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Preamble

I take as a basic law of nature that “trees do not grow to the sky.” In fact, the tree metaphor
is very useful as we try to impose a science on the vaguely defined term, “sustainability.”
Trees make up forests and forests grow and recede according to many factors. Trees develop
from seeds to saplings to mature trees, using nutrients and water in the soil and CO2, O2

and light from the atmosphere to grow. They do not grow to the sky, and they eventually
die. Forests do not cover the earth; but they grow, recede, and are potentially sustainable.
Trees and forests are a function of their environment. Homo sapiens are a function of their
environment too, although we sometimes forget.

Achieving sustainability should be closely linked to ensuring the environment will not
change precipitously. Ecology is the study of organisms and how they relate; environmental
science is the study of the surroundings of those organisms. There is a hope that the functions
that relate organisms to their environments are smooth. Chaos theory shows that this is not
always the case (e.g., Devaney, 1989). Uncertainty in the functional relationships leads to a
theory of random functions (i.e., stochastic processes); see, for example, Karlin and Taylor
(1981) and Adler (1981).

Even when a function is known and smooth, an abrupt environmental change will lead
to enormous disruption of the life cycle of organisms and their inter-relationships (including
trees and humans!). Life, as we know it in 2010, may not be sustainable, and to make it so,
we need measures and an accompanying Science of Sustainability (SOS!). Broadly speaking,
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we should be trying to understand the behavior of these functions and, for those that have
derivatives, we should be trying to calculate their derivatives temporally and spatially.

Sustainability of What?

In my preamble, I have concentrated on sustainability of life on this planet. But life is
complex and there are other planets. Leaving aside a grand plan to find other habitable
planets, we should recognize that micro-scale structures beget small-scale structures, which
beget large-scale structures, and they can be intricately linked in a feedback relationship;
life is complex. At the micro scale, food, water, shelter, and reproduction are huge “forcing”
terms. Homo sapiens also experience happiness, greed, jealousy, etc; they value art and
music too, and all of these can be important “forcing” terms. It is tempting to try to put
them all into a basket and compute a CSI (Consumer Sustainability Index). This would be
a mistake; the structures are highly multivariate and complex.

Laws of nature, psychology, finance, and policy might contribute to “laws of sustainabil-
ity,” but we are embarking on a complexity that goes beyond those laws. Moreover, our
three-dimensional spatial world, evolving dynamically in one-dimensional time, makes the
science of sustainability even more complex.

Mathematically, the complexity I have been describing can be captured by graphs (com-
monly called networks). There is an embryonic discipline of Complex Networks, populated
by physicists, statisticians, computer scientists, epidemiologists, mathematicians, etc. The
NSF-funded Statistical and Applied Mathematical Sciences Institute (SAMSI) has a program
devoted to it in 2010-2011 (www.samsi.info/programs/2010cnprogram.shtml); also see, for
example, the books by Kolaczyk (2009) and Newman (2010). Complex networks are models
of how “the world works,” but they are extendable to allow for more complexity or more
variables. That strength is also a weakness; network sizes and complexities can clearly grow
exponentially. But, it does offer a paradigm to understand growth and its counterpart, reces-
sion. In fact, sustainability will, by definition, require both growth and recession, in different
sectors, in different regions, and at different times.

To build, measure, and assimilate a complex network is a worthy endeavor, but destined
to fail. An analogy would be to try to track every gas molecule in the atmosphere over time.
One way to view this is whether we take a “field view” or an “object view” of the part of
the world we are trying to model.

The object view of the world sees individual objects, located in a spatial domain and
interacting through time with each other, often as a function of their “distance” apart.
Thus, a household and its characteristics make up a unit of interest to census enumerators.
This microdatum is typically unavailable to social scientists, for confidentiality reasons.
Consequently, the census data that are released are typically the number of objects in small
areas, but not their locations. That is, a set of count data from small areas is released, which
is simply an aggregated version of the object view of the world. The geographical extent
(i.e., spatial support) of a small area can be stored in a Geographical Information System
(GIS) as a polygon. (A GIS is a suite of hardware and software tools that features linked
georeferencing in its database management and in its visualization.)

