
DIMACS Technical Report 2004-23
May 2004

Protecting (even) Naïve Web Users,
or: Preventing Spoofing and Establishing Credentials of Web Sites

by

Amir Herzberg
Department of Computer Science

Bar-Ilan University
Ramat Gan 52900, Israel

Email: herzbea @. cs.biu.ac.il

Ahmad Gbara
Department of Computer Science

Bar-Ilan University
Ramat Gan 52900, Israel

DIMACS is a collaborative project of Rutgers University, Princeton University, AT&T
Labs-Research, Bell Labs, NEC Laboratories America and Telcordia Technologies, as
well as affiliate members Avaya Labs, HP Labs, IBM Research and Microsoft Research.
DIMACS was founded as an NSF Science and Technology Center.

ABSTRACT

In spite of the use of standard web security measures, swindlers often clone sensitive web
sites and/or present false credentials, causing substantial damages to individuals and
corporations. Several papers presented such web spoofing attacks, and suggested
countermeasures, mostly by improved browser user interface. However, we argue that
these countermeasures are inappropriate to most non-expert web users; indeed, they are
irrelevant to most practical web-spoofing attacks, which focus on non-expert users. In
fact, even expert users could be victim of these practical, simple spoofing attacks,
resulting in identity theft or other fraud.

We present the trusted credentials area, a simple and practical browser UI
enhancement, which allows secure identification of sites and validation of their
credentials, thereby preventing web-spoofing, even for naïve users. The trusted
credentials area is a fixed part of the browser window, which displays only authenticated
credentials, and in particular logos, icons and seals. In fact, we recommend that web sites
always provide credentials (e.g. logo) securely, and present them in the trusted credentials
area; this will help users to notice the absence of secure logo in spoofed sites.

Existing web security mechanisms (SSL/TLS) may cause substantial overhead if applied
to most web pages, as required for securing credentials (e.g. logo) of each page. We
present a simple alternative mechanism to secure web pages and credentials, with
acceptable overhead. Finally, we suggest additional anti-spoofing measures for site
owners and web users, mainly until deployment of the trusted credentials area.

1 Introduction
The web is the medium for an increasing amount of business and other sensitive
transactions, for example for online banking and brokerage. Virtually all browsers and
servers deploy the SSL/TLS protocols to address concerns about security. However, the
current usage of SSL/TLS by browsers, still allows web spoofing, i.e. misleading users by
impersonation or misrepresentation of credentials. Swindler can perform web spoofing by
clever attacks, which are likely to mislead even technically savvy and wary users, or by
simpler techniques, which would still mislead most laymen and probably even many
expert users, when not on their guard. Indeed, there is an alarming increase in the amount
of real-life web-spoofing attacks, usually using the simpler techniques. Often, the
swindlers lure the user to the spoofed web site by sending her spoofed e-mail messages
that link into the spoofed web-sites; this is a phishing attack. In a typical phishing attack,
spoofed spam e-mail messages are lure the victim into spoofed web sites, e.g.
impersonating as financial institutions. The goal of the attackers is often to obtain
personal and financial information and abuse it for identity theft. A study by Gartner
Research [L04] found that about two million users gave such information to spoofed web
sites, and that “Direct losses from identity theft fraud against phishing attack victims —
including new-account, checking account and credit card account fraud — cost U.S.
banks and credit card issuers about $1.2 billion last year.”. For examples of phishing e-
mail messages, see [Citi04]. Spoofing attacks, mostly using the phishing technique, are
significant threats to secure e-commerce, see e.g. [APWG04, BBC03] and Figure 1. We
investigate spoofing and swindling attacks and present countermeasures, focusing on
solutions that protect naïve as well as expert users.

Figure 1: Phishing attack trends (source: [APWG04])

Felten et al. first identified the web-spoofing threat in [FB*97]. However, in this work
and all follow-up works [LN02, LY03, SF03, YS02, YYS02], the focus was on attacks
and countermeasures for knowledgeable and wary users, who check indications such as
the URL (location) of the web site and the security lock (SSL/TLS) indicator. However,
practical web-spoofing attacks deployed so far, do not use such techniques at all, or use
just basic scripts to present fake location bar [APWG04, Citi04]. Indeed, we argue that
most users will not be able to detect well-designed spoofed web sites, even without
requiring the attacker to emulate browser functionality at all. Such attacks will therefore
succeed even using the countermeasures proposed in the existing literature [LN02, LY03,
SF03, YS02, YYS02].

To prevent web spoofing, we propose to establish a trusted credentials area of the
browser window, in which the browser displays validated logos, seals and other
credentials of the web page / site. We recommend that commercial and organizational
web sites present secure logo and credentials in all of their web pages, both in order to
protect the integrity of these pages, and to increase the likelihood of users detecting a
spoofed (sensitive) web page, by noticing the lack of the appropriate logo and/or
credentials in the trusted credentials area.

We use cryptographic mechanisms to validate the logos and credentials in the trusted
credentials area. Specifically, we show how to use the (existing, deployed) SSL/TLS
protocols for this purpose. However, currently SSL/TLS are used by many organizations
only for few very sensitive web pages, since these protocols may involve substantial
overhead if applied for most or all web pages. To allow web-sites to protect the integrity

of all of their pages, as we recommend, we present an alternative mechanism, the
connection-less transport layer security (CLTLS) protocol. CLTLS protocol is a simple
variant of TLS, but by being connection-less and by additional optimizations, it can
provide the necessary validation of web pages with acceptable overhead.

Our solutions are simple and practical; we are implementing them as extensions of the
Mozilla open-source browser [Mozilla]. We hope that this publication will allow
additional implementations as well as feedback that will help us improve the design.

1.1 Organization
We begin, in Section 2, with a review of web spoofing attacks and defenses, deriving a
set of design criteria for protecting naïve users against spoofing (and phishing) attacks.
Then, in Section 3, we present the trusted credentials area approach. In Section 4 we
present the connection-less transport layer security (CLTLS) protocol, required to ensure
acceptable overhead of validation of credentials and logos. Finally, in Section 5, we
conclude with discussion of future work and recommendations for web-site owners, end
users, and browser developers.

