, or sensitivity to variations in 
the numerous parameters constituting the model have to be analyzed, both qualitatively 
(e.g., classical results on “continuous dependence on initial data”) and quantitatively 
(e.g., more recent “sensitive dependence on initial conditions”, the essence of chaos).  
 Robustness, and a related property—adaptability—are essential features of 
HESs. Resilience is a remarkable trait of the human components of an HES, and it is not 
entirely clear how this concept can be expressed unambiguously, mathematically, let 
alone incorporated in an HES model. Indeed, it could be one of the many emergent 
properties of the system—unpredictable properties of an assembled system that appear 
(emerge) when constituent components are assembled and put in dynamical interaction, 
but are not clear when the components are considered in isolation: the whole is more 
than the sum of its parts.  An example of emergence is collective behavior, global 
coordination among the agents of a complex system, which may or may not be a direct, 
predictable consequence of explicit individual properties.  Especially when human 
components are incorporated, it is a challenge to ascertain at which level of the model 
building these should be included, and it is particularly difficult to mediate between local 
and global behaviors. 
 It is premature to advance a comprehensive mathematical theory of coupled 
human-environment systems as complex adaptive systems. Instead, we sketch a 
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number of examples of HES which illustrate the essential features of CAS noted above, 
and that may serve as motivation to the mathematical sciences community. Not all 
examples have the same level of mathematical maturity, as reflected in the differentiated 
level of mathematical precision that can be provided in their formulation. 
3.  Examples 
 

We outline five examples that illustrate these research themes.  For each 
example, emerging challenges and questions in the mathematical sciences are also 
described. We will present three examples in sufficient detail to give the reader a clear 
sense of the scientific and mathematical issues, followed by two shorter examples to 
illustrate the enormous range of coupled human-environment systems 
 
3.1. Fully coupled earth-human systems (Kalnay) 

The interaction between human and natural systems has been typically studied 
in a unidirectionally coupled fashion, i.e., one component provides input, the other 
responds. Examples of this one-way coupling approach include demographic projections 
used to predict demand for natural resources (water, energy), and natural disasters 
triggering human migration patterns.  In a more realistic representation of the Earth 
system, its human and natural components are fully coupled, meaning that their coupling 
is bi-directional. 

It is essential to fully couple systems to allow for important feedbacks. For 
example, the atmosphere and the ocean are coupled in both directions, so that the 
important chaotic phenomenon of El Niño-Southern Oscillation (ENSO) takes place as 
the result of an instability in the coupled ocean-atmosphere system. By contrast, until the 
late 1990’s atmospheric and ocean models used to be coupled in a “one-way” mode: the 
atmospheric models would affect the sea surface temperature (SST) but could not 
change it, and the ocean models would be driven by the atmospheric wind stress and 
surface fluxes, but could not change them. As a result these models were not able to 
predict the ENSO chaotic oscillations. Since the late 1990’s climate models switched to 
fully coupled atmosphere-ocean-land-ice submodels. More recently, biosphere systems 
are also being fully coupled, allowing for changes in vegetation able to affect climate 
through changes in albedo and soil moisture, but also the local climate determining the 
type of vegetation that can grow in a region.  
It should be noted that realistic coupled models are considerably harder to develop than 
one-way coupled models because there is much more freedom for the coupled model to 
drift away from reality. For example, with a one-way coupling, the atmosphere can feel 
the ocean sea surface temperature (SST) but cannot change it, so that the SST 
“anchors” the atmosphere within realistic limits of temperature. In a two-way coupling, by 
contrast, the temperatures of the coupled atmosphere-ocean system have much more 
freedom to drift away. This requires a more careful model to develop realistic solutions.  
At present, fully coupled climate models (known as Earth System models) have been 
developed to the extent that they are now fairly realistic, and there is general agreement 
among climate modelers that full coupling is essential in order to have a realistic climate 
system. 
 The human system in many ways now dominates the natural system, with, for 
example, domesticated animals making up the vast majority of large mammals , and 
most of the land that can be cultivated already devoted to agriculture. Humans are 
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influencing climate through both emissions of greenhouse gases (GHG), and use of 
natural resources (e.g., land, water, minerals). In fact, population is a primary driver of 
every environmental challenge that threatens sustainability: generation of GHGs, other 
pollutants and toxic waste; depletion of resources, including water, oil, fisheries, topsoil, 
etc.; resource wars and civil conflicts; malnutrition and world hunger; lack of resources 
for education and health care, especially in poor countries; best farmland converted to 
urban and suburban sprawl; garbage disposal and need to find more landfill space; 
species extinction.  

Given the prominent role that population and human activity have in driving 
climate change, it seems that Earth System models should be also fully coupled with 
Human System models if we want to be able to simulate more realistically climate 
change and sustainability. This need is particularly well expressed in a recent Science 
paper by Liu et al (2007) that includes the NOAA Administrator (Jane Lubchenco) as one 
of the authors: he abstract states that ‘Integrated studies of coupled human and natural 
systems reveal new and complex patterns and processes not evident when studied by 
social or natural scientists separately. Synthesis of six case studies from around the 
world shows that couplings between human and natural systems vary across space, 
time, and organizational units. They also exhibit nonlinear dynamics with thresholds, 
reciprocal feedback loops, time lags, resilience, heterogeneity, and surprises. 
Furthermore, past couplings have legacy effects on present conditions and future 
possibilities.  Current Integrated Assessment Models (IAM) couple economic models to 
rather simple earth system models (e.g., Prinn et al., 1999, Kim et al., 2006). However, 
as with the Netherlands Environmental Assessment Agency IMAGE model, these IAMs 
are not fully coupled, since the Earth System model is quite simple, and population is an 
exogenous input.  

This raises the interesting issue of how to model the Human System so that it is 
fully coupled with the Natural System. One approach that can address this challenging 
modeling problem is System Dynamics (SD). Modeling the human system with a SD 
modeling approach with regional submodels would have several advantages such as 
being relatively simple to design and couple with the natural system and allowing for 
consideration of the impact of government policies, migration, and disturbances such as 
HIV, as well as the regional vulnerabilities associated with sea level rise, erosion, etc.  It 
would be also possible to create estimation of risk by using a probabilistic approach 
based on ensemble techniques, now widely used for weather and climate prediction.  

Examples of major challenges in creating a fully coupled HES include: 
• Collection of necessary Earth and Human Systems data (some of which has 

been fairly abundant on a regional basis since about the 1950’s). 
• Design of a coupled model structure such as that shown in schematic Figure 1. 

In this prototype it is assumed that the Earth system model is an intermediate 
complexity dynamical model that includes an atmosphere coupled with land and 
a vegetation model, with a mixed layer ocean model that has already been used 
for climate change simulations (e.g., Zeng and Yoon, 2009).  

• Calibration and validation of the model behavior from its ability to reproduce sub-
periods of 1950-2010, while reserving some decades for cross-validation. 

• Testing the model for different scenarios (e.g., carbon emission), government 
policies, and climate anomalies such as droughts or prolonged heat waves. 
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• Calibration of the model. Novel statistical approaches may be necessary to 
calibrate a model that includes many regional Human models. One possible 
approach could be the use of modern data assimilation techniques such as 
Ensemble Kalman Filter (EnKF) used in numerical weather prediction that have 
the ability to estimate not only the model variables, but also unobserved 
parameters. EnKF in principle could be used to perform an initial calibration of 
the submodels of the system by estimating their optimal parameters.  

• Exploration of the dynamical behavior under different parameter ranges, such as 
chaotic, oscillatory or stable behavior. The use of EnKF for calibration may 
depend on whether the model is chaotic, in which case it is expected to work 
well, or non-chaotic, in which case the behavior of EnKF is less well known. 

• Use of an ensemble of forecasts with different initial conditions and different 
model parameters to explore and define the uncertainty of the projections of the 
models. 

• Parameterization of the government policies (as sliding knobs in the model, or as 
responses to the model evolution) so that trade-offs can be valued. 

 

Figure 1: Schematic of a prototype of a fully coupled HES model. The left box represents an 
example of a geographically distributed  Earth System model, , and the right box is one of the 
regional Human System models. The arrows represent one or two-way coupling, and the 
horizontal red arrows represent trade and migration between different regions.  Credit: Eugenia 
Kalnay and Jorge Rivas. 
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3.2. Forest Systems (Anand) 

It has been suggested that forests are complex adaptive systems. They can 
show several features of complexity, such as self-organization, connectedness and 
resilience to small-scale disturbances. Simple models have been constructed to display 
complex forest dynamics and patterns such as power-law scaling of spatial patterns, a 
hallmark of self-organized criticality (Anand et al. 2010). What happens to these systems 
when humans intervene in the form of land-use changes (Figure 2)?  Humans have the 
ability to both increase (via afforestation) and decrease (deforestation) various aspects 
of forests including biomass (and hence carbon sequestration) and diversity.  

The dominant paradigm is for humans to break down the complex adaptive 
nature of forests via deforestation, resulting in overall forest loss. But this human land-
use system is neither complex nor adaptive, until there is feedback from this forest loss 
on human behavior. Humans also have the ability to reforest. Often times, this is only 
done to comply to some legislation. But this would only be a change to the human 
system informed by the forest system, not a true feedback. Humans however typically 
respond to deforestation by increasing agricultural yield. Ultimately, this decreases the 
need to deforest and thus these lands are eventually returned to forest. Thus, the return 
to forests is the result of human activities, but not necessarily deliberate (it’s a true 
feedback), creating a complex human-environment adaptive system.  

 

 
 

 
Figure 2. Endangered Atlantic forest in southern Brazil within a matrix of natural grassland. Both 
of these ecosystems are important to humans for sustainability, one for mainly economic value 
and the other for mainly ecosystem services, but we have little understanding of how to predict or 
manage the unique land-use dilemmas around this, particularly in the face of diverse global 
ecological changes (climate change, invasive species, etc.). Credit: M. Anand, Canada Research 
Chair in Global Ecological Change. 
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Managing a complex human environment system involving forests would require 
balancing the positive and negative effects of humans on forests. This is important for 
sustainable use of resources of any kind. These ecology-human models should 
ultimately be linked to climate models creating tripartite models.  
Challenges for the mathematical sciences include: 

• Models with high diversity (e.g., some tropical forests have over 300 tree 
species, not to mention within species variation); how to deal with redundancy 
and high dimensionality that are implied 

• Predicting spatial and temporal strategies for deforestation and afforestation; for 
example, do we need to reforest twice the amount we deforest? Do we need to 
introduce time intervals between harvesting? Which areas should we prioritize for 
deforestation or afforestation (decision trees – no pun intended)?  

• How to deal with imperfect human behavior (e.g., individual, political, and 
corporate priorities not aligning with socially optimal outcomes). 

• How to deal with changing state space (e.g., the forest is always evolving in time 
due to climate change; value of wood fluctuates due to availability/scarcity and 
fashion). 

 
3.3. Economic Systems (Rivas)  

Within the spectrum of social systems, it is clear that economic activities and 
processes are central to the relationship between sustainability and modeling Human-
Environmental Systems (HES). Modeling economic systems is therefore essential to 
coupled HES.  This is especially true if one of our goals is to develop tools to aid 
decision-makers in addressing the issue of sustainability.  When economics, in its 
current “neoclassical” form, developed starting in the 1870s, it relied primarily on linear 
relationships, comparative static methods, and the assumption of stable equilibria. 
Despite tremendous advancements in mathematical methods since then, economics 
continues, to a large extent, to be theorized and modeled in this way.  However, human 
systems in general, and economic systems in particular, are clearly not limited to linear 
relationships and stable equilibria.  Human systems are complex adaptive systems 
which exhibit non-linear and chaotic dynamics, with instabilities produced by positive 
feedback loops, thresholds, emergent properties, unpredictable behaviors and persistent 
uncertainties.  

Are there compelling reasons to bring more advanced mathematical methods to 
the theorization and modeling of economic systems? If our economic theories and 
models are limited to linear relationships and stable systems and feedbacks are 
modeled only as negative (thus always moving the solution back to an equilibrium), they 
are likely to miss the reciprocal dynamics and positive feedbacks that lead to economic 
bubbles, economic crises and economic collapses.  Bubbles are by definition 
unsustainable dynamic processes with positive feedbacks.  The collapses occur when 
these processes pass some unsustainable threshold causing a downward spiral itself 
composed of positive feedbacks.  As a result, in the vast majority of the economics 
literature, bubbles and crises are still seen as aberrations or problems with the system 
rather than inherent outcomes of the properties and structure of the system.  The 
general failure to predict the current economic crises is indicative of these gaps in 
current modeling methods.   
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One reason early economics avoided modeling systems that moved away from 
equilibrium is that these non-equilibrium systems were seen as invariably breaking down 
or spiraling out of control.  Current understanding of chaotic systems that do not settle to 
an equilibrium or steady state but nevertheless can produce predictable patterns and 
behaviors could bring a great deal of advancement to realistic economic modeling. 
Mathematicians could help to identify and specify what it is about the structure of the 
system that that makes it produce the behaviors that it does. 

Macroeconomic theories and models that focus on systemic processes and 
emergent properties are often rejected within Neoclassical economics because they do 
not include what are referred to as “solid micro-foundations.”  This reductionist approach 
may lead to neglecting important system-level or macro-level emergent properties and 
emergent behavior.  One of the lessons of the study of complex adaptive systems is the 
existence of multiple scales at which dynamical systems can operate.  Mathematical 
scientists could help address whether there are some problems in economics that can 
be solved at a higher scale without being dependent on having the details at a lower 
scale fully worked out.  In other words, mathematicians can help to establish whether 
there are there macro-level processes that are not dependent on specifics at the micro 
level.   

Modeling economics within the framework of sustainability presents us with the 
additional challenges of coupling Human and Environmental Systems (HES).  Coupled 
HES present a set of unique characteristics not found in purely physical, purely 
biological, and purely social processes.  Physical, biological and social systems are each 
made up of different types of dynamics, properties, behaviors, and governing laws.  
Coupling them therefore entails combining models with different types of dynamics, 
different temporal, spatial, organizational and output scales, and massive, 
heterogeneous data derived with very different methods and from very different sources.  
This raises a set of more general modeling challenges for economics with regard to the 
question of modeling social, biological and Earth systems in order to address the issues 
of sustainability.  The Earth System has many structures which can be understood as 
performing particular functions of providing services to human systems.  These 
“ecosystem services” functions can be grouped into two broad categories: “Sources” (of 
the real physical and energy resource inputs of the human economy) and “Sinks” (the 
absorption and processing of the real physical and energy outputs of the human 
economy).  The way in which the scale of the human economy has grown relative to 
these two ecosystem services presents the human system with the problems of 
depletion and pollution.   

As Herman Daly (1977, 1996) and other ecological economists have shown, the 
neoclassical assumptions of price-driven market substitution of resources and factors of 
production negate the need to model depletion of sources.  If the Economic System can 
always switch to other resources, the model can ignore stocks of natural capital in the 
Earth System which are being drawn down in an unsustainable manner.  Similarly, the 
neoclassical focus on market prices rather than on stocks and flows of physical matter 
and energy excludes “externalities” such as physical and energy outputs of the 
Economic System (e.g. greenhouse gases).     

A conclusion of our working group is the need for a recognition of a diversification 
of models, approaches and paradigms.  There is a great deal of literature on the 
homogeneous nature of most work within the field of Economics.  The development of 
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new methods and approaches to theorizing and modeling economics could help to make 
great advancements in tackling the economic component of sustainability. 
 

