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ABSTRACT

In this note we show that the flow of matrix Riccati equations is monotone. Con-
sequently, many results for Riccati equations can be obtained easily using standard
as well as more recent results from the theory of monotone systems.



1 Introduction

The purpose of this short note is to illustrate the use of the theory of monotone
(control) systems, to derive results concerning the asymptotic behavior of matrix
Riccati equations. Reid already pointed out in [10] that the flow of these equations is
monotone, see for instance lemma 6.1 and theorem 6.1 in that reference. Notice that
this remark precedes the development of the theory of monotone dynamical systems
[4, 5, 6, 7, 8] -and [11] for an excellent review- by more than a decade. Therefore,
the full power of this theory (which may be summarized very roughly by the phrase
that “almost all solutions with compact forward orbit closure converge to the set
of equilibria”) was not at Reid’s disposal. Monotone systems theory has recently
been extended to encompass systems with inputs and outputs in [1]. Equipped with
this arsenal of tools we can and will prove many of the standard results concerning
Riccati equations in an almost straightforward manner. This approach, rather than
the novelity of the results themselves, constitutes the contribution of this paper.
We note that Theorem 1 below has also been proved in [14], but it is based on
a different proof technique. As an application we consider the (infinite horizon)
optimal control problem for linear systems with quadratic cost. The cost matrices
will be interpreted as time-varying inputs to a Riccati equation and our aim is to
provide asymptotic estimates for the solutions of the differential equation.

Although we will not pursue this issue here, we note that the theory developed in
[1] -in particular the results concerning cascades and feedback connections of mono-
tone input/output systems- is readily applicable to the Riccati equations considered
here. The main ingredients for such application are monotonicity of the flow and
the existence of static input-state characteristics. Both concepts will be defined and
shown to hold/exist for the systems under consideration.

2 Preliminaries

Let’s start by introducing some terminology. The real, n2-dimensional vector space
of real n×n matrices is denoted by R. We assume that R is equipped with an inner
product 〈., .〉, defined by 〈X,Y 〉 = tr

(
XY T

)
. This inner product induces a norm

(known as the Frobenius norm) and thus metric on R in the obvious way. We shall
assume that all topological notions are with respect to this metric. Note that the
normed vector space R is isometrically isomorphic to Rn2

(with the usual Euclidean
norm). To see this define T : R → Rn2

by:

T (X) = (x1x2...xn)
T ,

where xi is the ith row of X. Then it is easily checked that T is an isomorphism and
an isometry. Occasionally, it is useful to have this ‘equivalence’ of both spaces in
mind, in particular when considering systems of differential equations or geometric
objects (such as subspaces or cones which will be introduced below). The set of real
symmetric matrices will be denoted by S = {S ∈ R |S = ST}. Clearly, S is a linear
subspace of R of dimension n(n + 1)/2. Recall that if S ∈ S, then the Frobenius
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norm of S is given by:

‖S‖ =

√√√√
n∑

i=1

λ2
i (1)

where the summation runs over all eigenvalues λi of S. Another important property
of every symmetric matrix S is the following:

∀S ∈ S, ∀x ∈ Rn : xT (λmin(S)I)x ≤ xTSx ≤ xT (λmax(S)I)x (2)

where λmin(S) and λmax(S) denote the minimal, respectively maximal eigenvalue
of S. Let P(P+) ⊂ S denote the set of symmetric positive semidefinite (definite)
matrices. Then P is nonempty and closed (in R and S), R+P ⊂ P, P+P ⊂ P and
P ∩ (−P) = ∅. Equivalently, P is a cone in R and in S. Note that int(P) = P+

in S (but obviously int(P) would be empty in R). We shall also need the concept
of the dual cone. If (X, 〈., .〉) is a finite-dimensional real inner product space and if
K ⊂ X is a cone, then the dual cone of K is denoted by K ∗ and defined by:

K∗ = {y ∈ X | 〈y, k〉 ≥ 0, ∀k ∈ K}.

