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ABSTRACT

Monotone systems are dynamical systems for which the flow preserves a partial or-
der. Some applications will be briefly reviewed in this paper. Much of the appeal of
the class of monotone systems stems from the fact that roughly, most solutions con-
verge to the set of equilibria. However, this usually requires a stronger monotonicity
property which is not always satisfied or easy to check in applications. Following
[20] we show that monotonicity is enough to conclude global attractivity if there is a
unique equilibrium and if the state space satisfies a particular condition. The proof
given here is self-contained and does not require the use of any of the results from
the theory of monotone systems. We will illustrate it on a class of chemical reaction
networks with monotone, but otherwise arbitrary, reaction kinetics.



1 Introduction

1.1 What is a monotone system?

The theory of monotone systems has been developed by M.W. Hirsch in a series of
papers about two decades ago, see [12, 13, 14, 15, 16] and H.L. Smith’s excellent
monograph [27] for a review. In general a monotone dynamical system is a contin-
uous semiflow Φ on a metric space X equipped with a compatible partial order �,
such that the partial order is preserved by the flow:

∀x, y ∈ X : x � y ⇒ Φt(x) � Φt(y), ∀t ∈ R+. (1)

Let’s consider a system of differential equations:

ẋ = f(x)

with x ∈ Rn and f a C1 vector field which is assumed to be forward complete
(although what follows is valid under much weaker conditions, both for the state
space and the smoothness of the vector field).

An immediate question that arises is when this system generates a monotone
dynamical system with respect to some nontrivial order. This question appears to
be very hard to answer. However, when a particular order is given and one asks if
the system is monotone with respect to that given order, it is possible to provide
testable conditions expressed directly in terms of the vector field f and the graph of
the order relation, see [2]. These tests take a particularly simple form in those cases
where the partial order is generated by a cone K in Rn. (Recall that a cone K in
Rn is a nonempty, closed set with K + K ⊂ K, R+K ⊂ K and K ∩ (−K) = {0}).
We will review some of these tests next.

Probably the most familiar example is the one where f is cooperative, meaning
that the Jacobian ∂f/∂x has nonnegative off-diagonal entries. It is well-known that
in this case the flow of system ẋ = f(x) is monotone since it preserves the usual
componentwise order on Rn, see e.g. Proposition 3.1.1 and Remark 3.1.1 in [27].
More precisely, this order is generated by the orthant cone Rn+ in Rn:

x � y ⇔ y − x ∈ Rn+.

This can be generalized to cases where the partial order is generated by any orthant
cone O of Rn, in which case the order is defined as follows:

x �O y ⇔ y − x ∈ O. (2)

For checking monotonicity in this case, a simple graphical test is available, see p. 49
in [27]. It amounts to verifying whether the incidence graph of the system does
not contain loops of negative parity (the incidence graph consists of n nodes, each
representing a component of the state vector, and signed edges connecting the nodes;
an edge from node j to node i is drawn carrying the sign of the partial derivative
∂fi/∂xj; of course this requires that the derivative does not change sign and is
nonzero in at least one point; the parity of a loop is simply the product of the signs
of the edges which make up the loop; self-loops are not taken into account for this
test).
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If the partial order is generated by an arbitrary cone K in Rn (simply replace O
by K in (2)), then checking monotonicity is still possible, although the test is not
graphical anymore, see [17, 30, 2] for characterizations in terms of dual cones. It is
important to note here that all these tests require a priori knowledge of the cone
which generates the order. In practice however, given a system ẋ = f(x), for which
one is trying to establish that it is monotone with respect to some nontrivial order,
one does not know the partial order in advance.

1.2 A few examples of monotone systems

Monotone systems theory is useful for the analysis of many of the chemostat models
studied in [28]. For instance, the variable-yield model can be transformed in a
monotone system for which the order is not the usual componentwise order on Rn.
In [10], this transformation is also exploited to analyze a similar model with multiple
nutrients.

An example which may be of interest to people working in control theory is the
Riccati equation defined on the space of real symmetric matrices S:

Ẋ = XAX +BX +XBT + C

where A,C ∈ S and B is a real (not necessarily symmetric) matrix. As shown
in [30] (where a more general nonautonomous Riccati equation is considered, but
where B = BT ), the flow generated by this equation preserves the order induced by
the cone of symmetric positive semidefinite matrices. We provide a different proof
of this fact in an Appendix.

Monotone dynamical systems have been extended to monotone I/O systems in
[2] in order to facilitate the study of interconnections of such systems (cascades,
feedback). We refer to [4, 3, 5, 6, 8, 9] for further developments and applications
of this theory, including examples from molecular biology, ecology and chemical
reaction networks. The focus in this paper however, is on monotone dynamical
systems without external inputs or outputs.