 
 
Figure 3: Standard Neoclassical Model,.  Credit:  Adapted by Jorge Rivas from Daly and Herman 
(1977, 1996).  
 

 
Figure 4: HES Model: Economic System coupled with the Earth System, showing Ecosystem 
Services and feedbacks.  Credit:  Adapted by Jorge Rivas from Daly and Herman (1977, 1996).  
 
3.4. Fisheries systems (Watmough)  

Many models and theories have been developed to predict the maximum 
sustainable yield for various fish stocks.  In the past, these have been used to set quotas 
for maximum harvests.  These were implemented by starting the fishery on a certain day 
and closing the fishery when the quota was met. This led to the interesting effect of 
concentrating fishing effort into just a few days a year due to the need for fishermen to 
compete to bring in as many fish as possible before the quota was met. 

Several inefficiencies arise from this: notably, only 10% of the harvest was sold 



 

96 | P a g e  
 

fresh, even though the selling price for fresh fish is twice that of frozen fish; large 
numbers of boats were fitted for halibut fishing that were only used for two or three days 
during the year. 

Upon introducing individual tradable quotas, the season immediately expanded to 
250 days and profits increased dramatically. With the tradable quotas, fishermen were 
guaranteed the right to harvest a certain number of fish, and no longer needed to 
compete to be the first to land the fish. Hence, fish could be caught at a rate that allowed 
them to be sold fresh for higher prices. This opens up many interesting questions on 
coupling resource models with a theory of cap and trade systems incorporating social 
and economic components. Specifically,  

• How should quotas be priced and distributed? 
• What will be the socio-economic consequences of various pricing systems? 
• Will these systems be robust to unforeseen shocks in the harvest? 
• What impact will the different pricing systems have on the 

biology/ecology/environment?    
These questions also arise in situations such as quotas for livestock, land-use or 

other resources and similar models can be used for quotas applied to emissions and 
pollutants. 
 
3.5. Infectious Disease Systems (Fefferman)  

Within a network of social contacts, there are two interrelated on-going dynamic 
systems that need to be modeled both separately and together: the transmission of 
infection and the making/breaking of contacts as a continued social process. The 
systems both shift state internally in non-trivial ways: disease dynamics are driven by 
epidemiological characteristics of the disease and the underlying network topology, and 
the social system is driven by individual preferences in affiliation and also potentially by 
larger scale needs of society (e.g. sufficient organizational success for complicated task 
completion, rapid dissemination of information/consensus building for decision making, 
etc.). Further, these systems also fundamentally impact each other: disease can impact 
social contacts by causing affiliations to be made/broken in response to disease status 
and the ongoing social processes are responsible for constructing the underlying, 
shifting network topology over which infection can spread. For example, healthy 
individuals can avoid contact with unwell individuals to avoid exposure or unwell 
individuals can temporarily avoid social contact while convalescing, these actions 
interrupt routes of transmission, changing the epidemiological outcomes, but also 
potentially compromise information pathways or decrease participation in a group 
beneath a minimally effective threshold for action. Similarly, individual behaviors driven 
only by social motivations can drastically impact the epidemiological burden of society in 
general (e.g. reporting to work despite infectious illness in order to ensure meeting a 
project deadline and thereby infecting coworkers, etc.).  All of these considerations raise 
challenging issues of modeling, simulation, and analysis for mathematical scientists. 
 
4. Recommendations  

We discuss both high-level recommendations (section 4.1) as well as 
recommendations for specific areas wherein opportunities may lie for mathematical 
sciences to advance sustainability science (section 4.2).  
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4.1. High-level Recommendations 
Four major high-level recommendations emerged from our working group 

discussions:  
A. Develop a mathematical formulation of sustainability; 
B. Foster innovation through a diversity of modeling paradigms; 
C. Provide opportunities for involving a broader set of mathematicians; 
D. Require that both data and models should be kept open source and made fully 

public, and encourage citizen science. 
We expand on these recommendations below.  
 
A. Develop a mathematical formulation of sustainability 
We recommend development of a common mathematical language to facilitate 
integration of different disciplinary approaches to modeling. This may require going 
beyond the conveniences of existing mathematical theory.  We recommend that 
researchers 

• Develop theories of dynamics that goes beyond current dynamical systems 
theory to address the “messy” real-world problems that exist in complex, adaptive 
human-environment systems (put succinctly, “sustainability does not equal 
stability”).  Whereas dynamical systems address questions of asymptotic 
stability, transient behavior naturally occurs in real systems and may be more 
important, as in stuttering chains of transmission in the spread of zoonoses for 
example (Lloyd-Smith et al., 2009). 

• Develop theoretical frameworks to aid understanding and interpreting large-scale 
computational models 

 
B.  Foster innovation through a diversity of modeling paradigms 
This recommendation entails several specific steps, including:  

• Use ensembles of models for better system forecasting and understanding.  
Often, combining the results from different models produced by independent groups 

can provide better predictive power than any single model.   An example comes from the 
history of climate modeling. In December 1991, two major operational Numerical 
Weather Prediction (NWP) centers started a major new approach to weather prediction 
with the introduction of ensemble forecasting. Until then NWP forecasts were 
deterministic, with twice a day forecasts started from the best estimate of the state of the 
atmosphere (known as analysis) and run for 10 days at the European Center for Medium 
Range Weather Forecasts (ECMWF) and 15 days at the US National Centers for 
Environmental Prediction (NCEP). Both centers introduced the idea of running an 
ensemble of forecasts started from initial conditions that were given by the analysis to 
which different initial perturbations had been added. The difference between the two 
approaches was the type of initial perturbations, with NCEP using Breeding of Lyapunov 
Vectors, and ECMWF using Singular Vectors. 

The introduction of ensemble forecasting had a major positive impact on the 
usefulness of the forecasts since the ensembles indicated not only the most probable 
forecast but also the uncertainty associated with it. As a result, human forecasters 
learned how and where to have confidence in longer forecasts, since weather 
predictability depends on the growth of errors in the initial conditions due to atmospheric 
instabilities, and is therefore quite dependent on the evolution of the weather itself. An 
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immediate result was the decision of the TV weather forecasters to extend their 
forecasts from 3 days until the early 1990’s to 5 and even 7 days in the mid 1990’s.  

        In addition to introducing perturbations in the initial conditions, it was found by 
the NWP community that introducing model perturbations, or even using multiple models 
from different centers also resulted in a major improvement in the forecast skill and the 
usefulness of the forecasts. It has been a consistent result that a multimodel ensemble 
has a performance that is better than that derived using a single model, even the model 
that has the best performance.  

• Encourage a hierarchy of models from simple to complex and across scales.  
In the quest for realism, some models tend to incorporate a high level of detail in an 

attempt to reflect the complicated interacting properties of the system under study.  
However, there remains a need for simple models that may be more efficient in providing 
insight at a higher level or that may explain the data equally well.  One recommendation 
of our working group is recognition of the tremendous benefits that “model biodiversity” 
can bring to a particular issue or problem.  This diversity refers not only to employing 
ensembles of models, but also to the application of a variety of approaches and 
paradigms to solving common problems, including both simple and complicated models.  
As has long been known in biological sciences, biodiversity produces systems that are 
both robust and adaptable to different conditions and contexts, as well as developing 
innovative solutions to a multiplicity of potential problems. The diversity of paradigms 
and approaches would also function like portfolio theory, to spread society’s research 
investments out across various “asset” types whose performance is not tied to one 
specific approach. Building models from the approach of other disciplines will also lead 
to the development of solutions that would have been entirely non-intuitive from a 
different discipline.  We have found that the coupling of Human and Environmental 
Systems (HES) in order to address the issues of sustainability presents additional 
reasons to emphasize the need for the application of diverse paradigms.  Coupled HES 
involve unique challenges not found in solely physical, biological, or social models, as 
each involves different classes and kinds of scales, properties, behaviors, and data.  
Coupling human to environmental systems therefore entails developing theories and 
models composed of submodels requiring very different sets of knowledge. While this 
calls for interdisciplinary collaboration, it also calls for the application of approaches from 
different fields.  We are therefore recommending that mathematical sciences encourage 
and participate in the marshaling of a variety of approaches and paradigms to the 
theorizing about and modeling of sustainability problems.  

• Introduce ensemble methods for model comparison  
The mathematical framework to statistically assess the validity of simulations has 

been developed significantly by theoretical computer scientists in the last decades. 
Unfortunately, modelers outside the community have passively ignored this theory. In 
view of the considerable challenges presented above, the time has come to integrate 
these considerations in model comparisons and validations. In particular, the statistical 
foundation for a systematic determination of ranges of predictions needs to be put on 
firm, convincing basis to infer public policy recommendations. Lessons can be learned 
from the machine-learning community, which has matured in an analogous way over the 
last decades, to develop a sound basis for understanding convergence properties in 
both algorithmic and heuristic senses.  
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C. Provide opportunities for involving a broader set of mathematicians.  
All fields of the mathematical sciences can be profitably incorporated in one aspect 

or another of the investigation of HESs. The richness of the techniques and approaches 
is one defining characteristic of the complexity of these systems, and only through a 
diversified approach will we be able to develop a sound understanding, leading to 
believable predictions. 

 
D. Require that both data and models should be kept open source and made fully 

public, and encourage citizen science.  
A primary recommendation of our working group is to call for both data and models 

to be kept open source and made fully public.  Progress in model development is more 
efficient and rapid when the code is made available to other researchers and modelers.  
Keeping models and data proprietary or secret may be beneficial to commercial 
interests, but should not be the case when problems facing humanity are at stake.  
When a model remains proprietary, there are fewer possibilities for application of the 
model or reproduction of results.  Wider use of a given model can uncover existing 
problems, and lead to model innovations and even new kinds of solutions.  When data 
and models are open, the research community can check both model design and the 
accuracy and the realism of the model.  So many of the problems facing humanity, and 
in particular those associated with sustainability, do not stop at national or regional 
frontiers.  International sharing of data should be especially encouraged.  Having access 
to everyone’s data helps to develop, improve, calibrate and validate models and to 
compare them with reality. Inevitably, progress is much slower when data and models 
are limited to a few hands and eyes. The common good of humanity calls for this 
information to be shared.   

      Once a model has been developed and passed basic tests, it should be made 
available for other scientists to experiment and add/change the model.  Such 
“Community HES models” would accelerate HES model progress and provide decision 
makers better tools with which to make decisions.  If the model(s) are sufficiently robust 
that they can be run on a PC, invite public volunteers (Citizen Science, 
http://www.nsf.gov/news/special_reports/science_nation/citizenscience.jsp) to run the 
models, explore their limits and modify them, and report their results to a central web 
site. This will allow us to analyze the many-members’ ensemble results and to develop 
the best statistical and dynamic approaches to estimation of risk and uncertainty. 

The benefits of open sharing of models are again exemplified by the history of 
climate modeling. The improvement in the forecast performance of NWP models in all 
the major centers is one of the most remarkable scientific achievements of the last half-
century. As the meteorologist Lorenz discovered, even if a NWP model was perfect and 
if the initial conditions were also essentially perfectly known, the presence of 
atmospheric instabilities would make it impossible to predict the evolution of weather for 
more than two weeks. The discovery that if a flow is chaotic, then there is a limit of 
predictability, had a tremendous scientific impact, but was at that time only of academic 
interest, since even the 1-2 day forecasts were quite poor. Now, 50 years later, forecasts 
routinely remain accurate for 10 days, especially during the winter season, both in the 
Northern and the Southern Hemispheres.  One reason why progress has accelerated is 
that different operational centers have developed their own models and methods of data 
assimilation, their research approaches were always public and Meteorology has always 



 

100 | P a g e  
 

had a spirit of international cooperation. As a result, whenever one center developed an 
idea that resulted in a major improvement in the operational forecast skill, the idea was 
discussed in scientific meetings and workshops, and different centers tested variations 
of the same idea in their own center. There is no doubt that this friendly international 
competition has resulted in much faster progress than what would have taken place if 
the method of improvement had been kept secret. 

 
 
4.2. Specific recommendations  

In addition to the relatively high-level recommendations of the previous section, a 
number of potentially promising avenues for specific areas of the mathematical sciences 
also emerged from group discussions.  We describe these areas in bullet point format 
below. These recommendations are not intended to be an exhaustive list of potentially 
promising areas of research.  

• Mathematical formulation of sustainable, composable, multiscale dynamical 
systems acting on discrete, non-smooth real world data; multi-scale 
characterization of features emerging in the data; 

• New theoretical frameworks for the dynamics of hybrid HES models 
consisting of different types of models for human versus environmental 
submodels;  

• Methods to characterize dynamic topologies relevant to analysis of social and 
biological networks; 

• An expanded mathematical toolkit to explore the impact of coupling in 
dynamic, complex, adaptive HESs and to characterize the interaction of 
shifting rates of dynamics in coupled systems; 

• Further development of complex dynamical systems theory as it relates to 
HES; 

• Further developing of coding and information theory, time series analysis, 
and projection geometry as it relates to HES; and 

• Theory of ensemble models, such as development of theoretically justified 
simulation, and machine learning and pattern recognition with neural 
networks and genetic algorithms.  

These areas can obviously involve a broad segment of the mathematics 
community, including the computational harmonic analysis community, the dynamical 
systems community, the computational topology community, the distributed systems 
community in computer sciences, the algebraic and analytic geometry community, the 
topological quantum computing community, the stochastic PDE community, the 
stochastic processes community, and the information theory community.  
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Apendix 3:  Measuring, Monitoring, and Forecasting Progress 
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Charge to the Group: 

Development of a science of measuring and monitoring for sustainability is essential for 
guiding policies and evaluating progress towards improved human well-being and 
sustenance of the earth's life support systems. Under this theme, the group is asked to 
identify the major priority areas (research themes) in the mathematical sciences for 
development of a science of sustainability monitoring and measuring that builds on but 
goes beyond contemporary approaches. As part of this theme, the group is asked to 
explore a conceptual and methodological framework for sustainability measuring and 
monitoring that confronts inherent issues of scale, aggregation problems and the need to 
develop common metrics for sustainability. Specifically, the group is asked to answer the 
questions: What are the critical mathematical sciences research developments 
necessary for sustainability monitoring and measuring? Why are these important? And, 
are they feasible? 

1. Introduction 
Measuring, monitoring and forecasting play a fundamental role in assessing 

progress and evaluating policies for the sustainability of both human well-being and 
natural resources. These objectives will involve observational data from the human and 
natural environment, as well as the effective development and application of 
computational models. The charge to our working group was to identify the contributions 
of mathematical scientists towards the fundamental research that is needed to develop 
effective tools, and the additional resources, including those involving data and 
computing, that are needed to bring these tools to effective application. 

There are many elements of sustainability to consider including water, air, 
agriculture, energy, humans, natural resources, and many more.  A common theme in 
sustainability is the monitoring of these systems.  This can be done via direct data 
observation and/or via modeling of processes. In either case, data are acquired and 
models are used.  Thus, models and data are the key building blocks of the sciences of 
sustainability.   

2. Research themes/questions 
First, we consider, what should be measured or monitored.  Here, we give three 

examples to show the challenges of setting up a data monitoring system.  Second, we 
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consider how the data should be collected, with consideration of statistical design and 
other data collection issues.  Finally, we discuss several overarching issues associated 
with application of models for synthesizing such data and for forecasting future needs 
and states.   
 
2.1 What to measure/monitor? 

A key issue in sustainability science is to construct a framework to collect data 
that will help scientists monitor progress toward sustainability.  We consider examples 
from three categories of variables: biotic, abiotic, and human-element datasets, and we 
explore the challenges with collecting and converting the raw data into useful data 
products.   
 