Returning to the cone P ⊂ S, we determine its dual cone P ∗ ⊂ S next.

Lemma 1. P = P∗.

Proof. First we show that P ⊂ P∗. Pick P ∈ P. We need to show that 〈P,Q〉 =
tr(PQ) ≥ 0 for all Q ∈ P. Since P,Q ∈ P, there exist P1/2, Q1/2 ∈ P such that:

P = P1/2P1/2, Q = Q1/2Q1/2.

Then we get:

〈P,Q〉 = tr
(
P1/2P1/2Q1/2Q1/2

)
= tr

(
(Q1/2P1/2)(P1/2Q1/2)

)
= tr

(
(P1/2Q1/2)

T (P1/2Q1/2)
)
≥ 0,

and we are done.
Next we show that P∗ ⊂ P. Pick P ∗ ∈ P∗, so 〈P ∗, P 〉 ≥ 0 for all P ∈ P. Since

P ∗ is symmetric, it has n real eigenvalues λi with corresponding eigenvectors zi 6= 0:
P ∗zi = λizi for i = 1, ..., n. If we can show that all λi ≥ 0, then we are done. To
do that, we will evaluate 〈P ∗, P 〉 for n particular choices Pi of P , namely Pi = ziz

T
i ,

i = 1, ..., n. Note that Pi ∈ P and thus that 〈P ∗, Pi〉 ≥ 0 for all i = 1, ..., n. Now,

〈P ∗, Pi〉 = tr(P ∗ziz
T
i ) = λi tr(ziz

T
i ) ≥ 0,

from which follows that λi ≥ 0 for i = 1, ..., n.

Lemma 2. If P ∈ P and P ∗ ∈ P∗ are such that 〈P ∗, P 〉 = 0, then P ∗P = 0 = PP ∗.

Proof. Since P ∈ P and P ∈ P∗ = P (by lemma 1), there exist P1/2, P
∗
1/2 ∈ P such

that:
P = P1/2P1/2, P ∗ = P ∗1/2P

∗
1/2.
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Now, since 〈P ∗, P 〉 = 0, this implies that

tr(P ∗1/2P
∗
1/2P1/2P1/2) = tr

(
(P1/2P

∗
1/2)(P ∗1/2P1/2)

)
= tr

(
(P ∗1/2P1/2)T (P ∗1/2P1/2)

)
= 0,

from which follows that
P ∗1/2P1/2 = 0 = P1/2P

∗
1/2.

But this in turn implies that

P ∗P = P ∗1/2(P
∗
1/2P1/2)P1/2 = 0 = P1/2(P1/2P

∗
1/2)P

∗
1/2 = PP ∗,

which concludes the proof.

Lemma 3. Let P,Q ∈ P+ and Q−P ∈ P. Then P−1, Q−1 ∈ P+ and P−1−Q−1 ∈
P.

Proof. The claim that P−1, Q−1 ∈ P+ is obvious. Since Q ∈ P+, there exists
Q1/2 ∈ P+ such that Q = Q1/2Q1/2. Multiplying Q − P ∈ P on the left and right
with the inverse of Q1/2 yields a matrix in P:

I −Q−1
1/2PQ

−1
1/2 ∈ P. (3)

Notice that Q−1
1/2PQ

−1
1/2 ∈ P+ and therefore it can also be written as:

Q−1
1/2PQ

−1
1/2 = S1/2S1/2,

for some S1/2 ∈ P+. Multiplying the matrix in (3) on the left and on the right by
the inverse of S1/2 yields:

S−1
1/2S

−1
1/2 − I ∈ P.

Multiplying this matrix on the left and right by Q−1
1/2 finally leads to:

Q−1
1/2S

−1
1/2S

−1
1/2Q

−1
1/2 −Q−1 ∈ P.

The proof is concluded by noting that:

Q−1
1/2S

−1
1/2S

−1
1/2Q

−1
1/2 = P−1.