Alternatively, the field view of the world loses sight of the objects and potentially has
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a (multivariate) datum at every spatial location in the domain of interest. Building on the
census-enumeration example discussed above, we can define a field as the object density, in
units of number per unit area, at any location. This is purely a mathematical construct
because, at a given location, either there is an object present or there is not. Such a density
can be estimated from a moving window, such that at any location the estimated density is
the number of objects per unit area in the window at that location.

Sometimes the field view is the result of an aggregation of the object view, as for
population-density data. Other times, the field view is all that is of interest, such as for
rainfall data where there is typically no interest in the individual raindrops. Again, a GIS is
a convenient way to store data for a field, along with the spatial support to which a datum
refers.

A useful way to visualize the difference between the object view and the field view is to
imagine yourself in a helicopter taking off from a clearing in a field of corn. As the helicopter
ascends, at some point it is no longer interesting to think of objects (e.g., corn plants), but
rather to think of a field, literally and statistically (e.g., in units of bushels per acre). Then
the temporal aspect is captured through the field’s dynamical evolution during the growing
season.

Applying these ideas to complex networks means that we should move away from their
mathematical building blocks (vertices and edges) and study instead identifiable “objects”
made up of those building blocks and/or study local densities (“fields”) within the network.
There is a strong analogy in image analysis, where the study of an image through its pixels
has its limitations. For image reconstruction it might be appropriate but, for target tracking,
a (random) set-based approach is considerably more powerful (e.g., Grenander and Miller,
2007). The solution depends on the question.

Uncertainty

Our world is uncertain, our attempts to explain the world (science) are uncertain, and our
measurements of our (uncertain) world are uncertain. To build a Science of Sustainabil-
ity, it is important to recognize and quantify the uncertainty in measuring, modeling, and
predicting; this is true for all of science and its myriad fields.

Hierarchical statistical modeling represents a way to express uncertainties through well
defined levels of conditional probabilities. At the top level is the data model, which expresses
the distribution of the data given a hidden process. At the level directly underneath the data
model is the process model, which models scientific uncertainty in the hidden (“true”) process
through a probability distribution of the phenomenon of interest. It is quite possible that the
process model is itself made up of sub-models whose uncertainties are also expressed at sub-
levels through conditional probabilities. In a sense, the whole approach is a sort of analysis-
of-variance decomposition that is more general than the usual additive decomposition given
in standard statistics textbooks. The result is a hierarchical model (HM).

The components of an HM are conditional probability distributions that, when multiplied
together, yield the joint probability distribution of all quantities in the model. The quantities
in which we are interested could be as simple as random variables and as complicated as
space-time stochastic processes of random objects.
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Of course, all the conditional probability distributions specified in the HM typically
depend on unknown parameters. If a lower level (underneath the data model and the process
model) is established by specifying the joint probability distribution of all the unknown
parameters, then the HM is called a Bayesian Hierarachical Model (BHM). This probability
model at the lowest level, which we call the parameter model, completes the sequence: data
model (top level) followed by process model (second level) followed by parameter model
(bottom level). An alternative approach to specifying the parameter model is to estimate
the parameters using the data. This might be called an Empirical Hierarchical Model (EHM),
although historically it has often been called an empirical-Bayesian model. The HM approach
is explored for complex spatio-temporal models in Cressie and Wikle (2011).

The HM paradigm enables a coherent use of all data and allows inference on parts where
there are no data at all! Scientific relationships incorporated into the process and parameter
models can mitigate the paucity of data. Further, there is a self-correcting mechanism in
hierarchical statistical modeling, namely, when there is little known about the scientific
relationships or there are poor-quality or few data available, then inferences have very low
precision. That is, a signal in the process may be present, but if scientific knowledge or the
data are limited, the HM approach will not let us discover it.

Looking at this from another angle, the best scientists collect the best data to build the
best (conditional-probability) models to make the most precise inferences in the shortest
amount of time. In reality, compromises at every stage may be needed, and we could add
that the best scientists make the best compromises!
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