2 Web Spoofing: Threat models, Attacks, Defenses and Design Criteria
The initial design of Internet and Web protocols assumes benign environment, where
servers, clients and routers cooperate and follow the standard protocols, except for
unintentional errors. However, as the amount and sensitivity of usage increased, concerns
about security, fraud and attacks became important. In particular, since currently Internet
access is widely (and often freely) available, it is very easy for attackers to obtain many
client and even host connections and addresses, and use them to launch different attacks
on the network itself (routers and network services such as DNS) and on other hosts and
clients. In particular, with the proliferation of commercial domain name registrars
allowing automated, low-cost registration in most top level domains, it is currently very
easy for attackers to acquire essentially any unallocated domain name, and place there
malicious hosts and clients. We call this the unallocated domain adversary: an adversary
who is able to issue and receive messages using many addresses in any domain name,
excluding a finite list of (already allocated) domain names. While we are not aware of
prior definition of this weak form of adversary, we believe most experts would agree that
this is the most basic and common type of adversary, and that Internet applications and
mechanisms should be resilient at least to attacks by unallocated domain adversaries.

Unfortunately, we believe, as explained below, that currently, most (naïve) web users are
vulnerable even against unallocated domain adversaries. This claim may be surprising, as
sensitive web sites are usually protected using the SSL or TLS protocols, which, as we
show in the following subsection, securely authenticate web pages even in the presence of
intercepting adversaries, which are able to send and intercept (receive) messages from all
domains. Indeed, even without SSL/TLS, the HTTP protocol securely authenticates web
pages against spoofing adversaries, which are able to send messages from all domains,
but receive only messages sent to unallocated (adversary-controlled) domains. However,
the security by SSL/TLS (against intercepting adversary; or by HTTP against spoofing
adversary) is only to the requesting application (usually browser), and only with respect to
the specific address (URL) and security mechanism (HTTPS, using SSL/TLS, or `plain`
HTTP); what guarantees that this address and security mechanism really correspond to
the user’s intentions and expectations? Web spoofing attacks usually focus on this gap

between the intentions and expectations of the (naïve) user, and the address and security
mechanism specified by the browser to the transport layer.

In the next subsection, we give a very brief description of the SSL/TLS protocols,
focusing on their mechanisms for server authentication. We then review Web-spoofing
and phishing attacks, showing how they are able to spoof even sensitive web sites
protected by SSL/TLS. We also discuss some of the countermeasures against web
spoofing proposed in previous works, and argue that they are appropriate for security
savvy and alert users, but may not be sufficient for naïve, off-guard users. We complete
this section by identifying design criteria for defenses against web spoofing.

2.1 Server Authentication with SSL/TLS
Netscape Inc. developed the Secure Socket Layer (SSL) protocol, mainly to protect
sensitive traffic, such as credit card numbers, sent by a consumer to web servers (e.g.
merchant sites). Transport Layer Security (TLS) is the name of an IETF standard
designed to provide SSL’s functionality; most browsers enable by default both SSL and
TLS. TLS has several improvements in cryptographic design, but they are beyond the
scope of this article (see [R00, H04]); therefore we use, from here on, the name SSL, but
refer also to TLS.

We focus on SSL’s core functionality and basic operations. Simplifying a bit, SSL
operation is divided into two phases: a handshake phase and a data transfer phase. We
illustrate this in Figure 2, for connection between a client and an imaginary bank site
(http://www.bank.com). During the handshake phase, the browser confirms that the server
has a domain name certificate, signed by a trusted Certificate Authority (CA), authorizing
it to use the domain name www.bank.com contained in the specified web address (URL).
The certificate is signed by CA; this proves to the browser that CA believes that the owner
of the domain name www.bank.com is also the owner of the public key PKserver. Next,
the browser chooses a random key k, and sends to the server EncrytPKserver(k), i.e. the key k
encrypted using the public key PKserver. The brower also sends MACk(messages), i.e.
Message Authentication Code using key k computed over the previous messages. This
proves to the server that an adversary didn’t tamper with the messages to and from the
client. The server returns MACk(messages) (with the last message from the browser added
to messages); this proves to the browser that the server was able to decrypt EncrytPKserver

(k), and therefore owns PKserver (i.e. it has the corresponding public key). This
concludes the handshake phase.

The data transfer phase uses the established shared secret key to authenticate and then
encrypt requests and responses. Again simplifying, the browser computes Encryptk

(Request, MACk(Request)) for each Request, and the server computes Encryptk(Response,
MACk(Response)) for each Response. This protects the confidentiality and integrity of
requests and responses.

Client’s browser Bank’s server
Hello, options

Certificate=SignCA(www.bank.com,PKserver,...)

EncrytPKserver(k), MACk(messages)

MACk(messages)

Encryptk(Request, MACk(Request))

Encryptk(Response, MACk(Response))

Data Transfer
Phase: Repeat
for each request

Handshake
Phase: once
per connection

Figure 2: Simplified SSL/TLS Operation

To summarize, web security is based on the following basic security services of SSL:
1. Server (domain name) authentication1: confirming that the server has the private key which

can decrypt messages encrypted by the client using public key PKserver, where the certifi-
cate signed by the CA establishes the linkage between the ownership of PKserver to the do-
main name of the site (www.bank.com in this example).

2. Confidentiality and authentication of the traffic between client and server, by using encryp-
tion and message authentication (MAC) using the shared secret `master key` k established
during handshake phase.

Unfortunately, most web pages are not protected by SSL. This includes most corporate
and government web pages, and other sensitive web pages. The reason is mainly
performance; the SSL protocol, while fairly optimized, still consumes substantial
resources at both server and client, including at least four flows at the beginning of every
connection, state in the server, and computationally-intensive public key cryptographic
operations at the beginning of many connections. Later on, we present a more efficient
mechanism for authenticating credentials of web pages and other objects.

2.2 Web-spoofing and Phishing Attacks
SSL is a mature cryptographic protocol; while few weaknesses were found in some early
versions and implementations of it, the versions currently used, from version 3.0 of SSL
and 1.0 of TLS, seem secure. (This refers to the full protocol; the simplified description
above is not secure.) However, the security of a solution based on SSL/TLS depends on
how the protocol is used, e.g. by browsers. There are two major vulnerabilities in the way
browsers use SSL/TLS.

The first vulnerability is due to the dependency on public key certificates linking the
public key with the location (URL). In the false certificate attack, the adversary receives a
certificate for the domain of the victim web page from a CA trusted by the browser, but
containing a public key generated by the adversary. Therefore, the adversary has the
matching private key and can pass SSL server authentication for the victim web page.
Most browsers are pre-installed with a long list of certification authorities which are
1 SSL also supports client authentication, but this is rarely used to protect web transactions, possibly due

to concerns about user acceptance and support costs; we therefore do not discuss it.

trusted for server authentication by default; few users inspect this list and remove
unknown or untrusted CA entries. Furthermore, since CA compete with each other on
offering certificates to servers, and have very limited if any liability in case of fraud, it is
usually fairly easy and inexpensive to obtain false site (and e-mail) certificates; see
[ES00,FS*01]. We are not aware of swindlers actually deploying this attack in practice so
far, possibly due to the existence of the larger vulnerability described below.