Lemma 4. Let C be a compact subset in P+. Then there are λmin, λmax > 0 such
that:

∀C ∈ C, ∀x ∈ Rn : xT (λminI)x ≤ xTCx ≤ xT (λmaxI)x.

Proof. Consider the functions λmin(.) and λmax(.), defined on S, which assign the
minimal, respectively maximal eigenvalue to a symmetric matrix. It is well known
-see e.g. Corollary A.4.4 on p. 458 in [13]- that both functions are continuous.
Compactness of C implies that λmin(.) achieves a minimum λmin on C and similarly
that λmax(.) achieves a maximum on C. The conclusion now follows from (2).
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3 Matrix Riccati differential equations

The matrix Riccati differential equation on R is given by the following:

Ẋ = XA(t)X +B1(t)X +XBT
2 (t) + C(t), (4)

where X ∈ R and A(t), B1(t), B2(t), C(t) : R → R are continuous matrix-valued
mappings.

Obviously, solutions exist and are unique for every X0 ∈ R. We will denote
the solution starting at t0 ∈ R+ in X0 by X(t, t0,X0) with t ∈ I, where I is the
maximal interval of existence. We will also consider the forward maximal interval
of existence which is defined by I+ = I ∩ [t0,+∞).

On the other hand, this system is not necessarily (forward) complete. (Forward)
completeness means that for every solution we have that I = R (I+ = [t0,+∞)).
For instance, consider the scalar Riccati equation with A(t) = 1, B1(t) = B2(t) =
C(t) = 0 with initial condition X(0) = 1. Then the corresponding solution is
X(t, 1) = 1/(1 − t), which is of course only defined for t ∈ (−∞, 1).

We will study system (4) under the following additional constraint:

(S) A(t), C(t) ∈ S and B1(t) = B2(t) for all t ∈ R.
An immediate consequence is that if (S) holds, then S is an invariant set of (4).

This follows from the fact that ifX(t) is a solution of (4), thenXT (t) is also a solution
of (4). Uniqueness of solutions then implies that if X(0) ∈ S, then X(t) = XT (t)
for all t for which the solution exists. This observation justifies the restriction of the
dynamics of system (4) to the invariant set S, which will be assumed henceforth.

Our goal is to show that assuming (S), system (4) is monotone on S (see [11]
and the appendix of this paper for the definition of monotonicity in the much more
general setting of semiflows on subsets of Banach spaces). The partial order on
S which will be preserved by the solutions is generated by the cone of positive
semidefinite matrices P as follows: For X0, Y0 ∈ S, we say that X0 � Y0 if and only
if Y0 −X0 ∈ P. We call system (4) monotone on S if:

∀X0, Y0 ∈ S : X0 � Y0 ⇒ X(t,X0) � X(t, Y0), ∀t ∈ I1 ∩ I2,

where I1 and I2 are the maximal intervals of existence of the solutions X(t, t0,X0)
and X(t, t0, Y0).

Theorem 1. Let (S) hold. Then system (4) is monotone on S.

Proof. Since S is convex, (hence in particular p-convex) it suffices by Theorem 1.1
and 1.2 in [9] to verify that:

∀(P,Q) ∈ ∂P × P∗ : 〈Q,P 〉 = 0 ⇒ 〈Q,DFX(P, t)〉 ≥ 0, ∀t ∈ R, (5)

where DFX(Y, t) = XA(t)Y + Y A(t)X + B1(t)Y + Y BT
1 (t), the linearization of

system (4) at X.
Now if the pair (P,Q) ∈ ∂P × P∗, satisfies 〈Q,P 〉 = 0, then lemma 2 implies

that QP = PQ = 0. From this we get:

〈Q,DFX(P )〉 = tr
(
Q[XA(t)P + PA(t)X +B1(t)P + PBT

1 (t)]
)

= 0,

which concludes the proof.
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The cone P does not only induce a partial order on S, it is also a forward invariant
set for system (4) whenever C(t) is positive semidefinite. This constitutes a first
simple application of monotone systems theory, based on a comparison result for
solutions of differential equations due to Kamke, see for instance [14] or Appendix
B in [12].