2.1.1 Biotic Datasets  

An example of biotic data and datasets is the Forest Inventory and Analysis (FIA) 
program of the U.S. Forest Service.  The USFS conducts a national forest inventory of 
the USA (McRoberts  et al. 2005).  The program’s mission is to assess the current state 
and health of the Nation’s forest resources and the change in those resources over time.  
On plots distributed across the country at a sampling intensity of one plot per 2400 ha, 
field crews observe or measure human variables such as land ownership, abiotic 
variables such as soils and topography, and a suite of biotic variables that includes tree 
species, diameter, height, health, and live/dead status and plot variables such as 
proportion forest, regeneration, and understory vegetation.  The data cover the entire 
country, are acquired in a nationally consistent manner, and are maintained in a publicly 
accessible database that is updated annually. Collection of these data is at least partially 
motivated by the necessity of reporting to an international sustainability convention using 
a set of agreed-upon criteria and indicators.  A good reference for this criteria is at: 
(http://www.rinya.maff.go.jp/mpci/criteria_e.html).  While such datasets are very useful 
for addressing basic science questions, they may also provide an important time-series 
for evaluating progress towards sustaining, for example, our forest ecosystems. 
 
2.1.2  Abiotic Datasets  

Natural datasets that are not biological in origin include climatic variables, 
measures of air and water pollution, and oceanographic measurements. Although the 
original intention of obtaining such data may not have been motivated by sustainability 
issues, such data are often critical to understanding changes in biotic variables that may 
be the target of sustainability research and monitoring.  Many abiotic datasets are 
collected by government agencies with public funding, but standards vary for the 
archiving and accessibility of the datasets. For effective use in long-term monitoring, 
many of the datasets require gridding.  For example, climatic datasets are often reported 
as averages over five degree latitude and longitude grid cells, which are then further 
aggregated into hemispheric or global averages. However, the aggregation procedure 
raises many issues connected with efficient interpolation methods, the effect of changes 
over time of the observing network, and quality control. For example, raw temperature 
data may show a sudden changepoint due to moving the observing station, or a gradual 
but localized trend due to the urban heat island effect, but these sources of variability do 
not reflect long-term variability in the true climate system, and therefore the temperature 
data may need to be corrected in the calculation of climatic datasets. 
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Many of these issues were discussed in a recent workshop on “Datasets for the 
21st Century” held at the United Kingdom Meteorological Office in Exeter, U.K. The aim 
of the workshop was stated as an international and multi-discipline effort to build the 
framework to construct high quality, high resolution, transparent, fully reproducible, and 
robustly verified climate records and to ensure their usefulness for decision makers and 
society. The workshop was sponsored by the World Meteorological Office with co-
sponsorship from a number of other meteorological and environmental agencies. The 
home page for the World Meteorological Office (http://www.metoffice.gov.uk) provides 
links to papers discussing numerous aspects of both the administrative and scientific 
components of preparing climate data products. 

From an administrative point of view, a major issue is the availability of raw data 
and computer programs for processing the data. The recent publicity associated with the 
leakage of emails from the University of East Anglia related to climate change has drawn 
attention to the problems that arise when raw data and programs are not readily 
available to other researchers who may desire to understand or challenge the 
assumptions made in constructing climate data products such as gridded temperature 
averages. In response, the climate community has recognized the need to provide 
access to raw data, but there are problems; for example, not all the World’s 
meteorological agencies are willing to make raw data publicly available. From a scientific 
point of view, two major issues are correcting data sets for spurious trends and 
changepoints and choosing interpolation methods for constructing gridded averages. 
Fig. 1 illustrates the issues associated with constructing gridded datasets: the observing 
grid is primarily land based and not at all uniformly distributed, reflecting different 
priorities and political systems in the countries that collect the data. 

 
Figure. 1. Part of the European network of temperature measurement stations. Reprinted from “A 
European daily high-resolution gridded data set of surface temperature and precipitation for 1950 
– 2006,” Journal of Geophysical Research, vol. 113, Oct. 30 2008, with permission from 
American Geophysical Union. 
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The aforementioned issues have been extensively analyzed by meteorologists 

and climate scientists using increasingly sophisticated statistical methods, see e.g. the 
recent papers by Haylock et al. (2008) for statistically motivated interpolation methods, 
and Menne et al. (2010) for the methods used to correct for spurious changepoints and 
trends. Nevertheless, the methods currently in use do not reflect the latest research in 
statistics; see e.g. Smith and Cressie (2010) for a review of spatial interpolation methods 
in the light of modern developments in spatial statistics, and the papers of Cassinus and 
Mestre (2004) and Reeves et al. (2007) for modern developments in changepoint 
detection. Continued interaction between statistical scientists and experts in both land-
based and ocean-based observing systems is needed to deliver high-quality data 
products for research and policy decision-making. 
 
2.1.3  Human-element Datasets  

From an anthropocentric perspective, sustainability is typically defined as 
improving human well-being while maintaining the life-support systems of the planet. 
Thus, measuring and monitoring human variables is crucial for assessing whether we 
are making progress toward sustainability. Human-focused variables include population, 
health, disease, wealth and its distribution, security, economic indicators, education and 
governance structures and institutions.  Variables measuring human well-being and 
activities are collected by a myriad of governmental agencies (e.g. census data), 
international organizations such as the UN (e.g. poverty indicators) and commercial 
companies (e.g. marketing data). Each entity uses different approaches for designing 
their data collection and assimilation methods. Apart from availability, proprietary, and 
privacy issues, these multiple datasets have different spatial scales and boundaries (e.g. 
nation-states, geographic regions, political units or discrete survey locations), different 
temporal sampling periods (with frequency ranging from 1 year for census data to nearly 
zero for not-reproduced reports) and different levels of uncertainty (which is frequently 
left unspecified). Often, data are altogether missing in some spatial regions or are 
measured inconsistently over time. While the numerous sustainability indicators 
proposed in the past have different aims and specifics (Parris and Kates 2003), many of 
them have in common the need to perform calculations of these human variables 
(together with relevant biotic and abiotic variables) in a unified spatio-temporal grid. 
Getting the appropriate data from the diverse world of online data warehouses requires 
both statistical methodologies and mathematical process-modeling to fill-in, interpolate 
and extrapolate data, methods the mathematical sciences have been developing the 
tools to do. 
 
2.2. How to measure and monitor? Sampling design and scales 

The examples above show the challenges of constructing and maintaining data 
products for sustainability science.   These examples illustrate the importance of bringing 
general statistical principles of good sampling design to the forefront.  The examples 
also show some of the challenges of establishing baselines and modeling using data 
collected over long periods and/or multiple instrumentations.   

Good sampling design should follow the three principles of design espoused by 
Fisher (1935), namely blocking (stratification), randomization, and replication. Even if a 
spatio-temporal component was not incorporated in the design, an observation was 
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taken at a particular instant of time and at a particular location. This information should 
be recorded as it can be used for post-stratification or for building models based on the 
sample. It is almost certainly true that the sample will not be at the right spatial or 
temporal scales when it is used for future studies, and this misalignment can be handled 
using spatio-temporal statistical methodology (sometimes referred to as change-of-
support). Optimal sampling design has a large literature, but here it makes just as much 
sense to use near-optimal designs that capture the various sources of variability. 
Dynamical designs exploit the temporal statistical dependence of the variable under 
study by choosing fewer sample locations per time period without sacrificing the size of 
estimation variances (Wikle and Royle, 1999). 

A common thread in sustainability assessment is the quantification of baselines.  
Sustainability assessments are generally conducted by estimating trends expressed as 
changes from baseline estimates.  Data for estimating baselines from probability 
sampling designs are preferable because they lend themselves to analysis using familiar 
sampling theory.  Spatially explicit baseline estimates may be necessary in which case 
interpolation techniques may be used or sample data may be combined with spatially 
explicit ancillary data such as satellite imagery.  Of non-trivial importance, efficient 
sampling designs for estimating baselines, for estimating trends and/or change, and for 
calibrating models using ancillary data may differ considerably.   

Regardless of how one defines sustainability, the fact that there is a time-
invariance component to it is generally accepted.  Thus presence of (or lack of) changes 
in a system over time scales of sufficient duration to avoid confounding with inherent and 
natural short-term fluctuations are key barometers of sustainability (or lack thereof).  For 
example, because climate is defined over time scales of 30+ years, looking for evidence 
of changes in climate requires data over much longer periods of time.  The same is true 
of many other key ecological processes or systems. Thus for data-based investigations 
of sustainability, reliance on existing historical data is essential and will always be.  This 
creates challenges because measurement technology evolves faster than climate-paced 
processes, usually in the direction of greater information content (more and extensive 
measurements of higher quality), although not always as evidenced by policy- and 
funding-induced cessation of data collection efforts. 

The unavoidable reliance on data collected over relatively long periods of time (or 
combining historical and current data) results in challenging problems of: 1) uncertainty 
analysis (information from the past often has greater uncertainty than contemporary 
data); 2) temporal data fusion (changes in measurement technology or protocol often 
necessitates calibration of one data stream to another); and 3) sampling design (optimal 
augmentation of existing sampling sites/technology with new sites/technology). These 
problems will persist as long as measurement technology and protocol evolve at a faster 
rate than the processes they are designed to measure. 
 
2.3 Models for synthesizing data and forecasting 

The word model has many different meanings to many people.  For example, 
statisticians often think of models as empirical models estimated based on observed 
data. Mathematicians tend to think of models in terms of theoretical constructions, or 
process models.  In this document, one of our goals is to discuss how sustainability 
science can be advanced by combining theoretical process models with observed data.  
Two major advantages of this approach are that it allows for the predictions beyond the 
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range of the data and facilitates greater insight into the underlying mechanisms 
producing the observed patterns.   
 Another issue that we face in applying a more process-based modeling approach 
is the need to balance complexity (detail) with simplicity (transparency). In the 
construction of models for sustainability science, we have the potential to build complex 
systems of equations that define the process model(s). If such models are to be 
informed by datasets such as those described above, then we must be able to link the 
datasets to different model components. That is, if the models are overly complex, then 
we are potentially faced with an over-parameterization problem such that available data 
may not contain enough information to identify or estimate all parameters in the process 
model. Such issues are important to consider if such models are to be used for 
forecasting or making inferences related to sustainability. In general, models, especially 
if informed by data, can be used for many things including making projections and 
forecasts, scenario evaluation, capturing nonlinearities, for space/time scaling, to 
quantify and propagate uncertainty, and to inform the construction of monitoring 
networks.  However, care will need to be taken so to avoid poorly-parameterized 
models. 

Finally good data visualization techniques allow modelers to convey complex 
ideas in simple terms and allow non-experts to understand the results (e.g., 
http://www.gapminder.org).  
 
3. Role of the mathematical sciences 
 We identified several research themes that the mathematical sciences can 
contribute to in the context of advancing both basic and applied sustainability research. 
These themes focus on issues associated with measuring, monitoring, and forecasting 
elements of sustainability, and are broadly applicable across a range of disciplines in this 
general area. An important motivation underlying these themes is the collection and use 
of diverse datasets in the context of relatively complex, process-based models related to 
sustainability. The idea is that these models will be informed by and improved upon by 
existing and new datasets, and the models in turn should be applied to update sampling 
and monitoring designs. The data-informed models can subsequently be applied to 
forecast quantities relevant to evaluating sustainability. The major themes that we 
identified include: 
 
1. Focus on uncertainty quantification via probabilistic modeling approaches 
2. Develop sampling designs for monitoring and measuring quantities relevant to 

sustainability 
3. Develop data fusion methods for integrating diverse datasets 
4. Use computer experiment methods as related to sustainability data and models 
5. Develop model diagnostics for complex, hierarchical models 
6. Develop model assessment tools for integration or comparison of multiple models 
7. Develop the aforementioned methods in the context of dynamic spatio-temporal 

models 
8. Develop and apply complex networks and network theory in sustainability research 
 
Below we provide more detail on the issues underlying these eight research themes, and 
the important role that the mathematical sciences can play in addressing these themes. 
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3.1 Uncertainty quantification  
The topic of uncertainty quantification arises whenever complex, process-based 

models⎯which often must be implemented via computational approaches⎯are used for 
simulating real-world process. Typical issues include: 

• Characterizing the bias or discrepancy between models and reality (data); 
• Recognizing that cost constraints often mean that models can only be run for 

certain combinations of input parameters, requiring extrapolation of model output 
to other input parameters; 

• Accounting for uncertainties in the initial conditions;  
• Estimating unknown parameters in the process model, and those arising by 

embedding the model in a stochastic framework (i.e., when coupling the model to 
data); 

• Accommodating stochastic features of the process models, independent of the 
framework for linking the models to data; 

• Producing predictions that arise by combining models and observational data, as 
might occur via data assimilation methods. 

Addressing these issues requires the combination of expertise from 
mathematics, statistics, and computer science, as well as the specific subject expertise 
required to build the process models and understand the intricacies of the datasets. 
Existing tools are available for addressing many of the above issues for simpler models 
and datasets, but the challenge that we face is expanding upon these tools, and perhaps 
developing new tools that can accommodate the types of complex systems, data 
sources, and models that are necessary for advancing sustainability research. 

It is possible to capture some aspects of the uncertainty in process-based 
models by using randomness. For example, consider the problem of understanding the 
basic biogeochemical cycles (BGC) of large water bodies like oceans and their 
estuaries. This is a very important problem, since marine life relies on the relationship 
between nutrients, phytoplankton, and zooplankton and how they react to temperature, 
light, and resource availability. The relationship can be described by a series of non-
linear ordinary differential equations in time, yielding the process model. It is recognized 
that the equations are approximations, but standard BGC analyses ignore this. A 
physical-statistical approach embraces the uncertainties in the model; i.e., the equations' 
coefficients (model parameters) could be modeled as random to account for the size 
distribution of phytoplankton and zooplankton (i.e., incorporate parameter uncertainty), 
and the equations themselves could still capture the "mass balance" but have a random 
closure term (i.e., include process “error” or uncertainty). The coupling of the process-
based BGC model to data may be facilitated by a hierarchical, probabilistic framework 
that acknowledges that the data are often measured with error.  

Thus, the uncertainty in the data can also be described by measurement or 
observational error terms. An issue related to uncertainty quantification in sustainability 
science is that complex, process-based models such as the aforementioned BGC model 
will often be necessary for synthesizing diverse data and for producing forecasts. As part 
of this, we need to develop methods for, and emphasize the importance of quantifying 
the various components of uncertainty related to parameters, the process model(s), and 
the observational data sets. This uncertainty should be propagated via, for example, 
probability theory such that accurate and realistic forecasts are obtained. For example, 
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point estimates of future quantities (e.g., amounts of available resources) will be 
insufficient for evaluating progress towards sustainability or for making decisions 
regarding certain actions to achieve particular sustainability markers. 