The second, larger vulnerability is that SSL/TLS ultimately depend on the user to validate
the authenticity of web sites, by noting relevant status areas in the browser user interface.
The most important status areas are the location (address, URL) field and the SSL/TLS
indicator (typically, as open lock for insecure sites, closed lock for SSL/TLS protected
sites). We are mostly interested in the web spoofing attack, which exploits this
vulnerability, by directing the browser to an adversary-controlled clone site that resembles
the original, victim site, which the user wanted to access.

The first challenge for a web spoofing attack is to cause the browser to request the clone
site, when the customer is really looking for the victim site. This is easy to achieve for an
intercepting adversary, who can intercept user’s requests, and send back spoofed contents
directly, or redirect them to the spoofed web site. Felten et al. [FB*97] also show similar
URL redirection attack that begins when the user accesses the attacker’s web site, and
continues surfing by links from this page. However, this attack also requires the adversary
to intercept communication to a web site used by the user, or to control such a site. In
practice, attackers usually use an easier method to direct the user to the cloned site:
phishing attack, using spam e-mail messages.

Stolen
Info

Buy
Domain

Send
Spam

User reads spam,
clicks on link

User submits info
to spoofed site

Spoofed
Site

Credit
card #

email,
name…

SpamSpam

info

info

Figure 3: Phishing Attack

In Figure 3 we describe the process of typical phishing attacks. The adversary first buys
some unallocated domain name, often related to the name of the target, victim web site.
Then, the adversary sends spam (unsolicited e-mail) to many users, convincing them to
contact some trusted entity by following a link embedded in the message. The link
actually connects the users to the spoofed web site, emulating the site of the victim entity,
where the user provides information useful to the attacker, such as credit card number,
name, e-mail addresses, and other information. The attacker stores the information in
some `stolen information` database; among other usages, he also uses the credit card

number to purchase additional domains, and the e-mail addresses and name to create
more convincing spam messages (e.g. to friends of this user).

Phishing attacks require only an unallocated domains adversary, i.e. can be launched by
essentially any adversary on the Internet; therefore, they are increasingly common, as
shown in Figure 1. Most phishing attacks simply use deceptive domain names similar to
the victim domain names, possibly motivating the change by some explanation in the e-
mail message, e.g. see [BBC03]; often, they also display the anchor text with the correct
victim URL, while linking to the spoofed web site. Unfortunately, most naïve users do
not notice the attack the change in the domain name, since:

 Users do not read the location bar at every transaction.

 Users do not always understand the structure of domain names (e.g., why ac-
counts.citibank.com belongs to CitiBank™, while citibank.accounts.com may not)

 Organizations often use multiple domain names, often not incorporating their cor-
porate name, e.g. CitiBank™ uses at least eight domains, e.g. accountonline.com.

In more advanced Web Spoofing attacks, first presented in [FB*97], the adversary uses
browser features to make it appear as if the browser displays the SSL-protected victim
web page, while in fact it is displaying a cloned page. Some of these attacks are very
simple, yet effective. For example, in one deployed attack [Citi04], the attacker opens two
browser windows: a small one, which clones Citibank™ login screen and contains no
status information or bars, inside a larger one, which is simply the regular Citibank™
web site. Many naïve users are likely to believe that the smaller window is also secure
and authentic. In another deployed attack [APWG04, SF9182], a bug in many Internet
Explorer™ browsers is exploited, allowing the attacker to cause false information to be
displayed in the location bar.

Several works presented more elaborate web spoofing attacks, using scripts and/or Java
applets, to make it even harder for users to detect the cloning [LN02, LY03, SF03, YS02,
YYS02]. These works also propose solutions, by disabling (important) browser
functionalities, or using enhancements to the browser UI to make it hard or impossible for
the attacker to display spoofed versions of important browser indicators [YS02, YYS02,
LN02]. However, as noted by [YS02], these proposals may not suffice for naïve users; in
particular, naïve users may not notice the lack of security or the use of incorrect address
(URL). Our proposals for secure browser display of credentials incorporate some of these
ideas, esp. building on the design criteria of [YS02], to prevent spoofing web pages from
creating fake display of credentials.

Notice that phishing attacks exploit spamming, i.e. unsolicited and undesirable e-mail
sent to (usually many) recipients. Spamming is causing many other damages, in particular
waste of human time and attention, and of computer resources. Currently, the most
common protection against spam appears to be content based filtering; however, since
phishing attacks emulate valid e-mail from (financial) service providers, we expect it to
pass content-based filtering. Some other proposals for controlling and preventing spam
may also help to prevent phishing, however this is beyond the scope of this paper.

2.3 Credentials Spoofing Attacks
So far, our discussion, as well as most prior research and reported incidents, focused on
web spoofing, i.e. spoofing of the identity of the entity owning the web site. We now
consider a related threat, which we call credentials spoofing attacks. These attacks
involve sites that present misleading, unauthorized credentials, e.g. in the form of
graphical seals, logos and images. The motivations for credentials spoofing attacks range
from obtaining sensitive information, sent only to trusted sites (such as credit card
number or personal details which may be used for identity theft), to simply attracting
surfers and customers.

To understand the importance of secure credentials for e-commerce, consider open
marketplace sites, such as eBay™. Such sites facilitate commerce between consumers
and many small businesses; each transaction requires considerable trust by the consumer,
who usually pays, in a non-reversible way, before receiving the goods. To establish this
trust, eBay™ and most similar sites maintain secure records of the feedback each seller
received from its past buyers. There is clearly an incentive for sellers to fabricate and
improve their grades, and some are known to do so, e.g. by providing artificial reviews. A
similar, well-known situation exists in review sites, e.g. for hotels or for books. In
particular, [H04] reports that the (anonymous) reviewers of books in the Amazon™ site
are often the authors of the books or of competing books, or other interested parties.

Presentation of false credentials to attract customers is one of the ancient methods of
fraud, and common in the real world. Currently, the only way for web sites to present
credentials is by including an appropriate picture (often referred to as a seal); it is quite
trivia for an unauthorized site to copy the seal from an authorized site and present it
without authorization. In fact, while many sites present some sort of seal (of quality,
privacy, security etc.), site owners, and many users, are aware that these seals are not very
secure. We believe that this is the reason that seals and credentials are less common in
cyberspace (than in physical business).

2.4 Spoofing Prevention: Design Criteria
We now present design criteria for prevention of web and credential spoofing, extending
the criteria presented in [YS02].