1.3 What makes monotonicity interesting?

The main reason why monotone systems have been studied so extensively, is prob-
ably that much is known about their asymptotic behavior. Roughly speaking, most
solutions converge to the set of equilibria. But two issues should be mentioned
in this context. First, most of the available convergence results require a stronger
monotonicity notion than (1). Typically it is assumed that the semiflow is strongly
order preserving, see p. 2 in [27], or (eventually) strongly monotone -which implies
the former-, see p. 3 in the same reference for precise definitions. Checking this
condition in practice is often not so easy, or even worse: a system may be mono-
tone, but fails to satisfy one of these stronger notions. Secondly, the proofs of these
results are nontrivial and require the use of fundamental results from the theory of
monotone systems.

A particular result which seems to be an exception to this, was given in [20],
where global asymptotic stability of a cooperative system on Rn with a unique
equilibrium was proved. Following the ideas of that proof we generalize this in
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an Appendix to monotone continuous semiflows with a unique equilibrium. This
result may also be useful for infinite-dimensional systems (such as delay equations).
Moreover, the proof given here is completely self-contained.

As an illustration, we will show that every solution of a particular kind of chem-
ical reaction networks, converges to an equilibrium.

2 A chemical reaction network

Consider the following reaction network:

C1 
 · · ·
 Ci−1 
 Ci 
 Ci+1 
 · · ·
 Cn+1,

where each complex Ci is given by a weighted sum of distinct chemicals as follows:

Ci =

ni∑

k=1

akiX
k
i

for positive integers aki .
Some special cases of this network have been studied in [5] (where all complexes

consist of precisely one chemical and all chemicals in the network are distinct) and
[21] (where C1 = X1 +X2 consists of 2 chemicals, all subsequent complexes consist
of precisely one chemical, all chemicals in the network are distinct and mass action
kinetics is assumed)

Throughout this paper we assume that at least one complex is nontrivial. Equiv-
alently, there is at least one ni > 1. We also assume that each chemical is part of
precisely one complex, or Xk

i 6= X l
j for all k, l whenever i 6= j. The concentration

vector associated to complex Ci is denoted by xi = (x1
i , ..., x

ni
i )T and its associated

stoichiometric vector by ai = (a1
i , ..., a

ni
i )T . We will also use the full concentration

vector x = (xT1 , ..., x
T
n+1)

T with x ∈ RN+ where N is the sum of all ni.
All reaction rates are assumed to be C1 monotone functions of the concentrations

of the reagentia, zero when one of the reagentia is missing, and positive when all of
the reagentia are present. The forward reaction rate of the reaction Ci 
 Ci+1 is
denoted by Ri and the backward reaction rate by R−i. Formally, for all i = 1, ..., n
it is assumed throughout the rest of this paper that:

Ri : Rni+ → R+, Ri(xi) = 0 ∀xi ∈ ∂Rni+ , Ri(xi) > 0 and

∂TRi/∂xi(xi) ∈ int(Rni+ ) ∀xi ∈ int(Rni+ )

and similarly for the backward reaction rates R−i. (But notice that R−i is defined
for xi+1 ∈ Rni+1

+ .)
The familiar example of mass action kinetics, where reaction rates are given by

Ri(xi) = κi
∏ni

k=1(xki )
aki for some κi > 0, satisfies these requirements.

We define the reaction rate vector by:

R(x) = (R1(x1), R−1(x2), ..., Rn(xn), R−n(xn+1))T
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and the stoichiometric matrix of the network by:

S =




−a1 +a1 0 0 . . . 0
+a2 −a2 −a2 +a2 . . . 0

...
. . . . . .

0 . . . +an −an −an +an
0 . . . 0 0 an+1 −an+1



.

Then the differential equations for the concentrations are:

ẋ = SR(x). (3)

A standard argument shows that system (3) is positive, i.e. that the nonnegative
orthant RN+ is forward invariant. Notice that this system is not monotone with
respect to any order generated by an orthant of RN . This is seen by inspection
of the incidence graph associated to system (3), which contains a loop of negative
parity. Indeed, consider a loop formed by two nodes corresponding to chemicals
in the same complex and a third node corresponding to an arbitrary chemical in a
neighboring complex (this is a complex which can be reached from the first complex
by a single reaction step). Clearly, such a loop has negative parity. Our main result
will be the following:

Theorem 1. Every solution of system (3) converges to an equilibrium point.

In our subsequent analysis we will assume that there is at least one complex with
nonzero initial concentrations for all its constituent chemicals:

∃i : xki (0) > 0, ∀k = 1, ..., ni. (4)

For if (4) would not hold, none of the reactions would take place. Note that such
initial conditions correspond to equilibria for which theorem 1 holds trivially, so
assumption (4) entails no loss of generality.

Associated to each complex Ci with ni > 1, there are ni − 1 independent linear
first integrals. Indeed,

d

dt

(
xki
aki
− x1

i

a1
i

)
= 0, ∀k = 2, ..., ni (5)

along solutions of (3) and thus we have that:

xki (t) = βki x
1
i (t) + αki , ∀k = 2, ..., ni (6)

for some αki ∈ R (which depends on initial conditions) and βki = aki /a
1
i > 0. In fact,

we claim that without loss of generality, we may assume that:

αki ≥ 0, ∀k = 2, ..., ni.