Theorem 2. Let (S) hold and assume that C(t) ∈ P for all t ∈ R. Then for all
(t0,X0) ∈ R×P, X(t, t0,X0) ∈ P, for all t ∈ I+.

Proof. Since 0 � C(t) for all t ∈ R, it follows that:

G(X, t) := XA(t)X+B1(t)X+XBT
1 (t) � F (X, t) := XA(t)X+B1(t)X+XBT

1 (t)+C(t), ∀t ∈ R.
Since F (X, t) satisfies (5) and X(t, t0, 0) = 0 is a solution of the equation Ẋ =
G(X, t), the result follows from proposition 1.7 and remark 1.8 in [14].

The following is an auxiliary result concerning boundedness of solutions and is
needed later. It does not rely on monotone systems theory.

Lemma 5. Let (S) hold, assume that B1(t) and C(t) are bounded, and assume that
C(t) ∈ P for all t ∈ R. Suppose there exists α > 0 such that:

A(t) � −αI, ∀t ∈ R. (6)

Then every forward solution of (4) starting in P remains in P and is bounded.

Proof. By theorem 2, forward solutions starting in P remain in P. Consider the
following function, defined on P:

V (X) = ‖X‖2

We will show that for all X ∈ P having sufficiently large ‖X‖:
V̇ := 2 tr

[
X
(
XA(t)X +B1(t)X +XBT

1 (t) + C(t)
)]
< 0,

from which the result follows.
Recall that everyX ∈ P can be factored as X = X1/2X1/2 for a uniqueX1/2 ∈ P.

From this and using the fact that P is a forward invariant set (by theorem 2), we
get:

V̇ = 2 tr
(
X1/2XA(t)XX1/2

)
+ 4 tr

(
B1(t)X2

)
+ 2 tr (XC(t))

≤ −2α‖X1/2X‖2 + 4β‖X2‖+ 2γ‖X‖,
where we used the Cauchy-Schwarz inequality for obtaining the last two terms -and
β and γ are the bounds for ‖B1(t)‖ respectively ‖C(t)‖- and where we used (6) to
obtain the estimate of the first term.

Now recalling the formula for the Frobenius norm of a symmetric matrix (1) and
by equivalence of norms on Rn, there exist α∗ > 0 and β∗ > 0 (in fact β∗ = 1 works)
such that:

‖XX1/2‖2 ≥ α∗‖X‖3, ‖X2‖ ≤ β∗‖X‖2

This implies that:
V̇ ≤ −α̃‖X‖3 + β̃‖X‖2 + γ̃‖X‖

for suitable positive constants α̃, β̃ and γ̃. From this, the conclusion of the theorem
is straightforward.
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4 Inputs

We specialize next to a particular Riccati equation which is studied in linear optimal
control theory. There, the objective is to, given the linear time-invariant system:

ẋ = Fx+Gu

and initial condition x ∈ Rn, find a control u : R+ → Rm, such that the cost:

J =

∫ ∞

0

[
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

]
dt

is minimized (of course, x(t) denotes the solution starting at x at time 0, subject to
the input u(t)). The cost matrices Q(t) and R(t) are assumed to be continuous on
R+ and

(C) (Q(t), R(t)) ∈ P × P+, ∀ t ∈ R+.

It is well-known that this problem leads to the following Riccati equation:

Ẋ = −XGR−1(t)GTX + F TX +XF +Q(t) := H(X, (Q(t), R(t))), (7)

where X ∈ S. The cost matrices Q(t) and R(t) will be interpreted as input signals
for this equation. Usually, a single solution -namely the one corresponding to an
initial condition 0 at time 0- is of interest in this context. Here, we will not make
this assumption.

Note that system (7) is of the form (4) and that (S) holds. Thus solutions
exist and are unique in S. The forward solution starting in X0 ∈ S at t = 0 and
corresponding to the input pair (Q(t), R(t)) will be denoted byX(t,X0, (Q(t), R(t))),
t ∈ I+ or simply by X(t) when no confusion is possible.

