
DIMACS Technical Report 2006-12

July 2006

Generating 3-Vertex Connected Spanning Subgraphs

by

Endre Boros

RUTCOR, Rutgers University

640 Bartholomew Road, Piscataway NJ 08854

Konrad Borys

RUTCOR, Rutgers University Piscataway NJ 08854

Vladimir Gurvich

RUTCOR, Rutgers University

Gabor Rudolf

RUTCOR, Rutgers University Piscataway NJ 08854

DIMACS is a collaborative project of Rutgers University, Princeton University, AT&T Labs–
Research, Bell Labs, NEC Laboratories America and Telcordia Technologies, as well as affil-
iate members Avaya Labs, HP Labs, IBM Research, Microsoft Research, Stevens Institute of
Technology, Georgia Institute of Technology and Rensselaer Polytechnic Institute. DIMACS
was founded as an NSF Science and Technology Center.

ABSTRACT

In this paper we present an algorithm to generate all minimal 3-vertex connected spanning
subgraphs of an undirected graph with n vertices and m edges in incremental polynomial
time, i.e., for every K we can generate K (or all) minimal 3-vertex connected spanning
subgraphs of a given graph in O(K2log(K)m2 +K2m3) time, where n and m are the number
of vertices and edges of the input graph, respectively. This is an improvement over what was
previously available and is the same as the best known running time for generating 2-vertex
connected spanning subgraphs. Our result is obtained by applying the decomposition theory
of 2-vertex connected graphs to the graphs obtained from minimal 3-vertex connected graphs
by removing a single edge.

1 Introduction

Vertex connectivity is a fundamental concept in network reliability theory. While in the
simplest case only the connectedness of an undirected graph, that is, the presence of a
spanning tree, is required, in practical applications higher levels of connectivity are often
desirable. Given the possibility that the edges of the network can randomly fail the reliability
of the network is defined as the probability that the operating edges provide a certain level of
connectivity. Most methods computing network reliability depend on the efficient generation
of all minimal subsets of network edges which guarantee the required connectivity [17, 4].

In this paper we consider the problem of generating minimal 3-vertex connected spanning
subgraphs. An undirected graph G on at least k + 1 vertices is k-vertex connected if every
subgraph of G obtained by removing at most k − 1 vertices is connected. A subgraph of a
graph G is spanning if it has the same vertex set as G. We define the problem of generating
minimal 3-vertex connected spanning subgraphs as follows:

Minimal 3-Vertex Connected Spanning Subgraphs Generation Problem

Input: A 3-vertex connected undirected graph G

Output: The list of all minimal 3-vertex connected spanning subgraphs of G

Note that the number of all minimal 3-vertex connected spanning subgraphs of a graph G
may be exponential in the number of vertices and edges. Therefore we measure the running
time of generation algorithms in both the input and output size. A generation algorithm may
output a minimal 3-vertex connected spanning subgraph any time during its execution. A
generation algorithm runs in incremental polynomial time if it outputs K subgraphs (or all,
if the number of minimal 3-vertex connected subgraphs is less than K) in time polynomial in
n, m and K. A generation algorithm runs with polynomial delay if it outputs K subgraphs
(or all) in time polynomial in n and m and linear in K (see e.g., [17, 11, 8]).

It was recently shown that for every fixed value of k we can generate K (or all, if
the number of minimal k-vertex connected spanning subgraphs is less than K) minimal k-
vertex connected spanning subgraphs of a graph with n vertices and m edges in O(K3nm3 +
K2n4m5 + Knkm2) time [2]. For small values of k this can be improved upon: numerous
research articles consider the problem of efficiently generating spanning trees in connected
graphs (k = 1) [14, 6, 13, 1], with the best known running time being O(Kn+m) [6, 13]. K
minimal 2-vertex connected spanning subgraphs can be generated in time O(K2log(K)m2 +
K2m3) [9]. This improvement over the O(K3nm3 + K2n4m5) guaranteed by the general
algorithm is achieved by exploiting the block decomposition of connected graphs [5, Chapter
3]. A similar decomposition theory exists for 2-vertex connected graphs [7]. In this paper we
shall utilize this fact to achieve a similar improvement for the generation of minimal 3-vertex
connected spanning subgraphs.