 Prevent spoofing. Obviously, the most basic requirement is that credentials,
logos or any other identification information should be secure against spoofing
by adversaries. Namely, the adversary should not be able to emulate any such
information presented by the anti-spoofing mechanism, when the user is view-
ing a web site unauthorized to present these credentials, logo, or address.

 Effectiveness for naïve users: the credentials should be highly visible, which
will ensure that even naïve, off-guard users, will detect the lack of necessary
credentials when accessing a web site. In particular, as indicated by [YS02],
graphical indicators are preferable to textual indicators, and dynamic indica-
tors are preferable to static indicators. Furthermore, to facilitate recognition by
naïve users, the credentials should use simple, familiar and consistent presen-
tations. Finally, and again as indicated by [YS02], the (secure) browser should
couple between the indicators and the content, rather than present them sepa-
rately.

 Support all kinds of credentials: it should be possible to protect any creden-
tial, including information currently displayed in browser status areas (loca-
tion, SSL indicator, etc.) and additional credentials such as logos, seals, cer-
tificates etc.

 Minimize/avoid user work: The solution should not require excessive efforts
by the user, either to install or to use. In particular, we prefer to base credential
validation on simple visual clues, without requiring any conscious user activi-
ty during validation. This is both to ensure acceptability of the mechanism, as
well as to increase the likelihood of detection of the lack of proper credentials
by naïve users.

 Minimize intrusiveness: the solution should have minimal or no impact on
the creation of web sites and presentation of their content.

 Customization: the visual representation of the different credentials should be
customizable by the user. Such customization may make it easier for users to
validate credentials, e.g. by allowing users to use the same graphical element
for categories of sites, for example for `my financial institutions`. Similarly, a
customized policy could avoid cluttering the trusted credentials area with un-
necessary, duplicate or less important logos; e.g., it may be enough to present
one or two of the credit card brands used by the user (and that the site is autho-
rized to accept), rather than present the logos for all of them. In addition, cus-
tomization could allow users to assign easy to recognize graphical elements
(`logos`) to sites that do not (yet) provide such graphical identification ele-
ments securely (i.e. that do not yet adopt our proposals). Finally, as argued in
[YS02], by having customized visual clues, spoofing may become harder.

 Migration and interoperability: the solution should provide benefits to early
adopting sites and consumers, and allow interoperability with existing (`lega-
cy`) web clients and servers. In particular, it should be sufficient for a client to
use the solution, to improve the security of identification of existing SSL/TLS
protected web sites.

3 Preventing Spoofing with Trusted Credentials Area
We suggest adding a new component to the user interface of the browser, which we call
the trusted credentials area (TCA). The goal of the trusted credentials area is to present
highly visible, graphical interface, establishing securely the credentials and identity of the
web site and of the content presented. We expect that the browser will present most
credentials and identifiers via graphical elements such as logos, icons and seals, defined
or at least approved by the user or somebody highly trusted by the user (see more below).
We implemented the Trusted Credentials Area (TCA) browser extension for the open-
source Mozilla™ browser; see a screen-shot in Figure 4. We refer to a browser
supporting a TCA, natively or via an appropriate extension, as TCA-enabled.
The main design decision is that the trusted credentials area should be a significant area,
located at the top of the browser window, and large enough to contain highly visible
logos and other graphical icons for credentials. Furthermore, the trusted credentials area

must appear in every web page, protected or unprotected. In fact, by using the very top
area of the window, it is relatively easy to prevent scripts and applets from writing over
the trusted credentials area, thereby preventing spoofing. It is also easy to see that this
design meets all the other criteria above.

Figure 4: Screen-shot of secure site with logo in Trusted Credentials Area

The browser should protect the trusted credentials and logos area from spoofing, by
preventing scripts and helper windows, including applets, from removing it and
displaying fraudulent credentials and logos in (the real or camouflage) trusted area. We
achieve this by defining the trusted credentials area in every window opened by the
browser, and giving the browser (and code executed by it) access only to the window
below the trusted credentials area. This implementation is easy in Mozilla, and seems to
be secure against change by any content downloaded from a web server. Additional
mechanisms to protect the trusted credentials area include:
1. Helper and applet windows may be marked separately from the browser itself, and in particu-

lar from the trusted area, e.g. by enclosing all helper and applet windows by a special, highly
visible `warning` border.

2. To make it harder to spoof the trusted area, even for a program that can write on arbitrary lo-
cations in the screen, it may be desirable that the background of the trusted area will be a
graphical element selected randomly from a large collection, or selected by the user.

3. The browser may restrict opening of new (`pop-up`) windows, including for helper applica-
tions and applets. In particular, the browser may confirm that the content was approved by an
appropriate authority. This solution can also assist in the prevention of spam web advertise-
ments and pop-up windows.

There are several types of credentials, logos and seals for display in the trusted area; we
discuss each of them in the following subsections. Following that, we present the process
and architecture for determining the contents of the Trusted Credentials Area.

3.1 Secure vs. Insecure Site Indication
Existing browsers indicate that a site is SSL-protected, by a small SSL-status icon,
usually in the status area at the bottom of the page. However, this indication is not very
visible, and naïve or off-guard users may not notice its absence, when accessing a
sensitive site (e.g. if visiting this site routinely, as for personal bank). Furthermore, a web
site can request that the browser avoid displaying the status area (simply by using the
`window.open` JavaScript method); as mentioned above, swindlers already exploited this
method to spoof secure web sites.

To prevent these threats, whenever our browser extension detects that a web site is not
SSL-protected, it displays a highly visible warning message in the trusted credentials
area. We recommend that corporate and other serious web sites avoid this warning
message, by protecting all of their web pages, preferably presenting the corporate logo in
the trusted credentials area. Having all web pages secure could cause a performance
problem when security is using SSL or TLS; when this overhead is a problem, one could
secure the web pages using the CLTLS protocol presented in next section. By protecting
all of their pages, such sites will make it quite likely that their users will quickly notice
the warning message in the trusted browser area, when the user receives a spoofed
version of a web page of such sites.

3.2 Provider Identification
The most basic credential is the identification of the provider of a web page. Currently,
browsers identify the provider of the web page by indicating the Universal Resource
Locator (URL) of the web page in the location bar of the browser. This usually allows
(knowledgeable) web users to identify the owner of the site, since the URL includes the
domain name (which an authorized domain name registrar allocates to a specific
organization). However, the identity of the provider is not necessarily included (fully) in
the URL, and the URL contains mostly irrelevant information such as protocol, file, and
computer details. Furthermore, the URL is presented textually, which implies that the
user must make a conscious decision to validate it. Finally, popular browsers are pre-
configured with a list of many certification authorities, and the liabilities of certificate
authorities are not well defined; as a result, it may not be very secure to use the URL or
identity from the SSL certificate. Therefore, we prefer a more direct and secure means of
identifying the provider of the web page, and not simply present the URL from the SSL
certificate in the trusted credentials area.