To see this, notice that after a possible relabeling of the chemicals within each
complex, there holds that:

xki (0)

aki
≥ x1

i (0)

a1
i

, ∀k = 2, ..., ni
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from which our claim follows immediately.
By (6) it suffices to consider the dynamics of the concentrations of the first

chemical -x1
i - of every complex Ci. For every i, define:

yi := x1
i , ri(yi) := Ri(yi, β

2
i yi + α2

i , ..., β
ni
i yi + αnii ),

r−i(yi+1) := R−i(yi+1, β
2
i+1yi+1 + α2

i+1, ...).

Notice that each ri is a C1 function with the following properties:

ri : R+ → R+, ri(0) = 0, ri(yi) > 0 and r′i(yi) > 0 ∀yi > 0

and similarly for each r−i.
Denoting y = (y1, ..., yn+1)T , r(y) = (r1(y1), r−1(y2), ..., rn(yn), r−n(yn+1))T and

setting:

S̃ =




−a1
1 +a1

1 0 0 . . . 0
+a1

2 −a1
2 −a1

2 +a1
2 . . . 0

...
. . . . . .

0 . . . +a1
n −a1

n −a1
n +a1

n

0 . . . 0 0 a1
n+1 −a1

n+1




we arrive at the following system:

ẏ = S̃r(y) (7)

where y ∈ Rn+1
+ \ {0}, (note that 0 is excluded because of (4)).

Since y1(t)/a1
1 + y2(t)/a1

2 + · · · + yn+1/a1
n+1(t) = C along solutions for some

constant C > 0 we can reduce the dimension by 1 by dropping the equation for yn+1

and then introduce n new variables:

zj =

j∑

i=1

yi
a1
i

, j = 1, ..., n.

The inverse transformation is:

y1 = a1
1z1

yj = a1
j(zj − zj−1), j = 2, ..., n.

Using these new coordinates, the equations for the reduced system are:

ż1 = −r1(a1
1z1) + r−1(a1

2(z2 − z1))
...

żk = −rk(a1
k(zk − zk−1)) + r−k(a

1
k+1(zk+1 − zk)), k = 1, ..., n− 1

...

żn = −rn(a1
n(zn − zn−1)) + r−n(a1

n+1(C − zn)) (8)

with compact and convex state space:

Ω = {z ∈ Rn | 0 ≤ z1 ≤ z2 ≤ · · · ≤ zn ≤ C}.

Clearly, system (8) is cooperative (and tridiagonal).
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Lemma 1. If z∗ ∈ Ω is a steady state of system (8), then z∗ ∈ int(Ω). Moreover,
z∗ is hyperbolic and locally asymptotically stable.

Proof. Suppose that z∗ ∈ ∂Ω is a steady state of system (8). Then either z∗1 = 0 or
z∗n = C or z∗k = z∗k+1 for some k ∈ {1, ..., n− 1}. Using that all functions ri and r−i
can only be zero at zero, each of these cases will lead to a contradiction with the
fact that C > 0. This establishes the first part of the lemma.

For the second part, notice that the Jacobian at a steady state has the following
structure:

J =




−a11 − a12 +a12 0 . . . 0
+a21 −a21 − a23 +a23 . . . 0

...
. . . . . . . . .

...
0 . . . +a(n−1)(n−2) −a(n−1)(n−2) − a(n−1)n +a(n−1)n

0 . . . 0 +an(n−1) −an(n−1) − ann




where all aij > 0.
We will prove that J is diagonally dominant and hence Hurwitz.
Recall that an n×n matrixB is called diagonally dominant if there are n numbers

di > 0 such that:
biidi +

∑

j 6=i
|bij|dj < 0, ∀i = 1, ..., n.

For a cooperative matrix such as J , the absolute values can be dropped in the above
definition. Therefore, we must find a vector d with positive entries, such that the
vector Jd is a vector with negative entries. Notice that J1 -where 1 is a vector
for which all entries are 1- is a vector with negative first and last entries (−a11,
respectively −ann) and all other entries are 0. This suggest that to find d we could
try to look for a suitable perturbation of the vector 1.

Define recursively n− 1 parameters εj as follows:

0 < ε1 <
a11

a11 + a12

0 < εj < εj−1

aj(j−1)

aj(j−1) + aj(j+1)

, j = 2, ..., n− 1.

Clearly εj < 1 for all j = 1, ..., n− 1. Next define the vector d as follows:

di = 1− εi, i = 1, ..., n− 1 and dn = 1.

Then it can be checked that Jd is a vector with negative entries, showing that J is
diagonally dominant and hence a Hurwitz matrix. This concludes the proof.

Lemma 2. System (8) has a unique, globally asymptotically stable steady state in
Ω.

Proof. Since Ω is a compact, convex, forward invariant set for system (8), it has at
least one steady state. By the previous lemma, all steady states belong to int(Ω).
Then the Brouwer degree of the vector field F of system (8) with respect to int(Ω)
and value 0, is well defined and denoted by d(F, int(Ω), 0). Moreover, we claim that:

d(F, int(Ω), 0) = (−1)n.
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To see this, pick an arbitrary point x̄ ∈ int(Ω) and consider the following vector
field on Ω:

G(x) = x̄− x.
Obviously,

d(G, int(Ω), 0) = (−1)n.