 
3.2. Sampling designs for monitoring and measurement 

Design criteria - Here we offer a few examples of sampling or monitoring 
designs that were or could be motivated by specific design criteria. These examples are 
not necessarily meant to serve as specific role models as they could be improved upon 
for sustainability research. They also are not meant to represent the only existing 
designs; there are likely other relevant monitoring and sampling networks that could be 
expanded upon for the purpose of obtaining information to advance sustainability 
research. Because many different variables are expected to be important to developing 
and testing models related to sustainability, we anticipate that a wide array of sampling 
and monitoring designs will be necessary to obtain relevant information, and the spatial 
extent of each sampling or monitoring network will likely vary depending on the variable 
of interest and the scope of the research problem. Below we highlight examples of 
existing designs and/or design criteria that span local to national to global scales. 
 New methods for sampling designs will be required for measurement and 
monitoring of baselines and to estimate trends in sustainability.  Since the data will 
typically be spatio-temporal in nature, both the frequency of observations as well as the 
number and location of sites for monitoring stations will need to be considered. In most 
cases, multiple criteria will need to be considered when designing a network.  For 
example, a sampling design may be constructed to achieve optimal predictions, to 
produce accurate estimates of key quantities of interest, to allow for model assessment, 
to estimate spatial and temporal trends, to detect catastrophic change, to estimate 
dynamical invariants, and/or to estimate parameters in models for extreme events.  A 
common goal in all sampling design is to construct networks that use the available funds 
for monitoring in the most efficient manner possible.  
 When constructing a sampling design to address sustainability issues, we will 
also need to consider other sources of data.  Sustainability science will require new 
statistical methods for combining massive quantities of observational and experimental 
data, combining and modeling data collected at different scales, and combining and 
analyzing historical and new data.  For example, should we design a new network so 
that you can maximize the use of historical data in future analyses to enable analyses of 
longer time series? 
 One example of the challenges of constructing sampling designs in the context of 
sustainability science error are the multiple efforts that are now emerging on developing 
methods for assessing carbon, carbon loss, and carbon sequestration in tropical forests.  
Many such forests are remote and inaccessible and do not lend themselves well to 
ground-based sampling.  Thus, the data requirements and acquisition methods for 
constructing remote sensing-based maps that are of sufficient quality (e.g., quality of fit, 
precision) to serve as the basis for assessing carbon change is a huge emerging issue.  
Two aspects are crucial: (i) acquisition of reference data to train or calibrate the models 
that are then used to predict carbon or carbon change for non-sampled areas using 
remotely sensed data, and (ii) acquisition of validation or accuracy assessment data to 
evaluate the quality of the resulting map.  The relevant issue here is construction of 
sampling designs and plot configurations that are simultaneously efficient for the 
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acquisition of both ground and remotely sensed data.   For example, for satellite 
imagery, the plot should be of sufficient size to constitute an adequate sample of a 
satellite image pixel, whereas for airborne laser data which are acquired by an airplane 
in strips, efficiency dictates that the ground plots be located along straight, systematic 
lines to facilitate flight paths.  The point is that sampling designs must be constructed in 
advance to accommodate data from multiple, diverse, independent sources (ground 
crews, satellites, airplanes). 

Some other examples of applications where careful thought has been put into the 
location of the monitoring stations includes monitoring water quality (Dobbie et al, 2008), 
air pollution (Zidek et al, 2000), assessment of ecological resources via the US 
Environmental Protection Agency’s Environmental Monitoring and Assessment Program 
(EMAP) (Stevens and Olsen, 2004), and the monitoring of US forests by the USFS FIA 
program as previously discussed.  More recently the sampling designs for sensor 
networks have been of interest. There are both engineering and statistical sampling 
design issues to be considered with these problems (Porter et al, 2005; Borgman et al. 
2007). 

Invasive species – One example, which is also relevant to sustainability issues, 
is the use of sampling designs for the monitoring of invasive species. For example, 
understanding and estimating the rate of long distance dispersal is critical for monitoring 
and controlling the spread of invasive species. Adaptive spatial sampling designs have 
been used in this context (Piellat et al. 2006). In this case, a sequential sampling design 
was used where sampling locations were added sequentially by modeling the dispersal 
pattern of seed based on data observed. Potential information about the dispersal 
parameters at each unsampled location was considered and the new location that 
provided the largest information gain was selected.  Similarly, effective estimation of the 
probability of establishment of the initial population (often referred to as an “Allee effect”) 
is essential for controlling the spread of invasive species. Effective temporal sampling 
designs that provide information on the initial growth phase of the population are critical 
for the estimation of the Allee effect precisely (Dennis, 1989), and since the estimation of 
this effect is critically dependent on the size and rate of change of the initial, invading 
population, sampling strategies must be developed to target this critical time period.  

NEON – Most national-scale observing systems are not built around a cause-
and-effect model but instead seek to efficiently monitor a small number of driving 
variables (e.g., environmental, climate) or response variables (e.g., forest productivity, 
animal abundance). That is, the sampling design is often not be guided by conceptual 
models or scientific questions. The design of monitoring and measurement systems for 
understanding, quantifying, and forecasting quantities related to sustainability issues 
should, however, be motivated by underlying issues that can be quantified in terms of 
conceptual or quantitative models (see “design criteria”). The National Ecological 
Observatory Network (NEON) is as an example of a measurement system whose design 
was strongly guided by conceptual models within a complex systems perspective. For 
example, one focus of NEON is to provide the information necessary to quantify and 
forecast changes in biodiversity. In particular, NEON will obtain and maintain a wide 
diversity of datasets on both driving and response variables. The selection of these 
datasets and the sampling intensity and frequency were identified a priori to capture 
changes in time and space and to integrate information across scales. Measurement 
systems such as NEON will be invaluable for revealing underlying processes and 
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providing information necessary for building and assessing quantitative models that may 
be used for forecasting in the context of sustainability. However, as for all monitoring 
systems, the design of process-driven measurement systems such as NEON must be 
discovered in the context of known constraints (e.g., logistical, financial). 
 Global Forest Network–  The Global Forest Resources Assessment 2010 (FAO 
2010) examines the current status and recent trends for the extent, condition, uses and 
values of forests and other wooded land.  Information has been collated from 233 
countries and territories for four points in time: 1990, 2000, 2005 and 2010. The results 
are presented according to seven themes associated with sustainable forest 
management.  A systematic sampling design based on intersections of whole degrees of 
longitude and latitude was used with a reduced intensity above 60 degrees North/South 
latitude.  At each sample site, a 10-km × 10-km area is accessed via interpretation and 
classification of four Landsat satellite images dating from circa 1975, 1990, 2000 and 
2005.    
 
3.3. Data fusion methods 

Development of data fusion methods will be necessary for combining multiple 
sources of information. Data fusion could come in the form of fusion of one set of 
observations with another set, obtained under different sampling paradigms, or fusion of 
observations with model-based output. In some cases, we may consider model outputs 
as a form of data observation (e.g., climate model outputs may be used as “data” for a 
biogeochemical cycle model or an economics model), and hence they involve the same 
mathematical problem. The general problem is to come up with an estimate of the 
underlying latent (or unobservable) process(es) of interest based on the two (or more) 
sets of observations. Approaches for fusing different datasets are just beginning to 
emerge. For example, Nguyen, Cressie, and Braverman (2010) combined data from two 
different instruments on the same satellite to find optimal spatial predictors of aerosol 
optical depth. The idea is to expand upon such data fusion methods so that they can 
accommodate a wide range of datasets that may inform similar or overlapping 
processes.  
 Data fusion examples– The combination of ground data obtained from sample 
plots and remotely sensed data such as satellite imagery are often combined to estimate 
baseline conditions and to assess change.  Combining such independently acquired 
data produces multiple sources of uncertainty: (1) rectification of the imagery to the plot 
coordinate system is not without error, (2) ground plot coordinates have varying degrees 
of error depending on the quality of global positioning system (GPS) receivers, (3) plots 
and image pixels are nearly always of different sizes, and (4) plot measurement and 
image acquisition dates are seldom the same.  Although reasonably accurate maps and 
estimates of land cover parameters may be obtained, the effects of the sources of 
uncertainty on the uncertainty of land cover parameter estimates is generally unknown. 
 Forests on the Edge (Stein et al., 2009), a project of the U.S. Forest Service, 
uses geographic information systems (GIS) techniques to assess the contributions of 
private forest land and threats to those contributions.  The analyses are based on the 
fusion of independently constructed data layers of different spatial resolution obtained 
from a diverse set of underlying data sources.  The primary layer from which a private 
forest land map is constructed is based on a 30-m x 30-m, satellite image-based 
forest/non-forest layer (Homer et al., 2007) and a layer depicting land protection status 
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(CBI, 2007).  Contribution layers include timber supply based on forest inventory sample 
plot observations (FIA, 2007), water buffers based on national hydrological data 
(Steeves et al., 1994), and habitat for endangered species based on information 
obtained from NatureServe (http://www.natureserve.org/explorer/ranking.htm).  Data on 
which spatially explicit projected housing density values are obtained, the primary threat 
layer, is based on U.S. Census data and a layer depicting transportation networks.  The 
data from all sources are aggregated at the level of watersheds, which is of more coarse 
resolution than data for any of the underlying sources. 
 
3.4. Role of computer experiments  

Although computer-aided discovery predated 1961, there is no more appropriate 
way to broach the subject of computer experiments in climatology, ecology, and complex 
systems in general than to mention the pioneering work of Edward Lorenz. However, the 
field of computer experimentation has developed immensely since the time of Lorenz's 
serendipitous discoveries as have the computing machines themselves. 

Computer experimentation encompasses modern Monte Carlo methods of 
statistics including Efron's bootstrap (and resampling methods more generally), Markov 
chain Monte Carlo methods, stochastic approximation for optimization and equation 
solving, and formal statistical design-based methods for understanding how the output of 
a complex system f() (e.g., the mathematical/simulation process models) depends on 
inputs x (driving variables and parameters) and on f() itself (e.g., autoregressive-type 
relationships). 

Although all varieties of computer experimentation are likely to find applications 
in the science of sustainability and will require further development, modification, and 
adaptation, it is the applications to understanding complex models of complex systems 
and processes that will most assuredly need further development by mathematical and 
statistical scientists due to its importance to the problems of quantifying uncertainty of all 
forms. Of the latter there are three main constituents: imperfect understanding of the 
map x -> f(x) even when x and f() are assumed free of uncertainty; uncertainty in f() as a 
model of a real process or system (e.g., due to process or parameter uncertainty); and 
uncertainty in inputs x (e.g., due to observational uncertainty or measurement error) 
which for this discussion are assumed to include initial conditions, and "tuning" (or 
"tunable") inputs (e.g., inputs that determine characteristics of f() that one might consider 
adjusting to provide better fit to empirical data, e.g., via maximum likelihood). 

A disciplined study of uncertainty uses the strategies of statistical experimental 
design (e.g., fractional factorials, space-filling designs, blocking, and randomization) to 
systematically vary those factors through which uncertainty is manifest (Santner, et al., 
2003). Computer experiments, in particular, are important for understanding and 
quantifying uncertainty in highly complex models because these models may be too 
computationally demanding to implement many times, as would occur if the model, f(x), 
had to be evaluated for many levels of x and/or for many iterations (e.g., thousands of 
MCMC iterations). Thus, we can draw-up methods developed for computer experiments 
that enable the evaluation of f(x) for a “small” number of levels of x, reducing the 
computational burden of evaluating f() an undue number of times. This may require 
approaches to approximating f(), and development of effective strategies for doing so in 
the context of models relevant to sustainability is an important research problem. 
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3.5. Model diagnostics  
Good model diagnostics are essential for model building. Essentially one is 

looking at whether properties of the model are supported by the data. There is a cycle of 
proposing a model, diagnosing the model, modifying the proposed model, diagnosing 
the modified model and so forth. For complex, non-linear, hierarchical statistical models, 
model diagnostics are essential, but there are few of them, and there is a great need for 
fundamental research in this area (Little 2006). 

There are several generic diagnostic procedures that currently exist in our 
statistical portfolio, including: 

• Validation (splits the data into two parts, one for model fitting, and one for 
comparison to the fitted model predictions); 

• Cross-validation (successively deletes a datum, or group of data, with replacement, 
and carries out a validation exercise for each deleted component); 

• Information criteria such as AIC, DIC, BIC, and posterior predictive loss (used to 
compare several models but could also be used for model diagnosis; simultaneously 
accounts for model fit and model complexity); 

• Posterior predictive distribution (a Bayesian version of a classical significance-
testing approach to testing hypotheses; see Gelman et al, 1996). 

Although the aforementioned procedures exist, they were generally developed for 
relatively simple models and data sets. These methods must be expanded upon, or new 
methods developed, to accommodate the types of complex models that we will 
encounter in sustainability research. That is, many models may produce different types 
of predictions, potentially at different spatial and/or temporal scales, especially if the 
overarching model(s) represents the coupling of multiple sub-models (see Section 3.7). 
And, the models will likely be coupled to multiple data sources, also potentially varying in 
their temporal frequencies, spatial scales, and levels of uncertainty (see Section 3.3). 
Thus, the above procedures will likely be inadequate for diagnosing the overall 
“behavior” of such complex models and/or their components. 
 
3.6 Model assessment  

The area of model assessment includes model selection using methods like AIC 
(Burnham and Anderson, 2002) as well combining models using methods like Bayesian 
model averaging (Hoeting et al., 1999).  While much work has been done in model 
assessment, the construction of new models requires new methods for model 
assessment.  For example, in hierarchical models, questions have arisen about how to 
quantify the number of parameters in a model (Spiegelhalter et al. 2003).  While 
methods to address this issue have been proposed, these approaches have been shown 
to be misleading when there are missing data and nonlinear model components.  As an 
example, consider a population dynamic model to estimate the number of elk in Rocky 
Mountain National Park.  The goal of the park is to maintain a sustainable population as 
the number of elk skyrocketed after their predators were eradicated.  A Bayesian 
hierarchical model to predict the number of elk over time might involve one of more 
dynamic models for aspects of population growth. The dynamic components of the 
model typically have very different biological interpretations and thus scientists are 
interested in choosing between them. Existing model selection methods often have 
difficulties differentiating between these highly nonlinear models.  New methodology 
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needs to be developed to address model selection in this and other more complex 
models.   
 
3.7 Dynamic spatio-temporal models  

In this report, we emphasize the integration of diverse data sources, process-
based or theoretical models, and parameter models, which include parameters arising 
by embedding the process models in a stochastic framework, and quantities (e.g., 
coefficients) directly incorporated in the process models. The process models are where 
the science resides, and their development is facilitated expert knowledge and existing 
information. Within a probabilistic framework that combines available data sources and 
the process models, the process model(s) may be viewed as describing the underlying 
latent quantities that we would like to have observed (e.g., the “true” process), but 
cannot directly observe due to, for example, measurement error, instrument inaccuracy, 
instrument drift, or other sources of observation uncertainty. In some cases, the process 
model may be viewed as yielding the true process exactly, without error, but in many 
cases, since no model is perfectly correct, the process model may be viewed as 
describing the expected process. The true, latent process would be given by the 
“expected process plus process error” (see Section 3.1). In the context of understanding, 
quantifying, and forecasting elements of sustainability, we suggest that such process 
models must be able to accommodate spatial and temporal dimensions. 

The evaluation of sustainability involves comparisons between base-line (or 
current) quantities and predicted (future) quantities, and measures of change will be key 
to defining and evaluating metrics of sustainability. That is, change with respect to space 
and/or time (e.g., as may be quantified by analytical or numerical derivatives), and thus 
divergence from the baseline(s), will be critical to evaluating the degree to which 
sustainability has been achieved or not. Thus, the underlying process models must be 
able to accommodate temporal dynamics to obtain predictions and/or to evaluate rates 
of change. Of course, these quantities may vary over space due to, for example, 
heterogeneity in drivers or initial conditions (e.g., land-use, climatic conditions, 
population density). This implies that dynamic, spatio-temporal models (Cressie and 
Wikle, 2011) ⎯such as might be encapsulated by partial differential equations (PDEs) or 
stochastic PDEs, but certainly not limited to these types of models⎯are critical for 
advancing sustainability science, and the mathematical sciences can contribute greatly 
to the development and evaluation of such models. There are many existing spatio-
temporal process models that may be useful for quantifying and forecasting 
sustainability in different contexts, including models of biogeochemical cycles (e.g., 
transformations, storage, and fluxes of elements such as carbon and nitrogen), 
hydrological processes (e.g., river flow, flooding, groundwater movement and 
extraction), atmospheric chemistry (e.g., production, degradation, distribution, and 
concentration of pollutants), climate (e.g., temperature, precipitation, cloud formation), 
epidemiology (e.g., spread of infectious diseases, vaccination strategies), population 
dynamics (e.g., animals, plants, or humans), and economics (e.g., financial stability, 
price indices).  