We decided to identify the provider of the web page (or other content) using a graphical
symbol, such as logo or icon. Graphical identity symbols are recognized as highly
effective means for ensuring recognition, including subconscious alert when accessing
spoofed sites (which do not have the correct logo). Logos are also focused on the identity
of the provider of the content, rather than on other technical aspects of the URL.

For SSL protected web pages, the site’s public key can be used to identify the logo, since
SSL ensures that the web site has the corresponding private key. Notice this does not
depend on the identity (domain name or URL) in the certificate; we use alternative
mechanisms to link between the public key and the logos or credentials presented. In our
current (simple) implementation, the browser extension maintains a public key / logo
table linking public keys with logos. After SSL completed, our browser extension looks
up the public key in the table, retrieve the logos and display them in the trusted area. For

example, Figure 4 shows an SSL-protected site, where our browser extension presents
logos in the Trusted Credentials Area (which, in our implementation, is at the very top of
the window). Notice that the same logos are included in the site itself, but this is not
secure – an imposter could display the same logos in their site, with or without SSL.
Also, while our implantation maintains the original SSL indicator unchanged, notice how
the logos are more visible. We also added a more visible SSL indicator, in the form of the
(larger) lock to the left of the logos, in the trusted credentials area. Furthermore, when
visiting an insecure site, a TCA-enabled browser fills the entire trusted credentials area
(containing the logos in Figure 4) with a very visible warning message/indicator.

When the client approaches any SSL/TLS protected web site for the first time, the TCA-
enabled browser inspects the public key used in the SSL certificate received from the
server. If this public is in in the public key / logo table then the TCA-enabled browser
displays the logo in the TCA.

When no logo is associated with the public key of the site in the table maintained by the
browser, the site may indicate the existence of a logo. One way for the site to identify the
logo, by location and hash, is using an optional extension of the public key certificate
passed to the browser during the SSL handshake phase. Alternatively, and to allow the
use of trusted logos using existing SSL certificates, the location (URL) and the hash of
the logo may be defined within the page, e.g. using a <META> tag. In either case, the
TCA-enabled browser must validate that the site received authorization to display the
logo.

One way for sites to prove that they have the necessary credentials to present a logo, is by
including with the logo also a special logo certificate2 allowing the display of the logo for
sites passing SSL handshake with the given public key. Logo certificates are issued by
Logo Certificate Authority (LCA) entities. In a logo certificate, the logo certificate
authority establishes the connection between the public key and the given logo. TCA-
enabled browsers may contain a predefined list of (the public keys of) LCA entities,
preferably allowing the user to edit this list. We expect such lists to be fairly short, and
well understood by users; in fact, considering that there are international recognized
bodies for registering trademarks (including logos), it seems quite possible that browsers
will simply contain the public keys of the most important of these. The user can configure
the browser to display logos certified by a LCA automatically, or after prompting the user
at the first time. Furthermore, the TCA-enabled browser could also display the logo of the
LCA; for example, in Figure 4, VISA™ may be a LCA, who have signed the Amazon™
logo (in the figure the logos are displayed simply side by side, but one could also design
display conventions to illustrate the fact that the Amazon™ logo was validated by
Visa™).

To facilitate gradual adoption of the Trusted Credentials Area (TCA) and of logo
certificates, we propose that TCA-enabled browsers would also allow opportunistic logo
identification. Namely, when a TCA-enabled browser detects a proposed logo, but
without an appropriate logo certificate or a logo certificate from an unknown LCA, it may
present a dialog to the user, displaying the logo, and the following options:

 Approve the presentation of this logo whenever accessing this site

2 Using X.509 terminology, this could be either a public key certificate or an attribute certificate.

 Approve the presentation of this logo just for this session

 Present an alternate logo or icon whenever accessing this site, instead of or in addition
to the proposed logo. For example, a user may define a `My Banks` logo or icon, and
attach it to all of her financial institutions (possibly in addition to a more specific logo
of each institution).

 Do not use any logo or icon for this site; present the URL (or other text) in the Trust-
ed Credentials Area.

Even for SSL-protected sites that do not offer a logo, e.g. existing sites, a TCA-enabled
browser could still present a dialog box to allow the user to define a logo for this site. The
dialog can contain some identification information taken from the certificate, to help the
user select the logo or text. Such opportunistic identification provides significant security
advantage to early users of the spoofing-prevention browser extension, even when
approaching existing, `legacy` web sites (protected by SSL/TLS).

3.3 Establishing site credentials and seals
Many web sites display different credentials from third parties, typically using special
graphical elements (`seals`) which are trade-marked by the third parties. Examples
include reliability rating for online merchants, seals for web sites passing different audits,
e.g. for security and privacy, certification from trade organization or regulation
authorities, and many more. Currently, these credentials are displayed by the web site as
part of the page; no technical means prevents a web site from presenting a seal
(representing specific credentials) without proper permission from the owner of the seal.

We propose that browser (or a browser extension as in our implementation) will validate
the site/page credentials and seals. This allows the user to specify minimal credentials
requirements, e.g. to avoid display of unsolicited advertisement pages (spam), as well as
other undesirable content (e.g. insecure sites, sites without sufficient privacy protection,
or sites containing offensive content). If the content is not rejected, then the credentials
are displayed securely in a trusted credentials area of the browser.

To validate a credential/seal, the browser must receive appropriate credentials for the
public key of the site. In particular, the web site may indicate, e.g. in a <META> tag in
the web page, the location of a file containing a certificate from the owner of the seal,
where the certificate is given to the site’s public key. The certificate will identify the
credentials of the site, typically using extension fields; the credentials may specify the
graphical image (seal) to display, and/or contain a credential-type attribute, allowing the
user to select the graphical representation (icon, seal, etc.) for each type of credential.

While currently seals are normally `owned` and issued by a single organization, we
envision users also defining (more complex) graphical representations of the attributes in
one or more credentials. Some examples of user-defined seals/icons include:
1. Some of the credentials issued to sites may provide one or more attributes of the site, given

as values in numeric (or other) range, such as the number of transactions and the fraction of
complaints for online merchants, as maintained e.g. by Ebay™. Each user could define few
levels and icons for each, e.g. `reliable` and `avoid`.