We will show that F and G are homotopic, and then our claim follows since the
Brouwer degree is a homotopy invariant. Define:

H(x, t) = tF (x) + (1− t)G(x)

Then H is continuous on Ω × [0, 1], H(x, 0) = G(x) and H(x, 1) = F (x). We are
left with proving that H(x, t) 6= 0 for all x ∈ ∂Ω and all t ∈ (0, 1). Suppose that
this is not the case, then there is a x̃ ∈ ∂Ω and t̃ ∈ (0, 1) such that:

F (x̃) = −1− t̃
t̃

G(x̃)

This implies that F points outwards in x̃ (since G(x̃) clearly points inwards). But
this contradicts the fact that Ω is forward invariant and establishes our claim.

By the previous lemma, we know that the Jacobian at each steady state of (8)
is nonsingular and hence the number of steady states is finite. By definition of the
Brouwer degree for C1 mappings:

d(F, int(Ω), 0) =
∑

i

sign detJ(x∗i )

where J(x∗i ) is the Jacobian at a steady state of system (8) and the summation runs
over all steady states.

Now by the previous lemma every steady state x∗i is hyperbolic and locally
asymptotically stable, so there holds that:

sign detJ(x∗i ) = (−1)n

and hence there can only be one steady state.
Global asymptotic stability follows from lemma 5 which is proved in an Ap-

pendix. To see that this result can be applied, note first that since Ω is compact
and forward invariant, system (8) generates a continuous semiflow. Condition 4. is
clear by compactness of Ω. Condition 2. follows from the fact that system (8) is
cooperative in Ω and therefore generates a monotone semiflow with the order given
by the usual componentwise order on Rn1. Condition 3. has just been proved and
condition 1. is satisfied as well. (Proof: for any compact K ⊂ Ω, for all i = 1, ..., n,
let p∗i ∈ K be some point in K with maximal i-component. Note that p∗i exists in K
since the projection on the i-th component is continuous and K is compact. Now,
Ω is a lattice, i.e. sup(a, b) ∈ Ω whenever a, b ∈ Ω. Therefore p := supi(p

∗
i ) ∈ Ω and

it is easy to see that sup(K) = p. The proof that inf(K) ∈ Ω is similar.)

1Here we have used that Ω is convex, hence p-convex. The conclusion then follows from Proposition
3.1.1 and Remark 3.1.1 in [27].
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Remark 1. We could also have proved global asymptotic stability using results of
Smillie [26] or even of Mierczynski [22]. But these require verification of stronger
monotonicity properties of the flow, which has been avoided here. For a proof using
Smillie’s results for the case where each complex consists of only one chemical, see
[5].

Proof of Theorem 1 This follows from the reduction and transformation of system
(3) to system (8), combined with lemma 2.

3 Adding Diffusion

Ordinary differential equation models such as considered in (3) implicitly assume
that reactions proceed in a well-mixed environment. While this is a reasonable
assumption when diffusion is fast compared to the time scales of reactions, it is of
interest as well to incorporate explicitly the effect of diffusion. This leads to reaction-
diffusion (also known as semilinear parabolic) partial differential equations.

In this section, we show how to extend our results to the case when diffusion is
included in the model. Our results intersect, for the special example of the reaction
X1 + X2 
 X3, and assuming mass action kinetics, with those given in [23]. That
paper dealt with the extension of the Feinberg-Horn-Jackson (FHJ) theory of chem-
ical reactions (see e.g. [11, 19, 29, 7]) from ODE’s to reaction-diffusion problems.
(See also [24] for the statement of convergence results for reaction-diffusion FHJ
systems, but with incomplete proofs.) The techniques in [24, 23] are based upon
Lyapunov functions, and are thus different from our approach, which allows treating
a different class of reactions and we do not need to restrict ourselves to mass action
kinetics. On the other hand, there is an abundance of examples of chemical systems
which are of FHJ type but are not monotone, and thus cannot be treated with our
techniques.

Our goal in this section is to show how the analogous convergence results for the
PDE model follow as easy corollaries from those for ODE’s. (An alternative would be
to prove all results ab initio in the framework of monotone reaction diffusion systems,
but the reduction to ODE’s is far simpler.) In general, we consider initial/Neumann-
boundary “no-flux” PDE problems for functions x(q, t) of space and time, where
dot indicates derivative with respect to time, xν indicates normal derivative, f is a
monotone vector field, and L is a diffusion partial differential operator:

ẋ = Lx+ f(q, x) t > 0 , q ∈ Q
xν = 0 t > 0 , q ∈ ∂Q (9)

x(q, 0) = x0 q ∈ Q̄ .
The key observation that we wish to make is that (under appropriate technical
assumptions) every solution of (9) converges to a unique homogeneous equilibrium:
x(q, t) → c as t → ∞, provided that every solution of the associated ODE ẋ =
f(x) converges to c. Thus, the results proved earlier extend to the diffusion case.
(Monotonicity of f is essential – compare to diffusive instability phenomena such as
arise in activator-inhibitor mechanisms for pattern formation.) Let us first develop
some background, blending results on monotone reaction-diffusion systems from [27],
Chapter 7 with some technical facts from [1].
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The set Q represents space, and is a bounded, open, connected subset of an
Euclidean space RM with smooth (class C4) boundary ∂Q. The vector field f is of
class C2. The notation xν indicates directional derivative with respect to the outer
unit normal ν = ν(q) to ∂Q at the point q. We pick a nonempty closed subset
X of Rn to restrict the allowed values of concentrations, such as for example the
nonnegative orthant or the compact and convex state space Ω used in Lemma 1,
and assume that X is forward-invariant with respect to the ODE ẋ = f(x) (two
additional assumptions on X are made below). The initial condition is a function

x0 : Q̄→ X

which is twice continuously differentiable and satisfies the boundary requirement
(x0)ν = 0. By a “solution” of (9) we mean a function

x = (x1, . . . , xn)′ : Q̄× [0, T ]→ X

(prime indicates transpose) such that (9) holds and:

∂xi
∂t
,
∂xi
∂qj

,
∂2xi
∂qj∂qk

are Hölder continuous on Q× (0, T ] for all i, j, k

and

∂xi
∂qj

, xi are continuous on Q̄× (0, T ] for all i, j .

These assumptions are as in [1]; in [27] it is only required that ∂xi
∂qj

be continuous on

Q̄ × (0, T ] (also, Hölder continuity is relaxed to just continuity) but less regularity
is imposed on initial conditions.

The differential operator L has the following form:

Lx = (L1x1, . . . , Lnxn)′

where for every i,

Li =
n∑

j,k=1

aijk(q)DjDk +
n∑

k=1

aik(q)Dk

with each aikj = aijk ∈ C2(Q̄), and L is uniformly elliptic:

∃µ > 0 such that ξ′Ai(q)ξ ≥ µ |ξ|2 ∀ ξ ∈ Rn

where Ai(q) = (aijk(q)). The main example for us will be the case in which there
is independent diffusion of each species: aijj ≡ di > 0, and ak ≡ 0, ajk ≡ 0 for all
j 6= k, i.e. Lxi = di∆xi, where ∆ is the Laplacian.

Two additional conditions must be imposed on the set of allowed state vectors
X. We already asked that it be invariant under the dynamics ẋ = f(x). A second
requirement is that it should also be invariant under diffusion, in the sense that
solving the linear problem ẋ = Lx with an initial condition having x0(q, 0) ∈ X for
all q ∈ Q should result in a solution with x(q, t) ∈ X for all t > 0 and all q ∈ Q. For
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this purpose we will assume from now on either that Q is an arbitrary open convex
set but all operators Li are the same (for example, there is independent diffusion of
each species and di = dj for all i, j), or that the Li’s are arbitrary but that Q equals
a “rectangle” (a, b), with b− a ∈ Rn+ (possibly with a = −∞ or b = +∞).

Assume from now on that an order has been specified on Rn. A last requirement
is a lattice requirement on the set X (see also the Appendix): for any compact
subset S ⊆ X, both inf(S) and sup(S) are defined and belong to X. We say that
a vector field is quasi-monotone (with respect to the given order on X ⊆ Rn) if the
flow of ẋ = f(x) is monotone. Given two functions x, y with values in X, we write
x � y if x(q, t) � y(q, t) for all (q, t) in their common domain. The following is a
version of Theorem 3.4 in [27]. We have specialized it to PDE’s (in the textbook, it
is given in more generality, for partial differential inequalities), and we have stated it
for arbitrary orders (the statement in the book is given only for cooperative systems,
but, cf. page 142, the same proof is valid for arbitrary orders).

Theorem 2. If f is quasi-monotone, and y, z are solutions defined on [0, T ) such
that y(·, 0) � x0 � z(·, 0) on Q̄, then there is a unique solution x of (9), defined at
least on the interval [0, T ), and y � x � z on Q̄× [0, T ).

We are now ready to state our conclusions. The first remark is as follows.

Theorem 3. Suppose that f is quasi-monotone, and that there exists ξ ∈ X so that
every solution of ẋ = f(x), x0 ∈ X, converges to ξ as t → ∞. Then, for each
initial condition x0, there is a unique solution x(q, t) of (9), defined for all t > 0,
and x(q, t)→ ξ as t→∞, uniformly on q ∈ Q.

To prove this statement, we first pick y as a function Q̄→ X which is constantly
equal to the minimum value of x0, and z as a function Q̄ → X which is constantly
equal to the maximum of x0. Furthermore, we observe that the solution y(t) of
ẋ = f(x), x(0) = y (which is defined for all t and converges to ξ as t → ∞) can
be also seen as a solution of (9), simply letting y(q, t) ≡ y(t). Similarly with z, and
we are in the situation of Theorem 2. Applying this Theorem on increasing finite
intervals [0, T ), we obtain existence and uniqueness of x(q, t) on [0,∞). Furthermore,
we have that y(q, t) � x(q, t) � z(q, t), and both y(q, t) → ξ and z(q, t) → ξ
(uniformly on q), which gives the conclusion.