– 2 –

We remark that minimal strongly connected subgraphs of strongly connected digraphs
can also be efficiently generated [3].

The remainder of the paper is organized as follows. In Section 1.1 we state our main
result and in Section 1.2 we recall a technique from [10] used to prove the main result. The
proof of our theorem is in Section 2.

1.1 Main Result

We show that the minimal 3-vertex connected spanning subgraphs problem can be solved in
incremental polynomial time.

For every K we can generate K (or all, if the number of minimal 3-vertex connected
spanning subgraphs is less than K) minimal 3-vertex connected spanning subgraphs of a
given graph in O(K2log(K)m2 + K2m3) time, where n and m are the number of vertices
and edges of the input graph, respectively.
This is an improvement over the O(K3nm3 + K2n4m5) guaranteed by the general algorithm
applied for k = 3 [2] and it is the same running time as for the minimal 2-vertex connected
spanning subgraphs generation problem.

1.2 The X − e + Y method

In this section we recall a technique from [10], which is a variant of the supergraph approach
introduced by [15]. Let C be a class of finite sets and for every E ∈ C let πE : 2E → {0, 1}
be a monotone Boolean function, i.e., one for which X ⊆ Y implies πE(X) ≤ πE(Y). We
assume that πE(∅) = 0 and πE(E) = 1. Let

F = {X | X ⊆ E is a minimal set satisfying πE(X) = 1}.

Our goal is to generate all sets belonging to F .

First we can fix an arbitrary linear order ≺ on elements of E and define a mapping
Project : {X ⊆ E | πE(X) = 1} → F by

Project(X) = X r Z,

where Z is the lexicographically first subset of X, with respect to ≺, such that πE(XrZ) = 1
and πE(X r (Z ∪ e)) = 0 for every e ∈ X r Z. We can compute Project(X) by deleting one
by one, from the smallest to the largest, elements of X whose removal does not change the
value of πE to 0. This requires evaluating πE exactly |X| times.

We next introduce a directed graph G = (F , E) on vertex set F . We define the neighbor-
hood N(X) of a vertex X ∈ F as follows

N(X) = {Project((X r e) ∪ Y) | e ∈ X,Y ∈ YX,e},

where YX,e is defined by

YX,e = {Y | Y is a minimal subset of E r X satisfying πE((X r e) ∪ Y) = 1}.

– 3 –

In other words, for every set X ∈ F and for every element e ∈ X we extend X r e in all
possible minimal ways to a set X ′ = (X r e) ∪ Y for which πE(X ′) = 1 (since X ∈ F , we
have πE(X r e) = 0), and introduce each time a directed arc from X to Project(X ′). We
call the obtained directed graph G the supergraph of our generation problem.

[[10]] The supergraph G = (F , E) is strongly connected.
Since G is strongly connected, by performing a breadth-first search in G we can generate

all elements of F . Thus, given a procedure that generates all elements of YX,e for every
X ∈ F and e ∈ X, the procedure Transversal(G), defined below, generates all elements of
F .

Traversal(G)

Find an initial vertex X0 ← Project(E), initialize a queue Q = ∅
and a dictionary of output vertices D = ∅.

Perform a breadth-first search of G starting from Xo:

1 output X0 and insert it to Q and to D

2 while Q 6= ∅ do

3 take the first vertex X out of the queue Q

4 for every e ∈ X do

5 for every Y ∈ YX,e

6 compute the neighbor X ′ ← Project((X r e) ∪ Y)

7 if X ′ /∈ D then output X ′ and insert it to Q and to
D

Assume that there is a procedure that outputs K elements of YX,e in time φ(K,E)
and there is an algorithm evaluating πE in time O(γ(E)). Then Traversal(G) outputs K
elements of F in time O(K2|E|2γ(E) + K2log(K)|E|2 + K|E|φ(K,E)). Let X ∈ F and
e ∈ X.