2. In some cases, users may require multiple certificates, from different issuers, to consider a
site as belonging to some class. For example, a user may define an online merchant as `reli-

able` only if it has a BBBonline® certificate from the Better Business Bureau®, in addition
to appropriate ratings from Ebay™.

3. In other cases, the user may want to validate sites in a certain class, against some lists of
`bad` sites or companies. We refer to such information as a negative credential. For example,
the user may not define an online merchant as `reliable`, if it finds this merchant listed with
poor rating at BizRate.com™. In this case, we cannot rely on a certificate from the merchant
site; instead, the user must define to the browser that if the site presented certain (positive)
credentials, the browser should also search specific `black-list` sites for negative credentials.

3.4 Process and architecture for determining the contents of the Trusted Credentials Area
We present the process for collecting (positive and negative) credentials in Figure 5; the
process is based on the designs of [HM*00, HM04]. The process begins when the
browser receives an SSL protected web page. Using available interfaces in Mozilla, we
detect this and invoke the Certificates collector module.
The certificates collector receives from the browser three inputs: the public key used to
validate the page (PK), a URL pointing at additional certificates for this page and public
key, provided in the page using the <META> tag, and the certificate provided by the
server during the SSL handshake. In addition, the certificate collector uses two
configuration files defined in advance by the user (or a software agent trusted by the
user). The first file contains a list of certificate collection sites, which the certificate
collector must consult for any SSL-protected web page; this `mandatory collections` list
ensures, in particular, that the user will receive indication of any `negative credentials` for
the site – we cannot trust the site to provide negative credentials. The second
configuration file used by the certificate collector lists the trust anchors of the user, i.e.
the public keys of root certification authorities trusted by the user, with indication, for
each trust anchor, of what kind of certificates it is trusted to provide.

The certificates collector outputs a list of certificates of the page, usually all using the
public key of the SSL certificate of the page (but it may include also other relevant
certificates, e.g. of the issuer of a certificate to the public key of the page). It passes this
list of certificates to the Attributes extractor module. This module extracts from the list of
the certificates the attributes of each certificates, as a list of triplets, each containing an
issuer public key (IPK), a subject public key (SPK) and one or more attributes (Attrs).
Internally, this module performs the conversion of certificates and extraction of attributes
in two stages, following [HM*04].

Certs
collector

Browser Attribute
extractor

PK,<META>,Cert

TCA

Mandatory
Collections

Trust
Anchors

Policy
engine

Policy /
Rules

Certificates

<IPK, SPK, Attrs> list

TCA
Setup

Viewer

Page attributes

TCA
Preferences

Figure 5: Determining the contents of the Trusted Credentials Area.

The list of <IPK, SPK, Attrs> triplets is input to the Policy Engine module. This module
determines the user-defined properties or roles of the page, based on the set of triplets
(which contains the trust information from the collected certificates), together with the
user-defined list of trust anchors, and the policy or rules defined by the user. For example,
the policy may indicate that a page has the `my banks` property/role, provided it has a
certificate from Citibank™ or from Visa™, with some relevant attributes, and unless
there is a `negative` certificate with an `fraud alert` attribute regarding this public key
generated by one of the mandatory certificate collections. For more examples of policies
and details of a simple policy language and engine, see e.g. [HM*00].

The policy engine outputs a set of page attributes; essentially, these attributes identify the
logos, seals and other graphical elements for the trusted credentials area (TCA). This is
input to the TCA setup module, which allows the user to customize the TCA; in
particular, the user can choose specific images, background, colors, etc.; furthermore, the
user may define priorities and rules to reduce the number of images in the TCA and
increase readability. To actually display the TCA, the TCA setup module uses the viewer
mechanisms included in the base browser (in our case, Mozilla).

4 Efficient Authentication of Response Credentials using CLTLS
As mentioned in Section 2 above, currently only a small fraction of the web pages use
SSL (or TLS), since SSL places considerable overhead on both server and client.
Specifically, during the entire SSL connection, the server must maintain state identifying
the keys and sequence numbers used in the connection. Furthermore and more critical, at
the beginning of every connection, SSL performs a handshake process consisting of at
least four messages, and computationally-intensive public key operations; the server may
save the results of the public key operations for multiple connections with the same
client, but this requires storage in the server, and therefore this feature is usually used
only for rapid connections. This overhead may be significant, if organizations and
corporations will deploy SSL on each of their web pages, to ensure display of their logo
and credentials (seals) in trusted area.

There have been several proposals for reducing the SSL handshake overhead, most
notably by [BSR02], who proposes client-side caching to reduce communication and
possibly server processing load. However, the handshake remains considerable overhead,
including additional flows. To allow efficient presentation of credentials and logos in the
trusted area, it may be necessary to use an even more aggressive optimization of SSL/TLS
that will authenticates only the particular response rather than establish a secure
connection. In the next subsection we sketch the design of the connection-less transport
layer security (CLTLS) protocol. CLTLS is a variant of the TLS protocol, which allows
much more efficient validation of the credentials of web sites; we focus only on the use of
CLTLS for authentication of credentials and ignore other aspects such as confidentiality
(including perfect forward secrecy), identity hiding and denial-of-service protection. In
the following subsection we discuss the efficiency of (our use of) CLTLS.

4.1 Simplified description of the Connection-Less Transport Layer Security (CLTLS) pro-
tocol

We present the basic flows of the connection-less transport layer security protocol
(CLTLS) in Figure 6; our presentation of CLTLS focuses on the features needed for
secure authentication of web objects. We will present separately a complete security
analysis, as well as design of other important security features (such as confidentiality,
including perfect forward secrecy, client/request authentication, identity hiding and
protection against denial of service attacks). CLTLS, as we use it, is a simple protocol to
authenticate responses in client/server (request/response) setting; for example, a TCA-
enabled browser can use it to authenticate web pages and other objects sent to it as
responses from web server (over either TCP or UDP). The (full) CLTLS protocol is also
an alternative to the Datagram TLS proposal of [MR04], which allows the use of TLS
over connectionless channels such as UDP, but without reducing its overhead (in fact,
DTLS is slightly more expansive than regular TLS).