Unfortunately, as elegant as Theorem 3 is, it is not sufficient by itself when
treating the original system (3), because there are many equilibria for this system.
We need to make an additional assumption, namely that all diffusion rates coincide.

Theorem 4. Suppose that f is as in Theorem 1, and that, for some d > 0, Lixi =
d∆xi for each coordinate of the state. Then all solutions of (9) converge to (homo-
geneous) steady states.

To prove this, we use the same change of coordinates as earlier. Applied to the
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PDE, this results in equations of the form

ż1 = −r1(a1
1z1) + r−1(a1

2(z2 − z1)) + d∆z1

...

żk = −rk(a1
k(zk − zk−1)) + r−k(a

1
k+1(zk+1 − zk)) + d∆zk, k = 1, ..., n− 1

...

żn = −rn(a1
n(zn − zn−1)) + r−n(a1

n+1(C − zn)) + d∆zn.

Combining Lemma 2 with Theorem 3, we know that every solution of this system
converges to a (unique) homogeneous steady state. Thus, the variables yi = x1

i also
converge to such steady states. We now prove that the remaining variables do, too.

Recall that there were, for the ODE (no diffusion) ni−1 independent linear first
integrals, as shown in (5):

Żik = 0 ∀ i ∀k = 2, ..., ni ,

where Zik = xki /a
k
i − x1

i/a
1
i . From there we obtained expressions as in (6):

xki (t) = βki x
1
i (t) + αki ∀ i ∀k = 2, ..., ni

for some αki ∈ R (which depend on initial conditions) and βki > 0. Thus, when the
x1
i converge, the same could be concluded for each other variable xki . When adding

diffusion, this argument does not work. Equation (5) becomes, instead:

Żik = LZik ∀ i ∀k = 2, ..., ni

with LZ = d∆Z, subject to the Neumann condition (Zik)ν = 0 at boundary
points. Every solution of this PDE converges to a constant, namely the average

1
|Q|
∫
Q
Zik(q, 0) dq of its initial values, where |Q| is the measure of Q. (Sketch of proof:

there is a sequence of eigenvalues and respective eigenvectors λi, φi, i = 1, 2, . . . , of
the self-adjoint Neumann Laplacian: solutions of Lφ + λφ = 0, φν = 0. These
satisfy λ1 = 0, φ1 = 1, and λi > 0 for all i > 1, and the φi form an orthogonal
basis of L2. Now take any continuous and bounded initial condition x0, viewed as
an element of L2, and expand it in terms of this basis: x(q, 0) =

∑∞
i=1 biφi(q); then

x(q, t) =
∑∞

i=1 bie
−λitφi(q) is the solution of Ż = LZ with this initial condition, and

it converges, in L2, to the first Fourier term b1, which is the required average.) In
summary, both xki /a

k
i − x1

i/a
1
i and x1

i converge to a constant, so every variable xki
does, too.

4 Appendix: A global attractivity result for mono-

tone flows with unique equilibria.

Consider a metric space X with metric d and suppose that a partial order � has
been defined on X. It will be assumed that the partial order and the metric topology
on X are compatible in the following sense: if xn → x and yn → y are converging
sequences inX with xn � yn, then x � y. We occasionally abuse notation by writing
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x � A for some x ∈ X and A ⊂ X, to denote that x � y for all y ∈ A. We will
use the familiar order-theoretic notions sup(A) and inf(A) to denote the least upper
bound and greatest lower bound of a set A ⊂ X -provided they exist in X. For two
points p, q ∈ X with p � q, we define the order interval [p, q] := {x ∈ X | p � x � q}.
A set A ⊂ X is called order convex if [p, q] ⊂ A for every pair p, q ∈ A with p � q.

We will discuss the dynamics generated by a continuous semiflow Φ on X. Recall
that this is a continuous map Φ : R+ × X → X with Φt(x) := Φ(t, x) such that
Φ0 = Id and Φt ◦ Φs = Φt+s for t, s ∈ R+.

The following conditions on X and Φ are introduced:

1. For every compact subset C of X, there holds that inf(C), sup(C) ∈ X.

2. Φ is monotone with respect to �, i.e. (1) holds.

3. Φ has a unique equilibrium point a in X.

4. For every x ∈ X, the orbit O(x) := {Φt(x) | t ∈ R+} has compact closure in
X.

The last condition 4. implies in particular that the ω limit set of x, denoted by ω(x),
is nonempty, compact, invariant (meaning that Φt(ω(x)) = ω(x) for all t ∈ R+) and
limt→∞ d (Φt(x), ω(x)) = 0 (where the usual distance from a point x ∈ X to a set
A ⊂ X is given by d(x,A) = infy∈A d(x, y)). Under conditions 1 − 4 we have the
following result:

Theorem 5. The equilibrium point a is globally attractive for Φ.

Proof. Pick x ∈ X and consider ω(x). Then we can define:

m = inf(ω(x)) and M = sup(ω(x)).

