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ABSTRACT 
 
 

This paper considers the problem of computing certain performance parameters of 
stochastic networks that have Markovian routing but are not otherwise Jackson networks.  A 
scheme using this model for approximating address-based routing is described.  The method 
relies on generalizing the traffic equation to special subsets of the flows in the network.  
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1. INTRODUCTION 

1.1. Rationale 
The Jackson network [1] is a basic model favored as a useful beginning approach to many 
queueing network problems.  Its appeal stems from not only its product-form solution for 
the joint distribution of the number of customers in each queue but also from the simplicity 
of the structures of the model.  Random (Markovian) routing is one such structure.  The 
purpose of this paper is to study the ramifications of Markovian routing in a flow network 
that need not be a Jackson network, principally so that a method can be devised to compute 
cross-network values of functions whose values on single links are known.  The main result 
is a simple equation for path-additive functions in a flow network in equilibrium (not 
necessarily a Jackson network) that has random routing.  We use this equation to compute 
latency and jitter in telecommunications packet networks.  The class of flow networks we 
consider includes queueing networks as well as generalizations of flow networks of the type 
introduced by Ford and Fulkerson [2].   
 
Informally, a path-additive network function is one whose value on a path is the sum of its 
values on any partition of the path (see Section 3.2 for the definitions).  For example, the 
length of a path in a road network is a path-additive phenomenon: the total length traveled 
along the path is the sum of the individual lengths of the elements of a partition of the path. 

1.2. Scope 
This paper concerns a directed, acyclic flow network H = (N, L) having n =|N| < ∞ nodes 
and random routing.  A link is an ordered pair of nodes, i. e., L ⊂ N × N.  The first element 
of the pair is called the head and the second element is called the tail.  It will sometimes be 
convenient to consider a node such as j as equivalent to the link (j, j).  The paper restricts 
consideration to random routing in which a customer1 (unit of flow) departing a node 
chooses the next node to which it travels according to a (conditional) probability distribution 
that depends only on the current node: if a customer is currently at node i ∈N, then the 
customer next travels to node j ∈N with probability rij ≥ 0.  If Xm denotes the node at which 
a customer is found at the mth step, then rij = P{Xm+1 = j | Xm = i,  Xm-1, …, X0}= P{Xm+1 = j 
| Xm = i}, m = 1, 2, … .  By this definition, random routing is Markovian and homogeneous; 
the stochastic process {Xm : m = 1, 2, …} having state space N is a homogeneous Markov 
chain.  Let R = (rij) denote the routing, or switching, matrix for the network.  R is also the 
transition matrix for this Markov chain and is in general a stochastic matrix. 
 
Without further specification, “random routing” as a phrase could include many types of 
probabilistic schemes for routing jobs in the network.  However, in the context of flow 
networks and queueing networks, random routing has come to mean exclusively Markovian 
routing of the nature indicated in the previous paragraph.  This paper conforms to this use 
of the terminology. 
 
A flow network is characterized by a movement of customers, jobs, packets, etc., among 
nodes.  It is open if there is at least one node at which traffic units (customers, packets, etc.) 

 
1 We freely interchange the customer, packet, and job terminology throughout. 
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can leave the network.   We additionally postulate an exogenous demand of jobs, packets, 
etc., requiring transportation from originating nodes to destination nodes.  All jobs leave the 
network once they reach their destinations.  That is, there is a matrix U whose entries uij ≥ 0 
represent the number of packets required to be transported through the network from node 
i to node j, at which point they leave the network.  In an open network, the routing matrix R 
is substochastic because there is at least one node where jobs leave the network.  In various 
contexts, the uij are taken to be constant (a fixed number of packets per hour), the rates of 
homogeneous Poisson processes (a random number of packets per hour having expected 
value uij), or some other characterization of a random process describing arrival streams at 
the origin nodes.  Examples of flow networks include telecommunication networks, package 
delivery networks, commodity pipeline networks such as oil and natural gas pipelines, etc.  In 
a telecommunications context, we may think of uii as the intraoffice demand at node i.  The 
networks we shall consider in this paper are open. 
 