None of the above modeling examples are particularly new, and some are often 
only applied to quantify temporal dynamics (e.g., many may lack an explicit spatial 
component). What will be important for advancing our understanding and ability to 
quantify sustainability is the coupling of multiple spatial-temporal models, and the 
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integration of these models with diverse datasets that can be aligned to spatial and 
temporal dimensions of the process model outputs. For example, this is currently being 
done, to some extent, in the context of climate change modeling whereby dynamic, 
spatially explicit climate models are coupled to ocean circulation models and terrestrial 
biosphere models. However, this coupling imposes major computational challenges and 
thus one model may simply serve as “boundary conditions” or “inputs” to another model 
(e.g., climate model outputs are often treated as fixed input into terrestrial vegetation 
models), and feedbacks between the models have been relatively difficult to 
accommodate. At this time, computational methods do not exist for effectively integrating 
such coupled models with the plethora of data available at the different temporal and 
spatial scales, especially if placed within a probabilistic data-model integration 
framework. Development of probabilistic methods for incorporating such feedbacks and 
linking coupled process models to diverse datasets will be necessary for advancing 
sustainability science, particularly in the context of forecasting future, multi-dimensional 
states.  
 
3.8 Complex Networks  

The complexity in a sustainable society can be captured mathematically by 
graphs (commonly called networks, which are used in a completely different context than 
the aforementioned references to sampling or monitoring “networks”). There is an 
embryonic discipline of “complex networks,” populated by physicists, statisticians, 
computer scientists, epidemiologists, mathematicians, etc; see, for example, Kolaczyk 
(2009) and Newman (2010). Complex networks are models of how “the world works,” 
but they are extendable to allow for more complexity or more variables. That strength is 
also a weakness; network sizes and complexities can clearly grow exponentially. 
However, it does offer a paradigm to understand growth and its counterpart, recession. 
In fact, by definition sustainability will require both growth and recession in different 
sectors, in different regions, and at different times. To build, measure, and assimilate a 
complex network is a worthy endeavor, but destined to fail. An analogy would be to try to 
track every gas molecule in the atmosphere over time. To study complex networks, we 
could move away from their mathematical building blocks (vertices and edges) and 
consider instead identifiable “objects” made up of those building blocks and/or study 
local densities (“fields”) within the network. The dependencies implied by the network are 
expressed through conditional distributions. There is an important theoretical problem 
that involves construction of the joint distribution from the conditional distributions 
implied by the network. This will involve a generalization of the Hammersley-Clifford 
Theorem (e.g., Cressie, 1993, Ch.6) for complex networks. 
 
4. Recommendations  

Mathematical scientists should be encouraged to build and evaluate tools that 
are not restricted to any particular field of application but that exploit the commonalities 
among the different fields contributing to the sustainability science. There is a need to 
develop methodologies for the iterative process of combining data and sampling designs 
with models, leading to forecasting. Specific examples of problems to be solved include: 
estimation of parameters in complex models based on diverse data sources, evaluating 
the agreement between complex process models and observational data, and 
integrating data from different sampling designs. 
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To ensure the success of this program of research, a number of resources will 
need to be in place. Support is needed for interdisciplinary research involving 
statisticians, applied mathematicians, computational scientists, and experts from multiple 
fields, including, but not limited to, ecology, atmospheric science, oceanography, 
epidemiology, sociology, and economics. In addition to research on basic methodology, 
however, there are issues connected with constructing both datasets and computer 
programs in a form that can be permanently archived and made available to other 
researchers. This will require investment in database sciences and geographical 
information sciences; there is also a need to involve statistical computing scientists to 
develop efficient algorithms and user-friendly software required to implement modern 
statistical and mathematical methods on the scale required for effective implementation. 
As part of this, we envision the establishment of a national data center / portal for 
sustainability research that would potentially house, maintain, and/or provide links to 
publically available datasets relevant to sustainability research. This would greatly 
facilitate the ability of members from the mathematical sciences community to tackle the 
research themes outlined in Section 3. 

Our recommendations to the mathematical sciences community can be 
summarized by the following points: 

• Build and evaluate tools that can be broadly applicable to a range of problems in 
sustainability as identified in Section 3.  

• Develop the iterative process for combining data, models, and forecasting in the 
context of the complexity discussed in Section 3. 

• Develop methods for estimating parameters and quantify uncertainty in complex 
models. 

• Expand upon or develop new protocols for evaluating the agreement between 
models and data in the context of the complexity discussed in Section 3. 

• Establish strategies for integrating data from different sampling designs. 
• Establish strategies for acquiring data from multiple independent sources using the 

same sampling design. 

Our recommendations to funding agencies and the scientific community at large can be 
summarized by the following points: 

• Facilitate and promote multi-disciplinary research teams that support collaborations 
between the mathematical sciences (mathematics, statistics, computational 
scientists) and the subject/applied fields associated with addressing sustainability 
problems (e.g., ecologists, atmospheric scientists, oceanographers, social scientists, 
economists). 

• Provide mechanisms for improved infrastructure related to research support for the 
development, maintenance, and querying of databases, and provide computing 
support necessary for implementation of computational or statistical algorithms and 
user-friendly software. An example of a particularly important resource is the creation 
of a national data center for sustainability research. 

 
5. Final remarks 
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We need to develop the mathematical and statistical methods and theory so that 
in 2020 we can determine whether we have made significant progress towards 
sustainability. 
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Charge to the Group 
The planet faces enormous sustainability challenges. With a still-growing human 
population and rapidly increasing consumption, society must determine how to meet the 
basic needs of people for food, energy, water, and shelter without degrading the planet's 
life support infrastructure, its atmosphere and water resources, the climate system, and 
species and ecosystems on land and in the oceans on which we and future generations 
will rely. For example, given current trajectories, it has been predicted that society will 
have to double food production in the next 40 years to keep pace with demand, while 
reducing pollution impacts on aquatic ecosystems and reducing the rates of biodiversity 
loss associated with land-use change and overfishing. An improvement in well-being 
within this ambitious scenario would require improved livelihood opportunities for the 
poor and a shift in human behavior among others toward goals that seek well-being 
through a less consumptive lifestyle. This would necessitate radical changes in the 
management of human-environment systems for sustainability. Under this theme, the 
Group is asked to explore potential strategies for managing complex adaptive systems 
with real actors, polycentric problems, and multiple scales of interactions, starting with 
the need for precise mathematical formulations of these challenges. This requires going 
beyond identifying the mathematical challenges to sustainability management of human 
systems (e.g., population, consumption, environmental externalities, and commons 
problems) to developing a fundamental, mathematically-based understanding of exactly 
what management means, what information is required to do good managing, and how 
one measures the performance of management systems that aim at sustainability. 
Moreover, it requires developing an understanding of how shifts in human behavior can 
be achieved in a more effective way. For example, such shifts may arise more readily if 
risks associated with various responses can be defined in an appropriate probabilistic 
framework and presented so as to most effectively provide general public appreciation of 
the trade-offs involved in various management actions. 

1. Introduction 
We challenged ourselves to articulate and identify components of a feasible 

research agenda for the mathematical sciences community that deals with sustainability 
at the interface of human systems and environmental issues. This includes identifying 
areas where new mathematical efforts will assist in describing, modeling, analyzing and 
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projecting the impacts of human management actions and policies on sustainable 
development. The multiple scales and variability inherent in the diversity of human and 
natural systems potentially affected by management actions imply that mathematical 
scientists offer a uniquely useful skill set and conceptual foundation upon which to build 
the science of sustainability. 

2. Examples 
       The problem of managing for sustainability is broad, and many of the topics that 

must be addressed demand mathematical understanding to be managed effectively. In 
most of these cases, mathematical techniques are already being applied.  Our focus is 
on examples not just where mathematical understanding is required for management, 
but where new mathematical perspectives or approaches hold at least potential promise 
to improve management. The world of sustainability is complex, and our examples are 
not intended to be exhaustive.   

The sustainability problems that confront us are almost all deeply inter-related, 
and one important challenge is dealing with these interactions.  Most of the important 
problems are international in scope, and require international co-operation in order to to 
be handled effectively. Pollution does not recognize borders, nor do greenhouse gases 
or fish or sea water.   

An important component of managing for sustainability will be understanding how 
human systems work, and how policy initiatives may play out through human social and 
economic networks to lead to results in natural and human-run systems.  Many 
sustainability issues, including pollution abatement, climate change, the harvesting of 
living resources, and so on, involve “public goods” whose utility to individuals is affected 
by the actions of others. It is well known that individual users of public goods often 
behave in ways that are inimical to sustainable use. Game-theoretic models are useful in 
understanding such behavior, and in predicting the response of users to various 
management initiatives. 

Managing for sustainability implies both trying to limit damage to the Earth’s 
natural capital, and finding ways to provide for human well-being once damage has 
occurred.  For example, one goal is to limit deforestation, and another related goal is to 
use remaining forests efficiently.  Similarly, the goal of limiting the extent of human-
induced climate change should be modeled and addressed in conjunction with the study 
of ways to maintain society in the face of an already-changing climate. 

As we think about how to manage for sustainability, we should ask both what our 
objectives are, and how our progress towards these objectives should be evaluated. 
 
2.1. Fisheries 

Fisheries are an important source of healthy and delicious protein. But many 
marine fish populations have been severely overfished. In addition, ocean pollution 
negatively impacts fish stocks, reducing their food source, and harming marine habitats. 
For example, ocean acidification destroys coral reefs and reduces zooplankton 
communities worldwide. 

Mathematical models have been central to fisheries management for over 50 
years.  The initial, logistic-type models were very simple, and management for many 
years was based on a “maximum sustainable yield” (MSY) paradigm. Later, bio-
economic models, starting with the so-called Gordon-Shaefer model, combined the MSY 
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approach with economic considerations. However, these models turned out to be too 
simplistic for effective management.  

Currently, bio-economic models incorporating fishermen’s motivations are being 
used as the basis for establishing individualized quota systems. These bio-economic 
models that include fishermen’s motivations have been successfully implemented in 
Canada, Iceland, Australia, Namibia, and other countries. This is a good example of the 
need to include social sciences in what had previously been considered a marine 
biological problem.  

Individualized transferable catch quotas (ITQs) can and do alter fishermen’s 
incentives so as to favor sustainable harvesting. Real world fish populations are 
components of highly complex ecosystems having spatial, temporal and other 
structures.  Recognition of these structures may be essential for good management.  To 
mention one typical case: spawning areas may attract fishing activity because of the 
high concentration of fish, but uncontrolled fishing in such areas can result in severe 
overfishing. The use of protected “no-take” areas to protect breeding stocks would lead 
to greater long-term catches. However, fishermen may oppose protected areas because 
they typically reduce catch rates temporarily. Under an ITQ management system, the 
fisherman may be economically motivated to favor protected areas, which will increase 
the future value of their quota. 

Hence, a mathematical challenge is to search for effective incentive systems. 
One approach is to use agent-based models to explore the balance of cooperative and 
competitive behavior that emerges in fishing communities under different incentive 
scenarios.   

Fish increase in size and economic value as they grow older. Age-structured 
models are used to estimate the optimal age of capture, and regulation of the mesh size 
of fishing nets is then used to achieve this optimum. ITQ-based fishermen typically 
support such regulation, even though short term catch rates may be reduced.  Yet 
another important structure is genetic; maintenance of genetic diversity, for example in 
salmon populations, is essential for sustainable management. This is a serious issue in 
fisheries that capture mixtures of different genotypes. 

Contrary to the predictions of a simple aggregated model, disaggregated models 
exhibit circumstances under which optimal management may require greater levels of 
fishing effort than occurs under unregulated exploitation. Not much work has been done 
in this area; it is ripe for mathematical exploration. 

It would be desirable to manage fisheries on the basis of ecosystem structure. 
This introduces serious modeling challenges because of the complexity and limited 
observability of marine systems. Approaches that might be tractable are to aggregate 
into species groups, to identify critical resources that act as bottlenecks in the population 
dynamics, or to use single species models incorporating constraints designed to 
conserve ecosystem structure. 

Linkages between the oceans and the atmosphere are critical for future climate 
conditions on earth. Examples include: 

• Heat exchange (the oceans store more than 99% of combined ocean and 
atmospheric heat, transfer of which takes place on a slow time scale). 

• Ocean acidification (increased atmospheric CO2 has resulted in severe ocean 
acidification, which is affecting marine life globally) 
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• The oceans contain large amounts of methane, currently in a frozen state, but 
subject to release if the ocean temperature increases by a few degrees. Since 
methane is itself a potent greenhouse gas, this could lead to a dangerous 
feedback cycle. 

• Glacial melting (increases in fresh water flow into the oceans has the potential to 
induce massive changes on ocean currents, which could have extreme effects on 
future climate conditions. 

 
These factors all impact marine ecosystems, including fisheries and coral reefs, 

so their effects need to be incorporated into models and management decisions on the 
long time scale. The mathematical techniques that we suggest be developed further 
would help in addressing these ecosystem models on longer time scales. 

 
2.2. Forest management 

Forests are ecosystems which are important for sustainability at many levels, 
ranging from the provision of renewable resources to carbon storage to provision of 
habitat for other species.  Forests are under continual threat from many directions 
including development, changing climate, diseases, and many other issues. A 
comprehensive approach to sustainability is obviously required, but the problem is so 
large that important questions that are less comprehensive must be solved first.  

Two interrelated threats to forest health are forest insect pests and forest fires, 
both of which can have impact beyond the forest. These threats are both subjects of 
extensive work in the mathematical sciences, and build upon a wide array of both 
classical and cutting edge mathematical, statistical, and computational tools. 

One critical issue in the management of forests is the policies maintained for fire 
suppression.  For many years, the US government had maintained a policy of total 
suppression, but this has been reversed from the gradual understanding that it is not in 
the long-term interest of sustainability of the forests.  A number of unintended 
consequences contributed to this change of perspective: for example, suppressing forest 
fires leads to the exaggerated build-up of undergrowth and younger stands of trees, 
which make catastrophic fires more likely; the seeds of the sequoia are released only 
with the heat of fires from the forest floor; the extended aging of the pine forests of 
British Columbia was a contributing factor in their devastation by the pine beetle, which 
destroyed 50% of those forests. 

Once one determines that some fires should be suppressed and others not, then 
one must introduce a process to decide which fires to suppress. This has been the 
domain of a great deal of mathematical modeling already. For example, Parija, Kumar, 
Xi, and Keller (2007) apply a mixed-integer programming approach to the question of 
budget allocation for fire program analysis (based on an earlier model of Rideout and 
Kirsch, 2002), where the objective is to minimize the total utility of the acres burned. This 
approach is one of static deterministic planning, in contrast to, for example, the work of 
Hof and Bevers (2000, 2002) that provides mathematical programming tools for longer-
term decision-making in a stochastic setting. 