We claim that:

Φt(m) � m, ∀t ∈ R+. (10)

To see this, we will prove that for all t ≥ 0, Φt(m) � ω(x), from which (10) will
follow since m is the greatest lower bound of ω(x).

Choose t ≥ 0 and select an arbitrary p ∈ ω(x). We need to show that Φt(m) � p.
By invariance of ω(x) there is some q ∈ ω(x) such that Φt(q) = p. Now m � q since
q ∈ ω(x) and thus monotonicity implies that Φt(m) � Φt(q) = p, thus proving (10).

Monotonicity implies that Φt(m) is nonincreasing, i.e. Φt2(m) � Φt1(m) if 0 ≤
t1 ≤ t2. (simply apply Φt1 to (10) where t = t2 − t1)

We now claim that ω(m) = {a}.2 We will first show that p, q ∈ ω(m) implies
that p = q. Pick sequences Φtk(m) → p and Φtl(m) → q with tk, tl → ∞. Since
Φt(m) is nonincreasing, it is possible to find for every tk, some tl(k) ≥ tk such that
{tl(k)} forms a subsequence of {tl} and Φtl(k)

(m) � Φtk (m). After taking limits, we

2This claim would immediately follow from the Convergence Criterion for monotone systems (The-
orem 1.2.1 in [27]), using uniqueness of the equilibrium a. However, here we prefer to give a
self-contained yet short proof, without having to resort to any of the results from the theory of
monotone systems.
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find that q � p. A similar argument shows that p � q and therefore p = q. So this
shows that ω(m) is a singleton. Invariance of ω limit sets then implies that ω(m)
must consist of an equilibrium. Uniqueness of the equilibrium a then implies that
ω(m) = {a}, proving the claim.

A similar argument yields that Φt(M) is monotonically increasing and that
ω(M) = {a}.

Finally, we have that for all t ≥ 0:

Φt(m) � m � ω(x) �M � Φt(M)

and upon taking limits for t → ∞, we obtain that ω(x) = a, which concludes the
proof.

Remark 2. Theorem 5 may also be useful for flows on infinite dimensional spaces.
For instance, in delay equations one often considers spaces of continuous functions
defined on a compact interval such as X = C([−r, 0],Rn) or X = C([−r, 0],Rn+)
with the usual metric induced by the supremum norm and with the usual partial
order, defined by f1 � f2 iff f2(t)− f1(t) ∈ Rn+ for all t ∈ [−r, 0]. In both cases, the
inf and sup of compact sets exist in X, see [18].

Remark 3. Condition 1. appeared in the work of [20] whose ideas we have followed
here. More recently, this condition also surfaced in the work of [18]. There, a
stronger monotonicity property is imposed on the semiflow, but equilibria need
not be unique. The result is that the set of quasiconvergent points (a point is
quasiconvergent if its omega limit set is contained in the set of equilibria) contains
an open and dense set. The proof relies on a number of fundamental results from
the theory of monotone systems.

Remark 4. Although lemma 5 is sufficient for proving our main result on chemical
reaction networks (theorem 1), we can generally conclude stability of the equilibrium
a as well, provided the space X and the flow Φ satisfy extra conditions.

C Every neighborhood of every point x ∈ X contains a compact, order convex
neighborhood C of x.

Then we obtain the following result:

Lemma 3. Assume that for every t ∈ R+, Φt is an open mapping. Then under
conditions 1 − 4 and C, the equilibrium point a is globally asymptotically stable for
Φ.

Proof. By lemma 5 it suffices to prove that a is a stable equilibrium. We will
repeatedly use the fact that for all p, q ∈ X with p � q, there holds that:

Φt([p, q]) ⊂ [Φt(p),Φt(q)], ∀t ∈ R+,

which follows from monotonicity of Φ.
Choose an arbitrary neighborhood U of a. Then by condition C, there is some

compact and order convex neighborhood C of a with C ⊂ U . By condition 1., we
can define:

i = inf(C) and s = sup(C)
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and consider the order interval [i, s]. Then obviously, C ⊂ [i, s], so [i, s] is also a
neigborhood of a. Consequently, since for every t ∈ R+, Φt is an open mapping,
Φt([i, s]) is also a neighborhood of a.

Now choose T > 0 such that:

Φt(i),Φt(s) ∈ C, ∀t ≥ T. (11)

Such a T exists by lemma 5.
Now consider the neigborhood V := ΦT ([i, s]) of a. Then for all t ≥ 0, there

holds that:

Φt(V ) = Φt(ΦT ([i, s])) ⊂ Φt([ΦT (i),ΦT (s)]) ⊂ [Φt+T (i),Φt+T (s)] ⊂ C ⊂ U

where we used the fact from above in proving the first two inclusions, and (11) and
C (and in particular for the first time that C is order convex), for proving the third
inclusion. This concludes the proof.

5 Appendix: Riccati equations are monotone sys-

tems

Here we provide an alternative proof of the fact that the solutions of the real,
symmetric Riccati differential equation generate a monotone flow.