A key observation motivating this study is that packet routing in telecommunication 
networks is not completely random.  It is driven by an addressing scheme such as IPv4 that 
supplies each packet with a destination address, and routers with routing tables that 
determine the progress of the packet through the network based on this address.  A certain 
amount of randomness is present in, for example, the choice of next router, which may vary 
depending on the amount and location of congestion in the network, but this process is 
subject to rules that place more restrictions on flows than does the simple Markovian routing 
scheme.  The model described in this paper for telecommunication networks is motivated by 
a need to better describe address-based routing of packets.  The model arises from 
restricting basic Markovian routing to cause paths that cannot be encountered in practice to 
be excluded.  In particular, we study two special subsets of packet flows: one for which 
packets leave the network when they reach their destination node and another for which 
packets do not revisit previously visited nodes.  Let the subscript 0 indicate the environment 
(i. e., the world outside the network).  Then, if rj0 < 1, unrestricted Markovian routing would 
permit a packet reaching its destination node to possibly travel to some other node without 
leaving the network, so our first model of address-based routing restricts consideration to 
the subset of those sample paths of the routing process stimulated by the demand uij that 
contain node j exactly once, at the end of the path.  A second model is constructed by 
restricting attention to that subset of sample paths of the routing process in which packets 
do not revisit previously visited nodes because, under nominal conditions, is it unlikely (if 
not impossible) for a packet to return to a router it has already traversed.  Neither of these 
models is a completely faithful rendering of IPv4 routing, but the two approximations taken 
together enhance our understanding of the appropriateness of Markovian routing in 
modeling address-based routing. 
 
In this paper, we consider only flow networks in equilibrium.  That is, the (vector) stochastic 
process {Y1, …, Yn} is stationary, where Yij is the number of customers in the queue at the 
node i (in service and waiting).  For this, it is sufficient that the Markovian routing process 
be homogeneous, and we shall assume this throughout.  The networks originally studied by 
Ford and Fulkerson [2] possess deterministic routing, no queues at the nodes, and blocked-
calls-cleared queues on the links with zero service times and number of servers equal to the 
link capacity.  These are a special case of queueing networks because deterministic routing is 
certainly Markovian and the nodes may be thought of as infinite-server queues with zero 
service times.  This paper also considers Ford-Fulkerson-type networks in which routing 
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may be random as described above.  Clearly these satisfy the equilibrium condition because 
the number of customers in queue at each node and link is always zero. 

1.3. Background: Beyond the Jackson Network 
Jackson introduced the queueing network model we now know by his name in 1957 [1] to 
study the flow of jobs in a manufacturing plant.  The model was developed further in [3].  A 
property that makes the Jackson network popular as a model for many queueing networks is 
the so-called product-form property which demonstrates that the joint distribution of the 
number of customers in each queue in the network is the product of the individual one-
dimensional distributions.  That is, the network behaves (at least as far as the one-
dimensional distributions are concerned) as though its constituent queues were mutually 
stochastically independent.  In many instances, however, the network under study does not 
conform completely to the Jackson model while computation of key network performance 
measures remains of interest.  For example, it may be desirable to relax the exponential 
service time distribution assumption: TCP/IP packet service times typically have a trimodal 
distribution.  Motivation for this paper therefore includes study of how certain key 
performance parameters may be computed in a more general network model that posits 
Markovian routing but none of the other properties necessary for the Jackson network 
model. 

1.4. Overview of Approach 
We develop for path-additive functions in a flow network in equilibrium a generalization of 
the traffic equation and then show how this is applied to compute the expected number of 
links traversed by a packet in the network, the expected delay a packet encounters across the 
network, and the packet jitter (which is the standard deviation of packet delay).   The 
approach is to partition a path that a packet travels into two pieces: a link in the path and 
everything else, and then use total probability to write an equation for the stochastic 
quantities of interest.  We endeavor in all cases to find the most general conditions under 
which this operation may be performed.  We consider first unrestricted Markovian routing 
and then the two models with path restrictions: the first in which the tail node of the path is 
not visited at any other time in the path, and the second in which each node in the path is 
visited exactly once. 