Client

Request, AuthOptions, [,Nonce, ID, EncryptS.e(mask), cookie]

Response, AuthOptions, AuthTag, ValidityPeriod [,ID ,k’, cookie]

Server

Figure 6: Connection-Less Transport Layer Security Protocol (CLTLS)

In CLTLS, the client sends a request together with the requested authentication options
(AuthOptions), indicating supported algorithms and certificate/attribute authorities, and
other options. The server returns the response together with indication of the
authentication options used, an authentication tag AuthTag and validity period. As part of
AuthTag,, the server may optionally send a certificate S.cert (containing the server’s
public signature validation key, S.v, and optionally also the server’s public encryption
key, S.e). Also, the server may provide a new shared secret key to the client k by sending
k’=kmask, where mask is a random bit string sent by the client, encrypted using the
server’s public encryption key S.e. In this case, the server will also provide an identifier
ID for the new shared secret key; and when the client sends a request using the shared

secret key, she will include ID in the request. The client may also include a random
Nonce field with the request, which the server should use as part of the input to the
authenticator tag AuthTag, to detect replay of previous response. Finally, to protect
against denial of service attacks attempting to waste server’s computational resources by
sending many requests, causing the server to perform computationally-intensive sign
and/or decrypt private key operations, the server may perform these operations only when
the request includes a cookie which was sent by the server with a previous response
(possibly an empty response sent due to the lack of cookie with the request); cookie is
computed by the server, e.g. as cookie=MACck(ID).
The authenticator tag AuthTag may be one or more of the following:
1. Response signed by server: here, AuthTag={SignS.s(response, request, ValidityPeriod [,

Nonce, k]) [, S.cert]}, namely a signature by the private signing key of the server (S.s) over
the response and over a period of time during which the response is valid. This requires that
the client knows the server’s public key S.v, necessary to validate signatures using the secret
signing key S.s; when S.v is not known already (e.g. by prior SSL or SRAP handshake), the
server may provide it by attaching an appropriate public key certificate S.cert in the re-
sponse. When replay of the response is not a threat, there is no need to include the Nonce in
the signed response (or with the request); in this case, the signature does not depend on the
request, and therefore could be cached and pre-computed, for high efficiency when serving
static content. The signature includes the request to make sure that the response is related to
the specific request.

2. Response authenticated by the server: here, AuthTag=MACk(response, request, ValidityPeri-
od [, Nonce]), namely a message authentication code using a key k shared between the server
and the client. The key k would typically be computed by the server as k=PRFmk(ID), where
mk is a `master key` kept secretly by the server, PRF denotes a pseudo-random function (e.g.
implemented using HMAC as in TLS), and ID is an identifier for the key k, where ID in-
cludes the time (and/or some other variable fields to prevent replay); both k and ID were pre-
viously selected by the server and provided to the client (e.g. in a previous SRAP or SSL pro-
tected connection).

3. Response signed by third-party attribute authorities, identifying credentials and seals associ-
ated with the specific contents of the response; here, AuthTag={SignAA.s(response, Validi-
tyPeriod) [, AA.cert]}, namely a signature by the private signing key of the attribute authority
(AA.s) over the response and over a period of time during which the response is valid. This
allows third-party seals of quality to specific responses, offerings and products. In particular,
this establishes attributes (credentials) of the server or of the contents of a particular page, to
prevent spoofing. Furthermore, the attributes may include indicator of advertising content (to
prevent spam) or of other properties that may make the browser block the display of the con-
tent, e.g. violence or nudity ratings.

Implementation notes:
1. It may be preferable not to send the actual certificates, but instead to send only a URL for the

certificates, from which the client can download only needed certificates.
3. Using simple, standard techniques, as in [BSR02], we can ensure interoperability with exist-

ing browsers that support SSL/TLS (but not CLTLS).

4.2 Efficiency of CLTLS
We now briefly discuss the efficiency of CLTLS as described above (restricted to
authentication of the responses from the server). We first notice that CLTLS is added
(`piggybacked`) to the HTTP request/response messages, and therefore does not add any

new flows. CLTLS flows that do not contain public key signatures (in responses) and
encryptions (in requests), add under 100 bytes The length of requests and responses
containing a public key signature (responses) or encryption (requests) is dominated by the
length of the public key operations, typically 128 to 256 bytes. For most scenarios, this
extra communication is negligible, compared to the length of typical HTTP requests and
responses. This dramatically improves upon SSL and TLS, and upon the existing TLS
variants such as DTLS [MR04], client-side caching and fast-track TLS [BSR02].

The computational overhead of CLTLS also greatly depends on whether it uses public
key operations (encryption for the request, signature for the response). Since the whole
purpose of using CLTLS is to authenticate all of the organization’s web pages (i.e., all
pages containing logos or other credentials), we expect that most CLTLS requests will be
`repeat requests` to the same server. We expect such `repeat requests` to usually use only
a shared key for Message Authentication Code (MAC), whose processing time is
comparable to the normal processing time of unprotected messages (e.g. for compressing
and encoding for interoperability requirements). In the relatively rare cases of a CLTLS
connection without a pre-established shared key, the computational overhead is
dominated by the public key operations, and is comparable to that of SSL/TLS.

Finally, we note that CLTLS does not require state (cache) in the web server,
similarly to the client-side caching proposal of [BSR02]. Serve caching is a substantial
overhead, especially when using multiple server machines for performance (and
reliability).

5 Conclusions and Recommendations
As already shown in [FB*97] and in the developer community, currently web users, and
in particular naïve users, are vulnerable to different web spoofing attacks; furthermore as
shown in [APWG04] and elsewhere, phishing and spoofing attacks are in fact
increasingly common. In this paper, we describe browser and protocol extensions that we
are designing and implementing, that will help prevent web-spoofing (and phishing)
attacks. The main idea is to enhance browsers with a mandatory Trusted Credentials
Area (TCA), with a fixed location at the top of every web page, as shown in Figure 4.

Our hope is that browser developers will incorporate the trusted credentials area as soon
as possible, i.e. make TCA-enabled browsers. However, to conclude this paper, we
present conclusions and recommendations for users and owners of sensitive web sites,
such as e-commerce sites, for the period until browser are TCA-enabled. Finally, we
conclude by cautioning users and providers, that even when using TCA-enabled
browsers, viruses and other malicious software may still be able to create unauthorized
transactions, due to operating system vulnerabilities. We recommend that highly sensitive
web sites such as e-brokerage consider authorizing transactions using more secure
hardware modules (see below).

5.0.1 Conclusions for Users of Sensitive Web-sites

The focus of this paper was on ensuring security even for naïve web users; however, even
expert, cautious users can not be absolutely protected, unless browsers are extended with
security measures as we propose or as proposed by [LY03, YS02, YS03]. However,
cautious users can increase their security, even before the site incorporates enhanced

security measures, by following the following guidelines:
1. Always contact sensitive web sites by typing their address in the location bar, using a book-

mark or following a link from a secure site.
2. Never click on links from e-mail messages or from other non-trustworthy sources (such as

shady or possibly insecure web sites). These could lead you to a `URL-forwarding` man-in-
the-middle attack, which may be hard or impossible to detect, even if you follow guideline 1
above.