We will assume that inputs are partially ordered in the following way: (Q1, R1) �
(Q2, R2) if Q2 − Q1, R2 − R1 ∈ P. Input signals are then partially ordered in the
obvious way: (Q1(t), R1(t)) � (Q2(t), R2(t)) if Q2(t)−Q1(t), R2(t)−R1(t) ∈ P for
all t ∈ R+.

Following the definition in [1], we call system (7) monotone if for all X0 � Y0

holds that:

(Q1(t), R1(t)) � (Q2(t), R2(t)), ∀ t ⇒ X(t,X0, (Q1(t), R1(t))) � X(t,X0, (Q2(t), R2(t))),∀ t ∈ I+
1 ∩I+

2 .

Theorem 3. Let (C) hold. Then system (7) is monotone on S.

Proof. From Theorem 1 and the remark following Theorem 2 in [1], it follows that
it is sufficient to verify that:

∀X ∈ S, (Q1, R1), (Q2, R2) ∈ P×P+ with (Q1, R1) � (Q2, R2) : H(X, (Q1, R1)) � H(X, (Q2, R2)).

Notice that:

H(X, (Q2, R2))−H(X, (Q1, R1)) = XB(R−1
1 −R−1

2 )BTX + (Q2 −Q1).

Since R2, R1 ∈ P+ and R2 −R2 ∈ P, it follows from lemma 3 that R−1
1 −R−1

2 ∈ P,
which implies that:

H(X, (Q2, R2))−H(X, (Q1, R1)) ∈ P.
This concludes the proof.
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Next we consider the asymptotic behavior of system (7) under some additional
conditions for the case where inputs are assumed to be constant.

Theorem 4. Let (Q(t), R(t)) = (Q̄, R̄) ∈ P+ ×P+ for all t ∈ R+ and assume that
the pair (F,G) is controllable. Then P is forward invariant and all solutions in P
remain bounded. Moreover, there is a unique steady state X̄ ∈ P, and X̄ ∈ P+ is a
global attractor.

Proof. Forward invariance of P and boundedness of solutions follow from theorem
2 and lemma 5 respectively and thus (7) with constant inputs (Q̄, R̄) generates a
continuous semiflow Φ on P. The existence of a steady state in P will follow from
theorem 6 in the Appendix. That result is applicable here, since obviously X = P is
convex and the order boundedness condition for omega limit sets follows immediately
from remark 2. Suppose now that Π ∈ P is a steady state. We claim that Π ∈ P+.
Suppose not, then there is some 0 6= x0 ∈ Rn such that xT0 Πx0 = 0. Also, by lemma
8.4.7 in [13] (and this lemma remains valid under the assumption that Π ∈ P, rather
than the stronger assumption that Π ∈ P+) it follows that −(AT

clΠ + ΠAcl) ∈ P+,
where Acl := A−GR−1GTΠ. Then for h > 0 and small we obtain that:

(x0 + hAclx0)
TΠ(x0 + hAclx0) = 0 + hx0(AT

clΠ + ΠAcl)x0 +O(h2) < 0,

which contradicts that Π ∈ P. Every steady state in P therefore belongs to P+.
Corollary 8.4.9 in [13] implies that there is exactly one steady state in P+. Let’s
denote it by X̄ ∈ P+. Again by theorem 6, it follows that every solution of (7)
starting in S converges to X̄, concluding the proof of this theorem.

From theorem 4 follows that we can construct a map K : P+ × P+ → P+ which
maps an input pair (Q̄, R̄) ∈ P+ × P+ to the corresponding X̄ mentioned in the
theorem:

K
(
Q̄, R̄

)
:= X̄.

Using the terminology of [1], we call K a static input-state characteristic, or char-
acteristic for short. A slight difference with [1] is that there, in addition to the
requirement that K

(
Q̄, R̄

)
is a global attractor, it should also be stable for each

input pair
(
Q̄, R̄

)
. Although we don’t need a stability assumption for what follows,

we do need to establish that K is continuous, a fact which we prove next, following
the arguments in remark V.3 and proposition V.4 in [1].