2. THE EQUILIBRIUM TRAFFIC EQUATIONS 
This Section establishes two basic facts about packet flow in an equilibrium flow network 
when routing proceeds without restrictions (in particular, without restrictions on repeated 
visits to previously visited nodes).  Note that random routing causes the flow in the network 
to be a (matrix-valued) stochastic process, and so the quantities considered in this paper, as 
(measurable) functions of the flow, are also random quantities.   
 
Consider a flow network with Markovian routing in which customers enter at certain nodes 
for transport to other nodes at which they exit.  Denote by uij the number of customers per 
unit time requiring transport from node i to node j.  The units of uij could be terabits per 
second, packages per day, megawatts per hour, etc., depending on the application, and the uij 
themselves may be constants representing deterministic demands or the expected demands 
in a flow network with stochastic demands.  Let U = (uij).  Note that in equilibrium, the rate 
of customers leaving a node must equal the rate of customers entering the node.  The traffic 
equation expresses a relationship between the exogenous demands and the arrival rates at 
each node.  Denote by λi the total arrival rate at node i, including both the exogenous 
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ijuarrivals and arrivals due to routing from other nodes, and let 0

1

n

i
j

u
=

= ∑  denote the arrival 

rate of exogenous demand at node i.   The following is a well-known result for queueing 
networks (e. g., [4]) and is included here to show its application to more general flow 
networks and to further illustrate the importance of the matrix (I – R)−1 in the work to come.  
The “traffic equation” and the description of R as the “switching matrix” were introduced by 
Beutler and Melamed [5] and Beutler, Melamed, and Ziegler [6].  
 
Proposition 1.  Suppose R is convergent (i. e., Rm → 0 as m → ∞).  Then (I – R)−1 exists and 
the total arrival rate at node i is given by the ith entry in the row vector λ = u0(I – RT)−1. 
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 The traffic equation is obtained from observing that the total arrival rate at node i is 
the sum of all exogenous arrivals at node i and the packets arriving at node i that are routed 
from other nodes: 

   0

1
λ λ , 1, ,

n

i i j ji
j

u r i
=

= + =∑ K .n

This may be expressed in matrix notation as λ = u0 + λRT (with λ and u0 as row vectors).  RT 

is also convergent, so we obtain λ = u0(I – RT)−1, which is the desired equilibrium traffic 
equation.   
 
From the traffic equation, we can obtain an expression, a second equilibrium traffic 
equation, for the rate at which customers leave the network from each node.  In equilibrium, 
the rate of customers leaving each node is equal to the rate of customers arriving at that 
node, and the total rate of departures from the network is equal to the total rate of arrivals to 
the network.  However, this does not enable us to see the rate at which customers leaving 
each node leave the network.  Let µi denote the total departure rate from node i (including 
departures to outside the network) and let ci denote the rate of departures from node i to 
outside the network.  Then we may write 

 ( ) ( ) 10

1 1
1 µ 1 λ 1, e , e , 1, , ,

n n
T

i ij i ij i i i
j j

c r r I R u I R i
−

= =

⎛ ⎞ ⎛ ⎞
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where 1 represents an n-vector of ones, ei represents an n-vector with a 1 in the ith place and 
zeros elsewhere, and 〈 , 〉 represents the ordinary Euclidean inner product.  This gives an 
expression for the departure rate from node i to outside the network in terms of the routing 
matrix and the overall demand.   
 
The entire network’s arrival-departure balance leads to the following equation: 

 ( ) ( ) ( ) ( )1 10 0 0,1 ,1 1, 1, ,T Tu c I R u I R I R u I R
− −

= = − − = − − T  



 - 7 - 

leading one to inquire whether in fact ( ) ( ) 10 0Tu I R u I RT −
= − − , or, equivalently, 

.  This is certainly true if routing in the network is symmetric (R = R0 Tu R Ru= 0 T), but need 
not be true otherwise. 
 