However, what is absent from the current state of the art is the ability to provide 
real-time support for making fire suppression decisions in the context of a stochastic 
model of the state of the forest as it evolves over an intermediate time frame. This is not 
surprising - the computational intractability of such a stochastic optimization model (even 
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with a relatively coarse-grained spatial-temporal description of modest scope) is well 
beyond the reach of current-day solvers, and improving them to be relevant to such a 
setting is a significant mathematical challenge. Furthermore, it remains to be seen to 
what extent the crude approximations in this approach - the particular discretization of 
both time and space, or the linearization of the objective that completely abstracts away 
the spatial dimension - lead to results that would align with more detailed models (which 
are even further beyond our computational capabilities).  

Alternatively, one might also investigate more sophisticated models that seek to 
capture stochasticity inherent in changes linked to climate change, such as the 
increased frequency of future droughts. Understanding the alignment between 
differently-scaled models is particularly important in this context, since more 
sophisticated models, while not solvable in a real-time setting, would be useful in 
validating decisions. 

Forest insect pests are a major threat to forest health (Liebhold et al., 1995).  
Many forest insect pests both respond to the damage of trees by fires, and also can 
damage trees and make them more susceptible to fires. Particular pests that illustrate 
some of the mathematical issues involved in management range from gypsy moth to 
mountain pine beetle and other bark beetles. The goal is either eradication or reduction 
of the population level to a low enough level so that there are no damages. The 
management of forest insect pests is a complex problem that requires attention to spatial 
and temporal heterogeneity both in the trees and in the population dynamics of the 
insects in a control problem that must include stochasticity at many levels.   

Although there is a long history in mathematics of attention to control problems, 
management of forest pests introduces a series of extra complications that are typical of 
biological problems that are not well understood as well as requiring attention to different 
statistical and estimation questions. The population dynamics is likely to be modeled 
best as a nonlinear stochastic integro-difference equation, and control problems for this 
sort of model are not well understood.  In the case of bark beetles there are additional 
important issues related to the interactions between individuals in their movement.  
Estimation of populations in a spatial context introduces difficult problems of estimation 
that are necessary both to start the control problem and to determine whether 
management has been successful.  Other approaches could include determining what 
simpler versions of the models would still be sufficient for management.  

 
2.3. Agricultural systems 

Agricultural systems present numerous opportunities to utilize diverse 
mathematical approaches and offer various challenges requiring new mathematics. 
These arise in part due to the coupling of agricultural systems to many environmental 
components, human behaviors, and the intimate linkages between various sub-
components of agriculture. There is a very long history of quantitative approaches in 
cropping systems, animal production systems, and economics including the use of large 
systems approaches and more general mathematical formulations (Thornley and 
France, 2007). These systems present unique opportunities to project the impacts of 
various management and policy actions on food availability for the growing world 
population, water resources, waste production, and contributions to greenhouse gas 
emissions. 
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Numerous statistical issues arise from dispersed data and diverse data types and 
sources for agricultural processes and production across and within countries. As one 
example, given current data restrictions estimates of agricultural contributions to 
greenhouse gas emission are inconsistent. Accounting for the spatial variation in 
agricultural practice at various scales (e.g. between country heterogeneity and within 
country variations) and the temporal dynamics associated with both seasonal and year-
to-year variations presents significant challenges of statistical analyses to estimate not 
only current greenhouse gas (GHG) inputs but longer-term projections as well. Similar 
issues arise in projection of agricultural resource demands when taking account of 
potential economic variations in the costs of inputs such as fertilizer, and associated 
spatial changes in production practices. 

These present opportunities for analysis of spatial stochastic processes with 
dynamics operating on longer time scales (e.g. crop system responses to climate 
changes over decades) and shorter ones (e.g. between seasons) to estimate current 
agricultural impacts spatially averaged across the world. Development of agreed upon 
methods to estimate these impacts can provide useful inputs to a variety of international 
policy decisions as well as serve as potential planning tools for agribusiness. Methods to 
effectively compare the spatial distributions of production to models would provide 
confidence that the models can be effectively used to compare impacts of alternative 
management practices and longer-term policies. Confidence developed through 
mathematical analysis of spatially-structured models for emissions are essential for 
providing evidence that mitigation strategies for pollutants can work, the time scales 
these might require, and whether regulation or incentives associated with such mitigation 
strategies can be effective. 

An additional challenge is to develop methods to elaborate equitable allocations 
of resources to meet increasing world demands arising from population growth, 
economic growth of the developing world and associated potential changes in caloric 
intake and animal protein consumption. This includes developing methods to handle 
spatial variation in demand and production so as to evaluate alternative assumptions 
about future consumption demand. The large spatially-disaggregated economic sector 
models tend to be sensitive to uncertainties in demands arising from social systems 
models, presenting significant computational challenges. In addition, this complexity 
requires new impact estimators derived from the spatiotemporal model outputs.  

Integrated assessments of economics linked to biological production models and 
alternative models for social system response can reflect the strengths and weaknesses 
of different worldviews by comparing alternative models. A mathematical challenge 
concerns whether rankings of impacts of alternative scenarios derived from differing 
management plans or policies are robust to uncertainties; such uncertainly stems from 
human system responses, environmental conditions derived from climate assumptions, 
and also from the parameterization of the models. The robustness of such relative 
assessments of scenarios has been applied in ecological evaluations (Fuller et al., 2008) 
in a computational framework, but it is possible that new mathematical approaches could 
lead to generalized results on the robustness of rankings. 

The complexity of interactions between components of agricultural systems 
models and the associated need for extensive parameterization naturally lead to 
concerns about data availability and the utility of these models to project the implications 
of current trends. The implications for human food consumption are sufficiently important 
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that it is worthwhile to investigate the use of more aggregated, simplified models to 
provide qualitative “back-of-the-envelope” estimates of system response. Developing 
valid yet simplified models is an inherently mathematical question. It is possible that the 
forms of feedback inherent in certain component agricultural system models may be 
amenable to simplification that produces results sufficient for general policy and 
management comparisons. 

 
 

3. Mathematical themes 
Several consistent themes arise within the above examples. All these cases 

involve crossing scales and crossing domains. Consider the case of forest management: 
information on forest components presents itself at different scales such as insect 
dynamics operating at localized within-tree scale, dispersal over many kilometers, and 
weather, which is known at a much coarser resolution. Human management of forests 
operates at intermediate scales between individual trees and broad scale weather 
patterns. Similarly, different temporal responses are intertwined with spatial 
heterogeneity. In such cases, defining models at an appropriate level of aggregation 
across and within scales is a challenging mathematical modeling question.  

Issues of uncertainty arise when dealing with how to estimate parameters from 
variable and often sparse data sets. For example in agricultural systems, economic 
aspects of production are poorly characterized for some regions relative to others. 
Uncertainty in process and parameterization are common in sustainability examples 
including climate variability and human system responses arising from different political 
and policy decisions. In addition to the difficulty of taking into account effects of model 
uncertainty, a significant challenge remains in solving large scale stochastic problems. 

Recovery of overexploited fisheries is a dynamical transients problem that is 
poorly understood. The dynamics of climate systems in general have not been well 
incorporated into human system response and management for many components of 
sustainability. The estimation of uncertain population levels is a substantial problem in 
fisheries management and in the management of forest insect pests. Many components 
of sustainability involve linkages between dynamical systems operating on differing 
temporal and spatial scales and connecting these requires new approaches for 
multiscale modeling, a challenge for the study of such dynamical systems. 
 
4. Connecting with the communities  
4.1. Education 

Every student is exposed to mathematics throughout their education. A critical 
challenge in mathematics education is to draw the link between the abstractions of 
mathematics and its utility across many areas of science.  Sustainability issues are 
therefore an excellent focal point around which to demonstrate the power of 
mathematics to students; sustainability-related topics provide pedagogically useful 
examples that can engage K-12 students. In addition, the use of sustainability examples 
in mathematics courses provides the further benefit of engaging youth to become more 
involved in helping to address the sustainability issues existing in the world today.  

Colleges and universities across North America have instituted a vast array of 
new courses, degrees and certificate programs involving sustainability. These programs 
could benefit from an explicit course on the mathematics of sustainability that may be 
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offered at a level to attract a broad collection of students from outside the natural 
sciences and engineering. A similar course which focuses on the interdisciplinary nature 
of challenges posed by sustainability at a more advanced mathematical level could 
provide a “capstone” experience, drawing together an array of students from science, 
technology, engineering, and mathematics disciplines. Sustainability programs also 
provide a natural context for mathematical scientists to collaborate with faculty from 
other disciplines in developing brief modules that illustrate quantitative approaches to 
practical issues potentially useful as short components in a wide variety of 
undergraduate science offerings. 

 
4.2. Data sharing 

To engage a broader community of mathematical scientists in studying problems 
of sustainability, an effective approach is through the sharing of data. 

For many mathematical researchers as well as students, an introduction to a new 
application area comes from reading about a specific problem in a paper or research 
article. Taking that introduction to the next level involves the generalization or 
improvement of the approach. 

Having access to the data sets for relevant aspects of the human and 
environmental disciplines is an excellent way to facilitate entry for mathematical 
researchers not presently engaged in the area. Indeed, new ideas can be tested and 
benchmarked against existing approaches, as more data becomes available to a larger 
public of scientists. A broader community of researchers involved in the modeling of 
sustainability sciences will have multiple benefits, from greater visibility by the public of 
the issues themselves, to new and potentially better mathematical approaches for 
solving existing problems, to tackling more complex and far-reaching issues in those 
areas. 

Making data sets available to the community can be done in both a centralized 
and a decentralized manner and most likely both approaches are needed. Centralized 
approaches would include the various professional societies hosting a website repository 
either for the data sets themselves or for links to data sets stored elsewhere. 
Decentralized approaches include individual researchers or university 
departments/laboratories hosting such websites or via the various social networking 
platforms. 

The data sets in question should be broad and cover aspects central to 
traditional areas of sustainability science as well as those presently on the fringes. 
Examples of data from the traditional areas include those covered in this document: 
fishery data, historical weather (climate) data, consumption levels, reported forest fires 
and their characteristics over time, rainfall, sea levels, and other environmental variables 
covering numerous parts of the world, over significantly long time periods.  

Furthermore, studying the above factors in the context of other human-
environmental systems is particularly important for moving sustainability science forward 
and for drawing in more mathematical researchers. Examples of data sets from outside 
these core areas include human land-use data such as is used in economic studies, 
water and energy distribution networks and their characteristics, water and energy 
consumption levels and system failures, etc, transportation-related data such as network 
connectivity, travel demands and costs, and health-related data such as incidence of 
various diseases over time and in different locations across the country and the world. 
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In some cases, these data sets may come from researchers who have engaged 
with clients, cities, regions and governmental organizations and have the ability to then 
post (potentially anonymized) versions of the data on their own or other websites. 
However, it is desirable to reach out to the agencies, cities, and organizations 
themselves to make such anonymized data available.  

An example is a city making its traffic data readily available (e.g. as a data feed) 
to the public for the sake of encouraging the development of new technologies. In this 
way, the traffic data may be used by research scientists for studying impacts of traffic on, 
for example, public health or other environmental systems, or the impact of other factors 
on traffic. Similarly, a hospital or regional health agency which regroups multiple 
hospitals could publish online daily or weekly data on the diseases that they are treating 
to allow researchers to develop the models that link those diseases to other systems that 
are present in the same geographical area. 

We also need to develop standards for sharing data at different scales without 
compromising private or proprietary information.  One possibility would be a standard for 
“scrambling” data in a way that allows models to be first tested on scrambled data. 

 
4.3. Model linking and sharing 

While the sharing of data sets may be a precursor to encouraging the entry of 
many mathematical researchers into studying the problems related to sustainability, 
taking it a step further involves the sharing of mathematical models themselves. The 
challenges of studying sustainability are daunting. The ability to communicate openly 
about how models work, to use outputs from one model as inputs into another, and to 
integrate systems that may have interacting feedback promises to be a valuable, if not 
indispensable, goal.   

Web platforms where models as well as data can be shared have the potential to 
foster valuable dialogue, and to lower substantially the barriers to entry to 
mathematicians who want to work on these relevant questions. Specifically, whereas we 
discussed the goal of having publicly-available data sets online, we can take that notion 
a step further to the goal of having models online which can be run by other researchers 
across the globe; in that way, other researchers could use those model outputs as input 
into their own, related models. This would bring us dramatically closer to the 
development of “models of models” or “systems of systems,” both of which are critical 
components of the study of sustainability and the human-environment interactions. 

Some effort has already been made in this direction, including at least successful 
online collaborative projects to prove mathematical problems such as open theorems 
(Castelvecchi, 2010, and Rehmeyer, 2010), as well as the models used for predicting 
weather (WRF) but much more can be done.   

In particular, we should encourage standard formats for describing models and 
expressing their inputs and outputs that would allow for such links. Models must be 
documented to be usable by others, but many already are through the academic papers 
that their authors publish and present at conferences. What is missing today is an online 
version, not of the paper text, but of the functioning models, allowing other researchers 
to test and use them. 

As with data sets, “live” models can be hosted in various locations, in central 
repositories, or on individual researchers’ websites or social networking sites, and can 
be open in the sense of making source code available, or, when necessary, can be 
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available in executable form only. In both cases, a valuable service would be provided to 
the scientific community to make these live models available and a significant increase 
in the complexity of the research would be expected to follow. With that would come new 
problems, new challenges and presumably new discoveries. 

 
5. Challenges 

The importance of engaging a wider community to work on sustainability 
challenges, including the ones highlighted in the examples above, can hardly be 
overstated.  To this end, we suggest the creation of specific Challenges to the 
community of mathematical scientists.  We define a Challenge to be one of two types: a 
Competitive Challenge and a Grand Challenge. In short, both encompass a set of 
problems intended to stimulate research and attract the attention of mathematical 
scientists in different fields to work on these important questions. 
 
5.1. Competitive challenges 

By “Competitive Challenges” we mean contests open to anyone, and often with 
some prize to the winners, to solve a well-defined mathematical problem.   One example 
is the Netflix challenge to predict individuals’ movie preferences; this competition 
generated significant attention and culminated in a million-dollar prize three years after 
its inception.  Other successful examples of competitive challenges include the ACM 
KDD Cup which sponsors competitions each year (including an early version of the 
Netflix contest) and more recently the IEEE ICDM contest, both of which challenge 
scientists to solve prediction-type problems from domains as diverse as protein structure 
to urban traffic congestion. In the operations research community, the French OR 
society ROADEF sponsors the ROADEF/EURO Challenge each year, in which a 
problem defined in conjunction with an industrial partner is posed to the research 
community, roughly a year is given to any individual or team to solve the problem, and 
finally, prizes provided by the sponsor to the winning team. Another example is the 
engineering competitions such as the steel bridge building competition sponsored each 
year for undergraduate and graduate students and their professors by the American 
Society of Civil Engineers and the SAE Formula student design competition and its 
recent cousin the Formula Hybrid competition for designing next-generation race cars 
and plug-in hybrid vehicles. 

Developing a Competitive Challenge for the general mathematical sciences is in 
itself a challenge but the attention that it would generate for the discipline would be 
significant. Competitive challenge problems related to sustainability can come from 
those discussed in the Examples section of this document or others. The primary steps 
needed in developing a Competitive Challenge for problems related to sustainability are 
the identification of a sponsor organization and, where possible, an organization to 
provide data and potentially prize money. The identification of the sponsoring 
organization helps to drive in many cases the definition of the competition problem to be 
solved. 
 