Lemma 6. Under the conditions of theorem 4, the map K : P+ × P+ → P+ is
continuous.

Proof. The conclusion will follow once we establish that:

1. The graph of K is closed.

2. K is locally bounded, i.e. for every compact set C ⊂ P+ × P+, K(C) is
bounded.

The closedness of the graph follows immediately from the fact that for all (Q̄, R̄) ∈
P+ ×P+, there holds that:

H
(
K
(
Q̄, R̄

)
,
(
Q̄, R̄

))
= 0
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and since H is continuous.
To show local boundedness of K, pick an arbitrary compact set C ⊂ P+ × P+.

Then by lemma 4, there exist λmin,1, λmin,2 > 0 and λmax,1, λmax,2 > 0 such that:

(λmin,1I, λmin,2I) � C � (λmax,1I, λmax,2I) .

Choose an arbitrary initial state X0 ∈ P. Monotonicity of system (7) (by theorem
3) implies that for all t ∈ R+ (by theorem 4):

X (t,X0, (λmin,1I, λmin,2I)) � X(t,X0, C) � X (t,X0, (λmax,1I, λmax,2I)) ,

where -slightly abusing notation- X(t,X0, C) denotes the solution correspondng to
an arbitrary fixed input in C.

Taking limits as t→∞ -and these limits exist by theorem 4- we arrive at:

K ((λmin,1I, λmin,2I)) � K(C) � K ((λmax,1I, λmax,2I)) .

This shows that K(C) is bounded and concludes the proof.

Remark 1. Delchamp’s lemma -see for instance Excercise 8.4.12 on p. 389 in [13]-
yields the much stronger conclusion that the map K is real analytic. That proof
is based on the implicit function theorem, while the proof above is based on mono-
tonicity of the flow.

As a final application of monotone systems theory, we consider (7) and obtain
asymptotic estimates of its solutions. But first we introduce some terminology. The
omega limit set of a function f : R+ → A, where A is a topological space, is the
(possibly empty) set Ω[f ] := {a ∈ A | ∃{tk}, tk → ∞ as k → ∞ : f(tk) → a}. We
will be interested in omega limit sets of solutions of the nonautonomous system (7).
If in addition a partial order � on A has been defined, then we define L�[f ] and
L�[f ] (both possibly empty) as follows:

L�[f ] := {m ∈ A | ∃{tk}, tk →∞,∃{mk} ⊂ A, mk → m as k →∞ : mk � f(t), ∀ t ≥ tk}

and

L�[f ] := {M ∈ A | ∃{tk}, tk →∞,∃{Mk} ⊂ A, Mk →M as k →∞ : Mk � f(t), ∀ t ≥ tk}.

Then we obtain the following estimates.

Theorem 5. Let (Q(t), R(t)) ∈ P+×P+ be a given pair of input signals which are
assumed to be continuous for all t ∈ R+ and suppose that (F,G) is a controllable
pair. Then every forward solution X(t) of (7), starting in P at t = 0 satisfies:

K (L�[(Q,R)]) � Ω[X] � K (L�[(Q,R)]) .

Proof. By theorem 3 and since the characteristic K is continuous (by lemma 6), the
conclusion of this theorem follows immediately from Proposition V.7 in [1].
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5 Appendix

Here we review a result by Dancer [2] for monotone maps, but slightly taylor it
to our needs by stating it for monotone semiflows on subsets of finite dimensional
Euclidean spaces.

The setting is Euclidean space Rn and a closed cone K ⊂ Rn which induces a
partial order � on Rn (x � y iff y − x ∈ K). When int(K) 6= ∅, we can define a
stronger notion as follows: for x, y ∈ Rn, x ≺≺ y iff y − x ∈ int(K). If x ∈ Rn and
A ⊂ Rn, we will write x �,≺≺ A to denote that x �,≺≺ y for all y ∈ A. For every
pair x, y ∈ Rn, we define the order interval [x, y] := {z ∈ Rn |x � z � y}. Let X
be a subset of Rn. We will say that a set A ⊂ X is order bounded in X if there are
x, y ∈ X such that A ⊂ [x, y]X := [x, y]∩X.