To conclude this Section, we observe that in an open flow network, R is convergent, hence 
invertible.  In an open network, there is at least one node where packets leave (that is, rj0 > 0 
for at least one j) and this node appears in every row of R.  Thus the row sums of R are 
strictly less than one, so the spectral radius of R is also less than one, so R is convergent  

3. PACKETS LEAVING THE NETWORK UPON FIRST VISIT TO 
DESTINATION NODE 

3.1. Introduction 
The material in this Section concerns that subset of flows in the network that have the 
property that the terminal node in a path is visited exactly once.  For brevity, we will call this 
the Type I restriction. This study is an attempt to better model the properties of a 
telecommunications network whose routing is address-based.  In such a network, when a 
packet reaches its destination node, it leaves the network.  The Type I restriction is not a 
perfect representation of address-based routing (for instance, arbitrary circulation in the 
network is permitted as long as the packet does not visit its destination node) but does 
provide an improvement over the unrestricted random routing model. 
 
Definition.  A path in H is a finite sequence of links in L with the property that the tail of a 
link in the path is the head of the previous link in the path. 
 
This usage differs slightly from most usual notions of path, which include the nodes as part 
of the path also (see, e. g., [8]).  The links in a path need not be disjoint, i. e., a path may 
contain a particular link more than once.  Let P(H) denote the set of paths in H and let Pij(H) 
denote the set of paths in H whose initial node is i and whose terminal node is j. 
 
Definition. For Z ∈ P(H), a partition of Z is a finite subset {Z1, …, Zm} of P(H) satisfying 

1

m

i
i

Z Z
=

=U and  for i ≠ j. i jZ Z = ∅I

 
For instance, the total (geographic) length of a path in a transportation network is path-
additive.  Note that this holds also for paths containing repeated links; the requirement on 
the elements of the partition is that they be disjoint from each other even though they may 
internally contain repeated links themselves. 
 
Definition. Let a be a real-valued function on P(H), a : P(H) → R, and let Z ∈ P(H).  a is 
said to be path-additive if a(Z) = a(Z1) + ⋅⋅⋅ + a(Zm) for every partition {Z1, …, Zm} of Z. 
 
We also need to consider real-valued random processes having parameter space P(H).  The 
above definition extends naturally to path additivity with probability one, in probability, etc. 

3.2. An Equation for Path-Additive Functions with the Type I Restriction 



 - 8 - 

In a flow network with random routing, the path traveled by a packet is a random element of 
P(H).  The following result is a basic equation for path-additive functions in a flow network 
with the Type I restriction. 
 
Proposition 2.  Suppose R is convergent.  Let i, j ∈ N and let Zij be a random element of 
Pij(H) satisfying the Type I restriction.  Let a be a path-additive function on P(H) with 
probability 1 and let A be the matrix of Ea(Zij) for i, j = 1, …, n.   Let sij = Ea((i, j)) for (i, j) 
∈ L be the values obtained by evaluating Ea on all the links in L, let S be the matrix (sij), i, j 
= 1, …, n, let bj = (1+rjj)

−1 and let R* be the matrix whose (i, j) entry is rijbj.  Finally, let S1 be 
the matrix whose (i, j) entry is the (j, j) diagonal element of STR* (all columns of S1 are 
identical).  Then A = S1(I – R*)−1. 
 Proof.  Let B1(j) denote the set of nodes connecting to j over exactly one link, i. e., 
B1(j) = {k ∈ N : (k, j) ∈ L}.  Note j ∉ B1(j) by the Type I restriction.  For any path in Pij(H), 
the path from i to any m ∈ B1(j) followed by the link (m, j) is a partition because j does not 
appear anywhere in the path from i to m.  Plainly, P{m ∈ B1(j)} = rmj.  Then 
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k
n
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⎡ ⎤= + −⎣ ⎦
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∑

∑

∑

∑ ∑

N

 

where we have used Ea(Zjj) = 0 for all j.  From this, we obtain 

  ( ) ( ) ( )
1 1

1
n n

jj ij ik kj kj kj
k k

r Ea Z Ea Z r s r
= =

+ = +∑ ∑
or, in matrix notation, A = AR* + S1.  R* is also convergent because bj ≤ 1, so the result 
follows from Proposition 1.  
 