6. Mathematical Recommendations 
• Develop optimization techniques that can address the kinds of management 

problems arising in studies of sustainability in the face of uncertainty, including 
stochastic optimization and other approaches. 
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• Extend Bayesian and related methods for parameterizing models under uncertainty, 
including multiple, linked models, and for propagating uncertainty in models used for 
making large-scale predictions 

• Develop dynamical systems methods for robust prediction of long transient 
phenomena and to help understand the effects of different types of feedback in 
complex systems. 
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Charge to the Group 
Energy is at the heart of modern life, but it has crucial connections to a 
sustainable life on the planet. The theme of this group is to investigate 
sustainable energy pathways, to look at the entire pathway from production to 
storage to distribution to conservation to environmental impact. The group should 
consider mathematical challenges in all phases of the energy system, from how 
best to generate energy, to how to store it so it is available when needed, to how 
to transmit and distribute it effectively and efficiently, to how to conserve it.  

Introduction 

This white paper focuses on the identification of a set of mathematical goals, 
strategies, cross-cutting themes and research questions prompted by the 
challenges posed by the apparent conflict between the ever-growing appetite for 
energy of a modern society and the imperative need to rely on sustainable 
production methods.  We will discuss and identify areas where investments 
should be made in research and education in the mathematical sciences that will 
better position this and future generations to attain this sustainability goal. 

Energy research cannot be carried out completely within traditional vertically 
integrated academic structures. It requires interdisciplinary collaborations that bridge 
computer science, engineering (electrical, mechanical, civil, biomedical, financial, 
environmental, etc.), finance, law, business, natural science (physics, biology, chemistry, 
etc.), medicine, public policy, and others, glued and kept together by mathematics.  This 
will require new funding mechanisms and new ways of organizing research. 

Main Goals and Societal Issues 
We identify the following objectives: 

• To reduce environmental impact of energy production and consumption.  This 
objective should be attained while maintaining and possibly improving standards 
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of living despite possible cuts in energy usage. See for example the discussion of 
greenhouse gas emissions discussed later. 

• To improve the security of supplies} and increase energy independence by 
stabilizing and robustifying energy sources to terrorist attacks and natural 
disasters. 

• To aim at a more socially equitable distribution} of the benefits of energy 
consumption, and control the socio-political impacts of the current dependence of 
most of the sectors of the economy on oil production. 

• To stimulate and encourage the young generations of talented researchers to get 
engaged in sustainability issues. 

Regardless of the order in which we prioritize these objectives, a clear sense of 
urgency emerges: we must act now, we cannot afford to wait.  Energy investments are 
highly capital intensive. Both long-term and short-term energy investments incur 
significant risks, which can be mitigated using modern (hedging) strategies.  How do we 
design these instruments, and what are the implications in terms of managing risk? 

Strategies 
In order to design strategies and balance these goals, the following questions need to be 
addressed: 

• How can we reduce usage while maintaining and even increasing standards of 
living?  How do we quantify externalities and put figures on the impact on quality 
of life? 

• How do we transform supplies?  By introducing new sources?  By better 
managing existing ones? How can that be done with minimal impact on the 
environment? 

• How can we optimize efficiency? 

Computation is increasingly essential to all aspects of our lives.  We are on the cusp 
of achieving very significant improvements in the energy consumption of computation in 
terms of “millions of instructions per second per watt.” Significant sources of gain will 
come from dramatic improvements in the efficiency of standalone computers-- processor 
efficiency, wireless radio efficiency, display efficiency, sleep modes, etc. 

Another area of potential gain involves the development of entirely new 
computational algorithms that have energy minimization as a goal.  Since the dawn of 
computing, we have analyzed and optimized algorithms for their running time and 
memory usage requirements.  We have come to understand tradeoffs between these 
two -- it is often possible to improve running time at a cost of memory space, and vice 
versa.  Energy consumption represents a third dimension. 

Mathematical Challenges 
We now consider the different kinds of new methods and investments that need to be 
made in order to enable the development of new mathematics necessary to tackle 
issues raised by sustainable energy. Right at the onset, it is important to emphasize that, 
while mathematics is the underlying discipline that cuts across theory, modeling, 
simulation, understanding and prediction of sustainability issues, across all energy 
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sectors, mathematicians are too often treated as junior partners, “the technical 
consultants” instead of the science drivers. This needs to change. 

In the following discussion of mathematical areas of research we identified Three 
Cross-Cutting Themes: a) Uncertainty, b) Multiscale and Mixed Methods, and c) Model 
Evaluations. 

 
Uncertainty 
The stochasticity of energy supply and demand and the need to reduce environment 
impact and increase energy independence demand the development of new 
mathematical tools to 
• deal with uncertainty; 
• address how multiple time and spatial scales enter in this quantification; 
• treat coarse-grained and fine-grained uncertainties; 
• deal with heavy tailed distributions and the associated measures of risk; 
• build models to describe rare but disruptive (natural) events; 
• solve complex design and control problems in the area of stochastic optimization to 

include: 
o long term policy models; 
o the power/smart  grid (conservation, control, engineering); 
o energy storage; 
o market mechanisms and agent based models in the portfolio of tools used to 

control green house gas emissions, discussed below. 

Multiscale and  Mixed Modeling 
In this area new initiatives are needed to 

• continue and enhance the development of theories of Partial Differential 
Equations (PDEs) and Stochastic Partial Differential Equations (SPDEs) for 
specific purposes such as microstructural optimization, sustainable technologies, 
and the design of new materials for energy conversion (batteries, fuel cells, etc.); 

• develop mixed models for climate, ocean, macro/micro economics; 
• design and study networks (edges + nodes; e.g. power grid, transportation, etc.) 

at different scales; 
• create new statistical models to accommodate stochastic factors; 
• design and manage sensor technologies to collect data more efficiently. 

Model Evaluation 
One of the major issues is the validation/invalidation of models, especially in the 

absence of a ground truth. 
Clearly, one needs new tools in PDEs/SPDEs to validate the simulated design of novel 
energy high-impact materials and physical devices, complex models, climate, economy, 
atmospheric, ocean. Can we use historical back testing for this purpose? Also, how 
should we design and implement assessment/metrics? 
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Sample Research Areas Driven by Energy and Climate Change Challenges 

Below we identify a series of research areas that hint at the broad range of problems 
that need advances in mathematics.  These include 

• Greenhouse gas emissions control and public policy 
• Development of new energy sources 
• Transforming energy sources 
• Uncertainty and energy investment portfolios 
• Uncertainty and climate change 
• Stochastic optimization, statistics and machine learning 
• Simulation of complex systems 

Greenhouse Gas Emissions Control and Public Policy 
Countries and organizations have already taken drastic actions to fight global 

warming. Most of the proposed solutions include increasing energy efficiency and 
conservation, examining the potential for capture, sequestration and storage of carbon, 
expanding the production of renewable energy, and even reviving nuclear energy 
production. Most of the proposed strategies include market mechanisms for carbon 
dioxide emissions. In a typical cap-and-trade scheme, the regulator allocates a number 
of tradable credits (permits to emit carbon dioxide CO2) to the responsible installations, 
and at pre-settled compliance dates; each source must have enough allowances to 
cover all its recorded emissions or be the subject of significant penalties.  The rationale 
for such a system is that the exchange of allowances between agents through trading 
will minimize the overall social costs since companies that can easily reduce emissions 
will do so, and those for which it is harder will buy credits. For this reason, cap-and-trade 
systems are touted as a tool of choice to reduce pollution in a cost efficient way. 

Such markets do exist. After a first unsuccessful attempt to impose a wide tax on 
energy and carbon in the early 90's, the European Union (EU) undertook an ambitious 
effort to correct for its first market failure, and tried to address the reduction of emissions 
of carbon dioxide (CO2) by such a cap-and-trade system. Unfortunately, the results of 
the implementation of the first phase of the European Union cap-and-trade Emissions 
Trading Scheme (EU ETS) were not satisfactory, mostly due to poor planning by the 
regulators. Emission markets also exist in the U.S. (e.g. for SOx and NOx), and some 
regional markets for CO2 are mandatory (e.g. RGGI). A good understanding of their 
inner working (costs and efficiency) is crucial. 

Stochastic models for the optimal behavior of profit maximizing electricity 
producers have been proposed and equilibrium prices for electricity and carbon tax have 
been derived by optimization and game theoretical arguments. Finding the right 
schedule of certificate allocation to guarantee that emissions targets are reached is a 
very difficult inverse problem which the regulators of the European Union did not solve 
well in their first trial.  Carmona, et al (2010) tackle these issues and highlight the role of 
mathematical analysis in public policy decision making. 

In the U.S., the debate became increasingly politicized to the point that the use of 
the word cap-and-trade equated to a political suicide in some circles. There is not a 
single politician who does not have strong opinions on the crucial issue of the design of 
emissions markets. However, not many of them understand what they are talking about, 
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and research and education are sorely needed in this context. This should offer a 
chance to applied mathematicians to weigh in on this important debate. 

Development of New Energy Sources 
The development of non-hydrocarbon-based energy sources is central to the 

sustainability of technologically advanced civilization (MacKay, 2009).  There are a wide 
variety of areas of research aimed at developing or improving such nontraditional energy 
sources.  Some mathematical challenges in fundamental research for the discovery of 
new physical mechanisms for energy sources include: 

• Modeling and simulation of multi-scale, multi-physics systems 
• Development of computational chemistry 
• Nanoscale modeling for materials-by-design 
• Data assimilation in phenomenological models 
• Exploration of data in large parameter spaces 

The energy-source research areas listed below will profit from increased involvement 
of mathematical scientists in mathematical modeling, simulation, data mining, and 
optimization, used in the design of materials, simulation of chemical processes, and 
device design. 

• Electricity Generation 
o Wind: blade materials and design, generator design, power conditioning 
o Solar: photovoltaic, semiconductor, organic, nanostructure,  new phenomena, 

concentrated solar photovoltaic (solar concentrators), concentrated solar 
power (alternative working fluids, high-temperature materials), distributed 
solar thermoelectric 

• Chemical: fuel cells 
• Hydropower: turbines, micro-turbines, advanced water power (waves, tidal) 
• Thermoelectric processes 
• Energy Storage: batteries, capacitive, salts, phase change materials, flywheel, 

microturbines, pumped fluids, compressed air energy storage, water splitting / 
water assembly 

• Energy Distribution & Transmission 
• Power Electronics: high voltage components, power systems, distributed 

generation, electric vehicles, smart grid 
• Fuels 
o Hydrogen: water splitting, photocatalytic, photoelectrochemical, solar thermal 

decomposition of water, photobiological and other chemical hydrogen 
production technologies. 

o Nuclear power (e.g. fusion, fission, materials for extreme environments) 

In the following section, we outline examples of specific mathematical 
investigations that are poised to make significant impact in transforming sources of 
energy. 

For examples of U.S. National Science Foundation funding of some solar energy 
research projects that involve collaborations between chemists, materials scientists, and 
mathematical scientists, see the award list for the NSF CHE-DMR-DMS Solar Energy 
Initiative (National Science Foundation, 2010). 



 

135 | P a g e  
 

Transforming Energy Sources 
Mathematical research on new materials is key to generate clean and renewable 

energy and to help manage problems from existing energy sources.  Partial differential 
equations, the calculus of variations, continuum mechanics and numerical analysis, 
among other mathematical areas, are well positioned to address these challenges. 

Mathematics and Managing of Existing Supplies 
Carbon Sequestration: The computational mathematics community has had a 

huge impact on enhanced oil recovery techniques by developing efficient and accurate 
models of multiphase flow through porous media. Darcy and Buckley-Leverett equations 
for the flow in porous media have been used in Glimm, et al (2004). The new problem of 
carbon dioxide subsurface reservoirs involves many of the same issues, but with 
additional complexities inherent from the underlying chemistry. 

Cellular and Granular Networks: These are ubiquitous in nature. They exhibit 
behavior on many different length and time scales and are often found to be metastable. 
The energetics and connectivity of the ensemble of the grain and the boundary network 
during evolution plays a crucial role in determining the properties of a material across a 
wide range of scales. Questions that arise include: What is the nature of patterns? One 
view is that patterns are stable statistics of metastable systems. Can we predict the 
pattern dynamics and the evolution of the microstructure? The challenge, from this 
perspective, is to understand how to identify and validate such statistics, and to use 
them for predictive theories (see Barmak, et al., 2008). 

Mathematics and Design of New Materials for Sustainable Energy and Energy 
Conversion 

Energy Conversion: Electro-chemical systems such as batteries and fuel cells 
require the transport of electrons, ions and multiple fluids in a controlled manner, through 
a multiphase arrangement (electrodes and electrolytes each of which may itself be a 
multiphase system). Further, important reactions occur at triple junctions or in the 
presence of catalysts, ionic conductors may not be good electronic conductors, etc. 
There have been dramatic improvements in individual components in recent years, but 
this has not been manifested at the macroscopic/device level. It is here, in the design of 
new materials for energy storage and conversion, that microstructure optimization will 
make a fundamental contribution. 

Recently, the prediction of hysteresis has acquired fresh significance in 
connection with materials for energy conversion, since the efficiency of a conversion 
process often depends on the size of an associated hysteresis loop. For a solid-to-solid 
phase transformation, thermal hysteresis refers to a transformation temperature on 
cooling that differs from that on heating. Hysteresis also occurs during stress-induced 
transformation, with the stress needed to induce the forward transformation being 
different from that causing the reverse transformation.  Moving forward in this area will 
require  theoretical progress and experimental verification. 

Nonlinear analysis and sharp interface models will play a pivotal role in this area 
(see Delville, et al, 2011, Zhang, et al. 2009). 

Photovoltaics: This a method of generating electrical power by converting solar 
radiation into electricity using semiconductors that exhibit the photovoltaic effect. Here 
one wants to maximize photon paths (to maximize the probability of capture) but 
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minimize electronic paths (to avoid recombination). This technology is used in remote 
locations where cost-effective access to local power grids is not possible. 

Quantum Dots: One of the energy goals of nanomaterials is to achieve better 
energy conversion efficiency in portable power, solar cells and solid state lighting. The 
devices include composite materials and quantum dots, both areas of intense 
mathematical interest, from the description and understanding of wetting phenomena to 
the rigorous prediction of island shapes (pyramids, domes, barns) which, in turn, 
determine the technological properties of the material (see Fonseca, et al 2007 ). 

Shape Memory Materials: The typical procedure in the mathematical analysis of 
materials is to start with a material, describe its constitutive laws and equilibrium states, 
predict the microstructure and macroscopic material behavior, and then compare with 
experiment. The inverse procedure leads to the development of new materials. Indeed, 
new ferromagnetic shape-memory materials have been created in this way, beginning 
with a theoretical concept of an interesting property or effect, formulating the material 
response via energy minimization or a dynamical theory, proposing a hypothetical 
material and going to the laboratory to actually make the material. This inverse 
procedure can lead to entirely new materials that might not have been anticipated by 
purely experimental approaches.  James and Wuttig followed this approach to produce a 
new material that exhibits, under moderate field, about 50 times the field-induced strain 
of giant magnetostrictive materials (see Bhattacharya , et al, 2009, James and Wuttig, 
1998). 

Ultracapacitors: These are electrochemical capacitors that have an unusually 
high energy density when compared to common capacitors (e.g. on the order of 
thousands of times greater than a high capacity electrolytic capacitor), and have a 
variety of commercial applications (e.g. as energy storage devices used in vehicles). The 
underlying mathematical modeling uses the Nernst-Planck-Poisson equation, commonly 
applied in describing the ion-exchange kinetics in solids, and is still poorly understood. 