Claim 1 If Y and Y ′ are distinct elements of YX,e, then they produce different neighbors of
X in G in line 7.

First we observe that for every Y ∈ YX,e we have Project((X re)∪Y) = ((X r (Z∪e))∪Y ,
where Z is the lexicographically first subset of X r e, with respect to ≺, such that πE((X r

(Z∪e))∪Y) = 1 and πE((Xr(Z∪e∪f))∪Y) = 0 for every f ∈ Xr(Z∪e). By the minimality
of Y , we have πE((X r e)∪ (Y r y)) = 0 for every y ∈ Y . Thus Project((X r e)∪ Y) must
contain Y . Also note that by minimality of Y , we obtain X r e and Y are disjoint.

Hence for Y and Y ′, distinct elements of YX,e, we have Project((X r e) ∪ Y) = ((X r

(Z ∪ e))∪ Y and Project((X r e)∪ Y ′) = ((X r (Z ′ ∪ e))∪ Y ′. Since Project((X r e)∪ Y)

– 4 –

contains Y , Project((X r e) ∪ Y ′) contains Y ′, X r e and Y are disjoint, X r e and Y ′ are
disjoint and Y 6= Y ′ we obtain Project((X r e) ∪ Y) 6= Project((X r e) ∪ Y ′).

Note that we output a vertex of the supergraph G every time we insert it to the queue
Q and each vertex of G is inserted to the queue Q and removed from Q only once. Thus to
generate K elements we repeat the while loop of lines 2-7 at most K times. As |X| < |E| we
repeat the for loop of lines 4-7 at most |E| times. By Claim 1 we repeat the for loop of lines
5-7 at most K times (otherwise we generate more than K distinct neighbors). Generating
K elements of YX,e takes O(φ(K,E)) time.

We repeat lines 6,7 at most K2|E| times. Recall that evaluating Project takes O(|E|γ(E))
time. We can implement the dictionary D as a red-black tree. Then the operations
FIND and INSERT in D require at most a logarithmic number of comparisons, where each
comparison takes O(|E|) time. This implies that executing lines 6,7 a single time takes
O(|E|γ(E) + log(K)|E|) time.

Thus the time Traversal(G) needs to output K elements is O(K2|E|2γ(E)+ K2log(K)|E|2

+K|E|φ(K,E)).

2 Proof of Theorem 1.1

In this section we apply the X − e + Y method to the generation of all minimal 3-vertex
connected spanning subgraphs.

For a given 3-vertex connected graph (V,E) we define a Boolean function πE as follows:
for a subset X ⊆ E let

πE(X) =

{

1, if (V,X) is 3-vertex connected;
0, otherwise.

Clearly πE is monotone, πE(∅) = 0 and πE(E) = 1. Then F = {X | X ⊆ E is a minimal set
satisfying πE(X) = 1} is the family of edge sets of all minimal k-vertex connected spanning
subgraphs of (V,E).

Before we describe an algorithm of generating elements of YX,e we recall in Section 2.1
the decomposition theory for 2-vertex connected graphs presented in [7]. Then in Section 2.2
we prove that the decomposition of a graph (V,X r e) has a special structure, when (V,X)
is a minimal 3-vertex connected subgraph. In Section 2.3 we introduce a minimal forward
a-b extensions generation problem and recall an algorithm from [3] which solves it, then in
Section 2.4 we reduce the problem of generating elements of YX,e to solving the minimal
forward a-b extensions problem. Finally, in Section 2.5 we analyze the complexity of the
procedure Traversal.

2.1 Dividing a Graph Into Triconnected Components

In this section we closely follow the exposition from [7].