The remainder of this Section provides applications of Proposition 2 to quantities of interest 
in telecommunication networks. 

3.3. Expected Number of Links Under the Type I Restriction 
The number of links in a path is clearly a path-additive function.  Let Z be a random element 
of P(H) satisfying the type I restriction.  To use this method to determine the expected 
number of links traveled by a packet in H under the Type I restriction, define cij to be I{(i,  j) 
∈ Z}.  We have Ecij = rij I{(i,  j) ∈ L} = rijwij., where W = (wij) is the incidence matrix of H.  
Define the matrix C1 as indicated in Proposition 2.  It follows immediately from Proposition 
2 that the expected number of links traveled by a packet (satisfying the Type I restriction) 
whose origin node is i and whose destination node is j is given by the (i, j) entry in C1(I – 
R*)−1. 

3.4. Delay Under the Type I Restriction 
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3.4.1. Introduction 
A primary purpose of the methods described in this paper is to enable computation of the 
delay experienced by a packet flowing between any two nodes in N when the single-link 
delays are given.  In a telecommunications packet network, delays are attributable to 
queueing times at the router input and output buffers (which are in turn driven by the degree 
of congestion in the network), the router CPU times, and the transport times across the links 
in the network (under nominal conditions these are negligible compared to the buffer 
delays).  To avoid double-counting, we define the single link delay on a link (i, j) ∈ L to be 
the sum of the output buffer queue time of the router at node i, the link transport delay 
across (i, j), and the input buffer queue time of the router at node j.  Delay, so defined, is 
path-additive almost surely.  For a complete cross-network delay (or latency) calculation, we 
need to add the input buffer queue time at the origin node and the output buffer queue time 
at the destination node. 
 
We may also note that packet loss is the probability that packet delay is infinite (or, in some 
protocols, the probability that the delay exceeds a specified timeout value).  Packet loss, 
jitter, and delay (as these terms are used in telecommunications) are all features of the packet 
delay distribution. 

3.4.2. Expected Delay 
Denote by dij the single link delay when (i, j) ∈ L.  The single-link delays may be taken to be 
deterministic or random.  When they are deterministic, total delay on a path is a path-
additive property and the randomness in the latency (expected delay) comes from the fact 
that a packet takes a random path from its origin to its destination.  When the dij are random 
variables, they have the path-additivity property with probability 1.  In particular, the 
expected delays Edij have the path-additivity property as defined in Section 3.2.  Let D1 be 
the matrix whose (i, j) entry is the (j, j) diagonal element of DTR (all columns of D1 are 
identical).  It follows immediately from Proposition 2 that the expected delay encountered by 
a packet flowing from origin node i to destination node j in an open telecommunications 
network in which all packets eventually leave the network is given by the (i, j) entry in D1(I – 
R*)−1. 

3.4.3. Variance of Delay and Jitter 
The variance computation proceeds similarly as long as we additionally assume that the 
single-link delays are uncorrelated (this property holds, e. g., in Jackson networks with no 
overtaking [4]), so that the variance of the sum of single-link delays is the sum of the single-
link delay variances.  This is what’s needed for almost sure path additivity.  Denote by vij the 
variance of the single-link delay for (i, j) ∈ L.  Then the variance of delay along a path is the 
sum of the single-link delay variances over the links in the path, so variance of delay is a 
path-additive function.  As before, let V denote the matrix of the vij and V1 the matrix 
whose (i, j) entry is the (j, j) diagonal element of VTR (all rows of V1 are identical).  It follows 
immediately from Proposition 2 that, if all single-link delays are uncorrelated, then the 
variance of the delay encountered by a packet flowing from origin node i to destination node 
j in an open telecommunications network in which all packets eventually leave the network is 
given by the (i, j) entry in V1(I – R*)−1. 
 