Let’s start by introducing some terminology. The real, n2-dimensional vector
space of real n × n matrices is denoted by R. We assume that R is equipped with
an inner product 〈., .〉, defined by 〈X,Y 〉 = tr

(
XY T

)
. This inner product induces

a norm (known as the Frobenius norm) and thus a metric on R in the obvious way.
We shall assume that all topological notions are with respect to this metric. Note
that the normed vector space R is isometrically isomorphic to Rn2

(with the usual
Euclidean norm). To see this define T : R → Rn2

by:

T (X) = (x1x2...xn)
T ,

where xi is the ith row of X. Then it is easily checked that T is an isomorphism and
an isometry. Occasionally, it is useful to have this ’equivalence’ of both spaces in
mind, in particular when considering systems of differential equations or geometric
objects (such as subspaces or cones which will be introduced below). The set of
real symmetric matrices will be denoted by S = {S ∈ R |S = ST}. Clearly, S is
a linear subspace of R of dimension n(n + 1)/2. Let P(P+) ⊂ S denote the set
of symmetric positive semidefinite (definite) matrices. Then P is nonempty and
closed (with respect to the subspace topology on S), R+P ⊂ P, P + P ⊂ P and
P ∩ (−P) = ∅. Thus, P is a cone in R and in S. Note that int(P) = P+ in S (but
obviously int(P) would be empty in R). We shall also need the concept of the dual
cone. If (X, 〈., .〉) is a finite-dimensional real inner product space and if K ⊂ X is a
cone, then the dual cone of K is denoted by K ∗ and defined by:

K∗ = {y ∈ X | 〈y, k〉 ≥ 0, ∀k ∈ K}.

Next we collect -without proof- some facts about the cone P ⊂ S and its dual cone
P∗.
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Lemma 4. P = P∗.
Lemma 5. If P ∈ P and P ∗ ∈ P∗ are such that 〈P ∗, P 〉 = 0, then P ∗P = 0 = PP ∗.

Lemma 6. Let P,Q ∈ P+ and Q−P ∈ P. Then P−1, Q−1 ∈ P+ and P−1−Q−1 ∈
P.

With this background material in place, we are ready to introduce the matrix
Riccati differential equation on R:

Ẋ = XAX +B1X +XBT
2 + C, (12)

where X ∈ R and A,B1, B2 and C are given matrices in R.
Obviously, solutions exist and are unique for every X0 ∈ R, since the vectorfield

of (12) is locally Lipschitz. We will denote the solution by X(t,X0) with t ∈ I, where
I is the (open) maximal interval of existence in R, which contains 0. We will also
consider the forward maximal interval of existence which is defined by I+ = I ∩R+.

On the other hand, this system is not necessarily (forward) complete. (Forward)
completeness means that for every solution we have that I = R (I+ = R+). For
instance, consider the scalar Riccati equation with A = 1, B1 = B2 = C = 0 with
initial condition X(0) = 1. Then the corresponding solution is X(t, 1) = 1/(1 − t),
which is of course only defined for t ∈ (−∞, 1).

We will study system (12) under the following additional constraint:
(S) A, C ∈ S and B1 = B2.
An immediate consequence is that if (S) holds, then S is an invariant set of

(12). This follows from the fact that if X(t) is a solution of (12), then XT (t) is
also a solution of (12). Uniqueness of solutions then implies that if X(0) ∈ S, then
X(t) = XT (t) for all t for which the solution exists. This observation justifies the
restriction of the dynamics of system (12) to the invariant set S, which will be
assumed henceforth.

Our goal is to show that assuming (S), system (12) is monotone on S. The
partial order on S which will be preserved by the solutions is generated by the cone
of positive semidefinite matrices P. Thus, for X0, Y0 ∈ S, X0 � Y0 if and only if
Y0 −X0 ∈ P. In view of the above fact that the Riccati equation is not necessarily
forward complete, we must slightly relax our original definition of a monotone system
(which assumed that the solutions of the system generate a semiflow; in particular
this implies that solutions are defined for all t ∈ R+). The modification is not at
all surprising. We will say that system (12) is monotone on S (with respect to the
order generated by P) if:

∀X0, Y0 ∈ S : X0 � Y0 ⇒ X(t,X0) � X(t, Y0), ∀t ∈ I+
1 ∩ I+

2 ,

where I+
1 and I+

2 are the maximal forward intervals of existence of the solutions
X(t,X0) and X(t, Y0).

Theorem 6. Let (S) hold. Then system (12) is monotone on S.

Proof. Since S is convex, (hence in particular p-convex) it suffices by Theorem 1.1
and 1.2 in [17] to verify that:

∀(P,Q) ∈ ∂P ×P∗ : 〈Q,P 〉 = 0⇒ 〈Q,DFX(P )〉 ≥ 0,
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where DFX(Y ) = XAY + Y AX +B1Y + Y BT
1 , the linearization of system (12) at

X.
Now if (P,Q) ∈ ∂P × P∗, satisfy 〈Q,P 〉 = 0, then lemma 5 implies that QP =

PQ = 0. From this we get:

〈Q,DFX(P )〉 = tr
(
Q[XAP + PAX +B1P + PBT

1 ]
)

= 0,

which concludes the proof.
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