3. Be very careful to inspect the location bar and the SSL icon upon entering to sensitive web
pages. Preferably, set up your browser to display the details of the certificate upon entering
your most sensitive sites (most browsers can do this); this will help you notice the use of SSL
and avoid most attacks.

4. If possible, restrict the damages due to spoofing by instructing your financial services to limit
online transactions in your account to cover only what you really need. Furthermore, consid-
er using sensitive online services that use additional protection mechanisms beyond SSL, as
described below.

5.0.2 Conclusions for Owners of Sensitive Web-sites

Owners of sensitive web-sites are often financial institutions, with substantial interest in
security and ability to influence their consumers and often even software developers. We
believe that such entities should seriously consider one of the following solutions:

 Provide your customers with a browser with security enhancements as de-
scribed here. We notice that the basic `trusted credentials area` enhancement
will suffice for most sites and customers; many software integrators can per-
form such enhancements to the Mozilla browser easily. We also plan to pub-
lish our code for this purpose.

 Use means of authenticating transactions that are not vulnerable to web spoof-
ing. In particular, `challenge-response` and similar one-time user authentica-
tion solutions can be effective against offline spoofing attacks (but may still
fail against a determined attacker who is spoofing your web site actively in a
`man in the middle` attack). Using SSL client authentication can be even more
effective, and avoid the hardware token (but may be more complex and less
convenient to the user).

We also recommend that site owners are careful to educate consumers on the secure
web usage guidelines, including these mentioned above, as well as educate them on
the structure of domain name and how to identify their corporate domains. This may
include restricting corporate domains to only these that end with a clear corporate
identity.

5.0.3 On the secure client requirement

Finally, we notice that even if our recommendations are all implemented, surfers using
personal computers are still vulnerable to attacks by malicious software (`malware`)
running on their computers, or by attackers who can use the same computer. This is the
result of the weak security of existing operating systems, e.g. Microsoft™ issued 51
security advisories during 2003 alone (about one every week!). We therefore recommend,
following [PPSW97, H03], to restrict the execution of sensitive transactions to trusted

hardware, possibly in the form of a trusted personal device. Such a device can provide a
truly high level of confidence in its Trusted Credentials Area, allowing users to identify
using user-name and passwords with relatively safety. Furthermore, such a device could
support more secure forms of identification and authorization, such as using shared keys
and one-time passwords. Finally, a mobile, personal trusted device is also the right
mechanism to provide digital signatures with non-repudiation, i.e. allow the server as
well as third party (e.g. judge) to validate a digital signature by the customer on submitted
transactions and orders; see [H03] for details

6 Acknowledgements
This work was support in part by National Science Foundation grant NSF CCR 03-14161.

7 References

[APWG04] Anti-Phishing Working Group, Phishing Attack Trends Report - March 2004,
published April 2004, available online at http://www.antiphishing.org/resources.htm.

[BBC03] Virus tries to con PayPal users, BBC News, online at
http://news.bbc.co.uk/2/hi/technology/3281307.stm, Wednesday, 19 November,
2003.

[BSR02] Client side caching for TLS. by D. Boneh, Hovav Shacham, and Eric Rescrola.
In proceedings of the Internet Society's 2002 Symposium on Network and Distributed

System Security (NDSS), pp. 195—202, 2002.

[Citi] Citibank™ corp., Learn About or Report Fraudulent E-mails, at
http://www.citibank.com/domain/spoof/report_abuse.htm, April 2004.

[ES00] Carl Ellison and Bruce Schneier, Ten Risks of PKI: What You're Not Being Told
About Public Key Infrastructure. Computer Security Journal, v 16, n 1, 2000, pp. 1-
7; online at http://www.schneier.com/paper-pki.html.

[FB*97] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach. Web
Spoofing: An Internet Con Game. Proceedings of the Twentieth National
Information Systems Security Conference, Baltimore, October 1997. Also Technical
Report 540–96, Department of Computer Science, Princeton University.

[FS*01] Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster, Do’s and Don'ts of Client
Authentication on the Web, in the Proceedings of the 10th USENIX Security
Symposium, Washington, D.C., August 2001.

[H03] Amir Herzberg, Payments and banking with mobile personal devices. CACM 46
(5): 53-58 (2003).

[H04] Amy Harmon, Amazon Glitch Unmasks War Of Reviewers, February 14, 2004.

[HM04] Amir Herzberg, Yosi Mass: Relying Party Credentials Framework. Electronic
Commerce Research, Vol. 4, No. 1-2, pp. 23-39, 2004.

[HM*00] Amir Herzberg, Yosi Mass, Joris Mihaeli, Dalit Naor and Yiftach Ravid:
Access Control Meets Public Key Infrastructure, Or: Assigning Roles to Strangers.
IEEE Symposium on Security and Privacy, Oakland, California, May 2000, pp. 2-14.

[L04] Avivah Litan, Phishing Attack Victims Likely Targets for Identity Theft, Gartner
FirstTake, FT-22-8873, Gartner Research, 4 May 2004.

[LY03] Tieyan Li, Wu Yongdong. "Trust on Web Browser: Attack vs. Defense".
International Conference on Applied Cryptography and Network Security
(ACNS'03). Kunming China. Oct. 16-19, 2003. Springer LNCS.

[LN02] Serge Lefranc and David Naccache, “Cut-&-Paste Attacks with Java”. 5th
International Conference on Information Security and Cryptology (ICISC 2002),
LNCS 2587, pp.1-15, 2003.

[MR04] N. Modadugu, and E. Rescorla. The Design and Implementation of Datagram
TLS.

To appear in Proceedings of NDSS 2004.

[Mozilla] http://www.mozilla.org.

[PPSW97] Andreas Pftizmann, Birgit Pfitzmann, Matthias Schunter and Michael
Waidner, Trustworthy user devices. In Gunter Muller and Kai Rannenberg, editor,
Multilateral Security in Communications, pages 137--156. Addison-Wesley, 1999.
Earlier version: Trusting Mobile User Devices and Security Modules, IEEE
Computer, 30/2, Feb, 1997, p. 61-68.

[SF9182] Multiple Browser URI Display Obfuscation Weakness,
http://www.securityfocus.com/bid/9182/discussion/, Security Focus, December,
2003.

[YS02] Zishuang (Eileen) Ye, Sean Smith: Trusted Paths for Browsers. USENIX Security
Symposium 2002, pp. 263-279.

[YYS02] Eileen Zishuang Ye ,Yougu Yuan ,Sean Smith . Web Spoofing Revisited: SSL
and Beyond . Technical Report TR2002-417 February 1, 2002.