For these variance results, we need to define the one-link delays precisely.  In particular, in 
models where a single node (router) comprises two queues, an input buffer (before the 
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processor) and an output buffer (serving the outgoing links), it is sufficient for the variance 
computation that we assume these queues are mutually uncorrelated.  This added detail is 
not part of the standard Jackson network model2 and would need to be separately justified 
on modeling grounds.  This may be possible by appealing to the mixing that takes place 
within a router when packets with a large number of different addresses are flowing through 
the router (this is essentially Kleinrock’s heavy-traffic independence argument). 
 
Jitter is obtained by taking the square root of the delay variance. 

3.4.4. Distribution of Delay 
Let Fij(x) = P{dij ≤ x} denote the distribution of the single-link delay when (i, j) ∈ L.  While 
the distribution of delay is not a path-additive function as in Section 3.2, if we assume the 
single-link delays are mutually stochastically independent, then the distribution of delay along 
a path is the convolution of the distributions of the single-link delays for the links 
comprising the path.  By analogy to Proposition 2, we obtain the following equation for the 
distribution of the cross-network delays under the Type I restriction and when the single-
link delays are independent.  As before, we take a(Zjj) = 0 for all j.  Then 
 

   ( )
1

1 ( ) ( )
n

jj ij ik kj kj
k

r F x F F x r
=

+ = ∗∑
 
where the star indicates convolution.  This constitutes a linear system of integral equations 
for the Fij(x).  Further treatment of this system is beyond the scope of this paper. 

4. PATHS WHERE NO NODE IS REPEATED 

4.1. Introduction 
The material in this Section concerns that subset of flows in the network that have the 
property that no node in a path is visited more than once.  For brevity, we will call this the 
Type II restriction. Clearly, a stochastic process satisfying this condition cannot be a Markov 
process.  However, the object of the study in this Section is that subset of flows with 
Markovian routing that happen to have the property that if a packet visits a node, then that 
node is not visited again before the packet leaves the network.  Paths in such a flow cannot 
contain more than n nodes. 
 
This study is a further attempt to better model the properties of a telecommunications 
network whose routing is address-based.  In such a network, routing tables in each router 
determine the next node (router) to be visited based on the current node and the destination 
address.  It is unusual for a packet to be routed back to a node it has previously visited.  
Therefore, the Type II restriction may help clarify our understanding of the behavior of the 
packet flow in such a network.  The Type II restriction is not a perfect representation of 
address-based routing but it does provide an improvement over the unrestricted random 
routing model.  A combination of results developed from the models with the Type I and 

                                                 
2 Note that while the Jackson network model has the property that the queues in the network behave as 
though they were mutually stochastically independent, this only pertains to the one-dimensional distributions 
belonging to separate nodes.  Computation of the variance requires consideration of two-dimensional 
distributions of the two queues internal to a single node, which the Jackson theorems do not address.  
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the Type II restrictions may allow a better picture of packet flow in networks with address-
based routing to be discerned. 

4.2. An Equation for Path-Additive Functions with the Type II Restriction 
The following Proposition gives a basic equation for path-additive functions in a flow 
network with the Type II restriction. 
 