Uncertainty and Energy Investment Portfolios 
As another example containing challenging mathematical problems, we consider 

the problem of choosing investments for production of new sources of energy, for 
example low-greenhouse gas methods of generating electricity.  This is an example of 
the very general problem of constructing research and investment portfolios. 

Assume all sources under consideration are substitutable (e.g. that they are all 
roughly the same in terms of their environmental impact).  Assume a given set of 
probabilistic forecasts for the cost of each technology as a function of the cumulative 
production investment made in each technology, and that there is uncertainty in both the 
parameters as well as the future costs if the parameters are known.  The goal is to 
construct an investment schedule that maximizes the time-discounted utility, where the 
time discounted utility function gives greater weight to costs on shorter time horizons and 
prefers certainty over uncertainty. 

This problem is inherently nonlinear due to the dependence of the cost on the 
investment.  Unlike standard portfolio theory as normally applied in finance, 
diversification is not necessarily favorable.  This is because the rate of progress for a 
given technology increases as more is invested in that technology, and so if the cost as 
a function of investment is known, one should simply invest everything in the best 
technology.   But with uncertainty one does not want to take the risk of making a bad bet 
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on a single technology.   Because of the strong nonlinearities, there may be a very large 
number of local maxima. 

The problem is also complicated by additional issues that arise in realistic situations: 
• The noise (i.e. the uncertainty in future costs if parameters are known) has heavy 

tails and possibly long memory. 
• The response of technologies to investment may be correlated across 

technologies, e.g. an improvement in the structural material for one technology 
may also help another technology. 

• Such models are difficult to calibrate.  Even worse, there may be Knightian 
uncertainty  (ambiguity), i.e. we may not know the correct probability distributions 
and we may want to understand the robustness under variations in the 
assumptions. 

A few interesting questions: 
• What are the best numerical methods for finding good solutions? 
• How does the number of technologies one should invest in depend on the 

properties of the problem (e.g. total number of technologies, level of uncertainty, 
learning rates, nature of the utility function, correlations, heavy tails)? 

• Which parameter regimes have robust solutions, and which have unstable 
solutions? 

Uncertainty and Climate Change 
Economists, following Frank Knight, distinguish between risk and uncertainty. 

Risk occurs when we have a stochastic outcome following a known probability 
distribution (the toss of a fair coin): uncertainty occurs when we don’t know the 
distribution (rolling an unfair dice when we have no historical record of its outcomes). 
The word ambiguity is now used to refer to these situations of uncertainty, i.e. 
stochasticity without a known probability density function (pdf). Take climate change: 
there is a wide range of estimates of key parameters such as the climate sensitivity s 
(the equilibrium temperature response to a doubling of CO2). Such a diversity raises the 
question: what assumption about the probability density function over outcomes should a 
decision-maker maintain, if any? There are several competing approaches. 

One is to combine the probability density functions from the various underlying 
models following a Bayesian approach. 
A competing approach is to recognize that there is no single distribution over outcomes 
and to work with a second order probability distribution over the different models, so that 
pi is the probability that the i-th model is the correct model. In this approach it is assumed 
consistently with many experimental studies of human behavior that decision-makers are 
ambiguity-averse so that their payoff is the expectation according to the second order 
probabilities of a concave function of the expected outcomes of the various models. 
There are several competing axiom sets that seek to provide a basis for this type of 
approach to decision-making under ambiguity, following a generalization of the approach 
in Savage’s Foundation of Statistics (see e.g. Klibanoff et.al. (2005) or Schmeidler 
(1989). 

This issue occurs not only with climate change, but also in a wide range of 
situations of relevance to sustainability. We frequently face stochastic outcomes without 
well-defined pdfs, and often have competing models with divergent predictions. This is 
true for the impact of genetically modified organisms, the availability and costs of 
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different energy sources at future dates (will fusion be available, will large-scale storage 
devices be available, etc.), and many others.  In all these cases we lack a widely-
agreed-upon framework for making decisions. 

Stochastic Optimization, Statistics and Machine Learning 
There are numerous problems in the design and control of energy devices, 

networks and markets that need to be modeled as sequential decision problems in the 
presence of different forms of uncertainty. Decisions include storing/withdrawing energy 
from a battery, determining which energy generators to use each hour, how to price 
recharging stations for electric vehicles, optimal maintenance of grid components, 
optimal load curtailment to meet grid capacity constraints, design of energy investment 
portfolios and robust design of the power grid.  Other stochastic optimization problems 
arise in laboratory environments: how to sequence the testing of new compounds, 
optimal design of experiments, and optimal sampling of materials and processes to 
obtain the best performance from new materials for converting biomass. 

Stochastic optimization is an intrinsically difficult problem, as it involves the 
sequential choice of decisions (controls), followed by observations of new information, 
followed by more decisions.  Unless the problem has special structure, the research 
community has focused on three broad strategies:  1) lookahead policies, which include 
tree-search and stochastic programming (Birge and Louveaux, 1997), 2) policy function 
approximations, which involves searching within a well defined class of functions, and 3) 
policies based on approximating the value function in Bellman’s equation.  

We do not have general purpose algorithms for finding optimal policies, and we 
often struggle even to find good policies.  The field of approximate dynamic 
programming (known as reinforcement learning in computer science) blends simulation, 
deterministic math programming and machine learning (to approximate the value 
function), producing some successes (Bertsekas and Tsitsiklis, 1996, Powell, 2007, 
Sutton and Barto,1998).  There is active research in the design of all three types of 
policies listed above. The complexity of lookahead policies grows exponentially with the 
number of time periods. Policy function and value function introduce the difficult 
challenge of specifying and fitting functions, introducing a range of challenges to the 
statistics and machine learning communities (Hastie, et al 2009). 
This discussion ignores important modeling issues in the handling of uncertainty.  For 
example, electricity prices are easy to quantify, but are not described by standard 
Gaussian distributions and have been found to be heavy-tailed (infinite variance), which 
means that you cannot compute an expectation.  There are a number of instances 
where we would like to introduce risk as an explicit constraint, such as the risk that we 
will not meet a renewable target, or the risk that we will overuse a backup diesel 
generator. There are also problems where the uncertainty is hard to model, such as the 
likelihood that Congress will pass a tax on carbon or that there will be a breakthrough in 
batteries. 

For the near term, there is active research simply to solve narrow problem 
classes.  A longer term goal is to develop robust, general purpose tools that solve 
broader problem classes.  For example, parametric approximations of value or policy 
functions are the easiest to estimate, but introduce an undesirable manual step in the 
design of these functions.  Nonparametric techniques offer considerable generality, but 
these are harder to use and still struggle with functions with even a modest number of 



 

139 | P a g e  
 

dimensions.  Policy optimization introduces the complex interaction between observing 
the value of a suboptimal policy, and finding better policies. 
There is a vast array of applications in the analysis of energy systems, economics and 
policy which require the tools of statistics and machine learning to infer relationships 
from observational data.  We may need to understand the performance of different 
molecular compounds in terms of converting solar energy, the status of different 
components in the grid for a utility, the response of households to changes in electricity 
prices, or the energy from sun or wind.  Statistics arises within algorithms, where we 
may have to estimate the value of being in a state and following a policy. 

Statistical challenges come in many forms.  For many spatial applications, we 
need to estimate fine-grained behavior from coarse-grained observations. For example, 
how can we predict the anticipated energy production from a particular wind farm using 
observations from weather stations?  We may have to estimate high-dimensional 
functions (such as the price of energy at a node as a function of supplies, demands and 
weather around the network), in some cases with relatively little data (the big p, small n 
problem).  We often have to estimate functions with complex structures, such as the 
amount of energy to put into storage from wind as a function of wind, demand, prices 
and their histories. Machine learning researchers use a variety of statistical learning 
methods, e.g., support vector machines (SVMs) and boosting, together with kernel 
transformation methods, but this is an active research area with good opportunities for 
mathematical contributions. A popular area of research in statistics is in the general area 
known as nonparametric statistics and locally polynomial regression. Such methods 
typically approximate functions using a weighted sum of observations, where the weights 
are given by kernel functions which put a higher weight on closer observations. Such 
strategies suffer from the curse of dimensionality, since the likelihood of having a 
reasonable number of observations within close proximity drops very quickly as the 
dimensionality of the observation space grows. 

There are many problems where observations are expensive, and we have to 
collect information efficiently, an area that falls under names such as active learning and 
optimal learning.  Given limited resources, when and where should we measure wind 
velocities, ocean temperatures, or test the performance of an energy saving technology 
in a building? The problem of finding optimal information collection policies is 
computationally intractable, and as a result research is needed to test the efficiency and 
accuracy of different approximations. Optimal learning policies need to be developed 
that work well in the context of the characteristics of the problem (dimensionality of the 
explanatory variables, nature of the belief structure). 
A continuing problem in statistics is the vast plethora of models and statistical estimation 
techniques, without a single, dominant method (see Hastie, et al, 2009).  Scientists have 
developed methods such as ensemble models and boosting to combine the best results 
from different models.  Energy scientists need robust methods to solve their learning 
problems to avoid turning every statistical estimation problem into a research project. 

Simulation of Complex Systems 
Simulation is an important technology for studying energy and many other 

systems. Here we discuss the relationship between the structure of a complex system 
and its dynamics. 

There are many aspects of this question that form whole research areas by 
themselves. Spatial pattern formation in fluids, reaction-diffusion systems and similar 
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settings based upon partial differential equations are one example. Dynamical systems 
with an underlying network structure are an area of vigorous research activity at this 
time. Some of the earliest work in this area investigates synchronization. Huygens 
observed pendulum clocks hanging from a wall that synchronized with one another due 
to their weak coupling through vibrations of the wall. In what other circumstances do 
collections of weakly coupled oscillators synchronize with one another? Theories have 
been developed for symmetric networks of oscillators. Nonetheless, the question of 
synchronization remains an important one in pragmatic terms involving energy. The 
power grid seeks to synchronize oscillations throughout the grid. 

The relationship between structure and dynamics is of particular interest in the 
context of networks. Are there quantities we can measure about the structure of a 
network that will allow us to make predictions of various features of a dynamical process 
on that network? Is the network design of the power grid inherently prone to instability 
that would be ameliorated by new power lines that increase the connectivity of the grid? 
The general problem is a clear bottleneck in current networks research. We have a 
mountain of data and expertise about structure. We have measures, models, vast data 
sets, and a well-developed theory of many aspects of network topology. But we have 
relatively little understanding of dynamical processes on networks. We would very much 
like to leverage our knowledge of structure to say something about dynamics, but at 
present, with a few exceptions, we don't know how to do this. 

The "blue sky" dream is that, presented with substantial data about the structure 
of a network and with a definition of the dynamics taking place on it, we could measure 
some gross summary statistics of the structure and from the results of those 
measurements make quantitative predictions about the dynamics. Examples might 
include deriving equations of motion for coarse-grained variables, summary statistics for 
the dynamics, or extreme value statistics. Applications could be widespread. In the case 
of the power grid, as large numbers of small solar devices and turbines are added to the 
generating capacity of the system, coarse graining is needed to operate the system 
reliably. There are few systematic tools for coarse-graining dynamics on (possibly 
directed) graphs with very inhomogeneous topologies. One of the questions about 
networks that is being studied intensively is how the statistical properties of connectivity 
in a large network influence the rate at which information (or disease) spreads across 
the network. We do not know at this time which complex system structures are the 
important ones for science and engineering, so exploratory research on many 
possibilities is appropriate. Following Wigner's famous title about the unreasonable 
effectiveness of mathematics in science, those structures that give rise to extensive 
mathematical theory may prove to be the most useful. 

The role of structure in shaping the dynamics of complex systems is in part an 
important modeling issue. The example of hybrid dynamical systems illustrates this issue 
in the context of engineering problems. Hybrid dynamical systems combine continuous 
and discrete components, possibly in both space and time. There is no standard 
definition of a hybrid system, and that impedes progress on the topic. A simple example 
of a hybrid system is a discontinuous vector field that reaches an impasse or deadlock 
along a boundary. Think of a thermostat that regulates the temperature in a room by 
turning a fan off or on. At the set point for the thermostat, the room will heat up if the fan 
is on and the temperature will fall if the fan is off. How should the system evolve at the 
set point? This is a modeling issue, with answers that depend upon the context in which 
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the discontinuous vector field arises. Three sources of an impasse come from (1) 
reduction of models with multiple time scales to the slow time scale, (2) mechanical 
systems with impacts and (3) the design of controllers like thermostats or relays that 
have switches. Each of these settings suggests a different resolution of the impasse, 
and the dynamics observed in each case is also qualitatively different. Thus the 
dynamics of a hybrid dynamical system depend upon the structure embodied in the 
details of how the continuous and discrete time components of the system are modeled. 
Theory that classifies the different possibilities and characterizes the dynamics of 
systems that are generic in each context would be very useful in engineering complex 
systems. 

The interplay of theory, experiment and computation will continue to be important 
for the study of emergent properties of complex systems. All are needed in the discovery 
of unifying principles that explain how, where and why emergent properties arise. 
Empirical data is the beginning and the end: we want to understand and engineer the 
real world. Simulation is an important tool for detailed study of specific models. With 
diverse models from the abstract to the highly detailed we can explore the origins and 
characteristics of emergent properties. Still, many simulation models are sufficiently 
complex that they are difficult to analyze, so we need theory to provide a guide that 
helps us interpret and organize simulation results. Theory also directs our attention to 
interesting phenomena that might otherwise be overlooked, often by highlighting the 
structural similarities between different systems. 

Research programs on complex systems should maintain a balance for the mutual 
contributions of theory, experiment and computation. Support for the engineering and 
operation of complex systems that we increasingly rely upon in our daily lives should 
recognize the value of cross-cutting principles even in work focused upon a particular 
system. 

Sample Recommendations 
Here we list recommendations on research and training activities in the mathematical 

sciences that should be promoted in light of the above discussion. The 
recommendations are directed at various groups:   
 
 Mathematics Institutes and Scientific Societies:  

• To broaden the partnership of scientific societies involved in the current joint 
effort to promote mathematical research toward sustainability. The engagement 
of the Institute for Mathematical Statistics (IMS), the American Statistical 
Association (ASA), the Society for Industrial and Applied Mathematics (SIAM) 
and of societies such as INFORMS (Institute for Operations Research and the 
Management Sciences) and IEEE (Institute of Electrical and Electronics 
Engineers) with a broad international footprint is pivotal. There is also a clear 
need to reach out and involve national mathematical societies all over the world. 

• To organize multi-year research and training programs where undergraduate and 
graduate students as well as postdocs could return year after year. It is important 
to make sure that these programs engage regulators, policy makers, international 
institutions and industry representatives.   
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Institutions of higher education and the research community: 
• To develop curricula that encompass energy education; 
• To encourage the development of international collaborations on energy related 

issues. 

The final set of recommendations is a sample list of areas of mathematics and 
specific topics of research whose development would significantly enhance the role of 
mathematicians in achieving sustainable energy production for a modern society: 

• Stochastic optimization of complex, dynamic systems: e.g. for storage, R&D 
portfolio optimization, grids, generators, users; 

• Incomplete economic models and stochastic games: e.g. for greenhouse gas 
emissions policy, power generation policies; 

• Inverse problems for PDEs and SPDEs for the design of new materials: e.g. for 
energy production, storage, transmission and conversion; 

• Modeling and simulation of multi-scale and multi-physics systems: e.g. 
downscaling of fluid mechanics equations for wind turbines, thin films, nanoscale 
materials; 

• Optimal sampling for estimation of climate change impact for market response to 
price signals, understanding new materials, sensor placement. 
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