A semiflow Φ : R+ × X → X is a continuous map, satisfying Φ0 = id and
Φt ◦Φs = Φs+t for all t, s ∈ R+ (for each t ∈ R+, the map Φt : X → X is defined by
Φt(x) := Φ(t, x)).

For x ∈ X, we denote the orbit through x by O(x) := {Φt(x) | t ∈ R+} and its
omega limit set by ω(x) := {p ∈ X | ∃{tk}, tk → ∞ as k → ∞ : Φtk(x) → p}. It
is well-known that if O(x) is precompact, then ω(x) is a nonempty, compact and
invariant set (i.e. Φt (ω(x)) = ω(x) for all t ∈ R+) and d(Φt(x), ω(x)) → 0 as
t → ∞, where d(x,A) := infa∈A d(x, a) and d denotes the Euclidean metric on Rn.
An equilibrium of Φ is a point e ∈ X such that Φt(e) = e for all t ∈ R+.

A semiflow is called monotone if:

∀x, y ∈ X : x � y ⇒ Φt(x) � Φt(y), t ∈ R+.

Theorem 6. Let Φ be a monotone semiflow on X, a convex set in Rn, such that
O(x) is precompact for all x ∈ X. If ω(x) is order bounded in X, then there are
equilibria e1 and e2 of Φ such that:

e1 � ω(x) � e2.

Proof. Since ω(x) is order bounded in X, there is some p ∈ X such that ω(x) � p.
By monotonicity of Φ and invariance of ω(x), we obtain that ω(x) � Φt(p) for all
t ∈ R+. This implies that ω(x) � ω(p). Repeating this argument yields some
q ∈ X such that ω(x) � ω(p) � ω(q). Now define S = {z ∈ X |ω(x) � z � ω(q)}.
Note that S is nonempty since ∅ 6= ω(p) ⊂ S. Moreover, S is bounded -being the
intersection of order intervals with X- and closed, hence compact. And S is convex,
being the intersection of order intervals (which are convex) and the convex set X.
Finally, by invariance of ω(x) and ω(q), we see that S is forward invariant, i.e.
Φt(S) ⊂ S for all t ∈ R+. Brouwer’s fixed point theorem then implies the existence
of an equilibrium e2 ∈ S of Φ. Notice that e2 ∈ S implies that ω(x) � e2, as desired.
The existence of e1 is proved similarly.

Remark 2. We claim that if X = K and int(K) 6= ∅, then every bounded set C ⊂ X
is order bounded in X. In this case, the condition imposed in the statement of the
previous theorem that omega limit set must be order bounded in X, is trivially
satisfied since omega limit sets of precompact orbits are compact, hence bounded.
For instance, this happens for our particular application where X = K = P because
clearly int(P) 6= ∅ (relative to S).
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To verify the claim, pick a bounded set C ⊂ K. Then there is some M > 0 such
that C ⊂ BM (0) := {x ∈ Rn | d(0, x) ≤ M}. We will show that an x∗ ∈ int(K)
exists such that BM(0) ≺≺ x∗. To see this, pick an arbitrary x̃ ∈ int(K) (such an
x̃ exists because int(K) 6= ∅) and an ε > 0 such that Bε(x̃) ⊂ int(K). Equivalently,
0 ≺≺ Bε(x̃) or Bε(−x̃) ≺≺ 0. This implies that Bε(0) ≺≺ x̃ and thus by scaling
that BM(0) ≺≺ (M/ε)x̃ ∈ int(K). Denoting (M/ε)x̃ by x∗, we obtain that C ⊂
BM (0) ≺≺ x̃. Since we assumed that X = K and C ⊂ X, it is obvious that 0 � C
and hence we have shown that C ⊂ [0, x̃]X.
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