Proposition 3.  Suppose R is convergent.  Let i, j ∈ N and let Zij ∈ Pij(H) satisfy the Type II 
restriction.  Let a be an almost sure path-additive function on P(H) and let A be the matrix 
of Ea(Zij) for i, j = 1, …, n.  Let sij = Ea((i, j)) for (i, j) ∈ L be the values obtained by 
evaluating Ea on all the links in L, let S be the matrix (sij), i, j = 1, …, n, and let R* be the 
matrix whose (i, j) entry is birij.  Finally, let S2 be the matrix whose (i, j) entry is the (j, j) 
diagonal element of R*ST (all rows of S2 are identical).  Then A = (I – R*)−1S2. 
 Proof.  Let A1(i) denote the set of nodes connecting to i over exactly one link, i. e., 
A1(i) = {k ∈ N : (i, k) ∈ L}, for flows satisfying the Type II restriction.  Note i ∉ A1(i).  For 
any path in Pij(H), the link from i to any m ∈ A1(i) followed by the path from m to j is clearly 
a because, by the Type II restriction, m ≠ j and i does not appear anywhere in the path from 
m to j.  Plainly, P{m ∈ A1(i)} = rim.  Then 
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=

= =

= ∈ ∈

⎡ ⎤ ⎡ ⎤= + ∈ − +⎣ ⎦⎣ ⎦

⎡ ⎤= + −⎣ ⎦

= + −

∑

∑

∑

∑ ∑

N

 

from which we obtain 

  ( ) ( ) ( )
1 1

1 ,
n n

ii ij ik ik ik kj
k k

r Ea Z r s r Ea Z
= =

+ = +∑ ∑
or, in matrix notation, A = R*A + S2.  As before, R* is convergent, so the result follows.  
 
The remainder of this Section provides applications of Proposition 3 to quantities of interest 
in telecommunication networks. 

4.3. Expected Number of Links Under the Type II Restriction 
Define, analogously to C1 of Section 3.3, the matrix C2 as indicated in Proposition 3.  It 
follows immediately that the expected number of links traveled from origin i to destination j 
by a packet under the Type II restriction is given by the i, j entry in (I – R*)−1C2. 

4.4. Delay Under the Type II Restriction 

4.4.1. Expected Delay 
Let D2 be the matrix whose (i, j) entry is the (j, j) diagonal element of R*DT (all columns of 
D2 are identical).  It follows immediately from Proposition 3 that the expected delay for a 
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packet traveling from origin node i to destination node j under the Type II restriction is 
given by the i, j entry in (I – R*)−1D2. 

4.4.2. Variance of Delay and Jitter 
Under the same uncorrelatedness conditions as in Section 3.4.3, and letting V2 denote the 
matrix whose (i, j) entry is the (j, j) diagonal element of R*VT (all columns of V2 are 
identical), it follows immediately from Proposition 3 that the variance of the delay for a 
packet traveling from origin node i to destination node j under the Type II restriction is 
given by the i, j entry in (I – R*)−1V2.  Jitter is obtained as usual by taking the square root of 
the variance. 

4.4.3. Distribution of Delay 
By analogy to Proposition 3 and Section 3.4.4, we obtain the following equation for the 
distribution of the cross-network delays under the Type II restriction and when the single-
link delays are independent. 

 , ( )
1

1 ( ) (
n

ii ij ik ik kj
k

r F x r F F x
=

+ = ∗∑ )

again a linear system of integral equations for the Fij(x). 

5. CONCLUSION 
In this paper we have formalized a procedure for computing the values of a path-additive 
function in a flow network in equilibrium with two kinds of restricted Markovian routing 
when the individual link values of this function are given.  A general equation for these 
values is presented and applied to important quantities of interest (latency and jitter) in 
telecommunications networks.  An approach to obtaining the distribution of cross-network 
delays is described.  The two types of routing restrictions are an attempt to make a better 
model (than is afforded by unrestricted random routing) of the flow of packets in an 
address-based routing scheme such as is common in IP-based telecommunication networks, 
package delivery networks, and the like. 
 
The Jackson network is commonly used as a model for a packet telecommunications 
network.  In a Jackson network, routing is random (unrestricted Markovian).  However, it is 
not necessary for a flow network with random routing to be a Jackson network.  This note 
explores the breadth of application of random routing concepts to other kinds of flow 
networks.  The results given here also enhance our understanding of flow networks with 
address-based routing. 
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