– 5 –

Let G = (V,E) be a 2-vertex connected multigraph with at least four vertices. A pair of
vertices {x, y} is called a separation pair of G if there is a partition E1, E2 of the edge set E
such that

• |E1| ≥ 2, |E2| ≥ 2,

• the subgraphs induced by E1, E2 are connected,

• {x, y} = V (E1) ∩ V (E2), where V (E1) and V (E2) denote the sets of vertices of G
incident to E1 and E2, respectively.

Note that if G has no separation pairs then G is 3-vertex connected.
For a separation pair {x, y} and a corresponding partition E1, E2, we define G1 =

(V (E1), E1 ∪ xy) and G2 = (V (E2), E2 ∪ xy). We call the multigraphs G1, G2 split graphs
of G with respect to {x, y}. Replacing a multigraph G by two split graphs is called split-
ting G. There may be many possible ways to split a multigraph, even with respect to a
fixed separation pair {x, y}. We denote a splitting operation by s(x, y, i), where i is a label
distinguishing this split operation from other splits. The new edges of G1 and G2 are called
virtual edges. We label them (xy, i) so they are associated with the split s(x, y, i).

Suppose a multigraph G is split, the split graphs are split, and so on, until no more
splits are possible. We call the graphs constructed this way split components of G. The split
components of a multigraph are of three types:

• triple bonds, where a bond is a multigraph having exactly two vertices u, v and one or
more edges uv,

• triangles, where a triangle is a cycle of length 3,

• 3-vertex connected graphs.

To every decomposition of G into split components we associate a graph T as follows.
The vertices of T are the split components. Two split components are connected if they
both contain a virtual edge (xy, i). Therefore each edge of T corresponds to exactly one
separation pair (though a separation pair can correspond to several edges of T or to none).
Clearly T is a tree. We call T the split components tree.

The split components are not necessarily unique. In order to get unique components we
must partially reassemble the split components. Suppose G1 = (V1, E1) and G2 = (V2, E2)
are two split components, both containing a virtual edge (xy, i). Let G = (V1∪V2, (E1rxy)∪
(E2 r xy)). We call G a merge graph of G1 and G2 and denote it by G = Merge(G1, G2).
Merging is the inverse operation of splitting. If we perform a sufficient number of merges we
recreate the original multigraph.

In order to find unique components we need to merge adjacent triple bonds as much as
possible to obtain bonds and to merge adjacent triangles as much as possible to obtain cycles.
We call these unique components triconnected components. Let T ′ be a tree obtained from
T by contracting edges between triple bonds and between triangles. Notice that vertices of

– 6 –

T ′ are in one to one correspondence with triconnected components. Therefore we call T ′ the
tree of triconnected components.

[[12, 16, 7]] G has a unique decomposition into triconnected components, each of which
is 3-vertex connected graph, a cycle or a bond.

2.2 Structure of the Subgraph (V, X r e).

In this section we describe a structure of the graph obtained by removing an edge from a
minimal 3-vertex connected subgraph of G.

Let (V,X) be a minimal 3-vertex connected subgraph of G and let e ∈ X (see Figure 1).
Consider a decomposition of (V,X r e) into split components B1, . . . , Bl. Let T denote the

e

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 1: A minimal 3-vertex connected graph (V,X).

split components tree of (V,X r e) corresponding to this decomposition.

Claim 2 T is a path such that both ends contain an endpoint of e.

Suppose that one endpoint of e belongs to a separation pair. Then the removal of this
separation pair disconnects (V,X), a contradiction with (V,X) being 3-vertex connected.

Thus neither endpoint of e belongs to any separation pair. Observe that vertices that
do not belong to separation pairs occur in exactly one split component. Therefore it suffices
to show that every leaf of T contains an endpoint of e. Suppose on the contrary that there
is a leaf of T that does not contain an endpoint of e. Then removing the separation pair
corresponding to the edge of T incident to this leaf disconnects (V,X), a contradiction with
(V,X) being 3-vertex connected.

The above claim implies that we can assume the split components are indexed in a way
such that T is the path B1 . . . Bl (see Figure 2).

Claim 3 There are no two subsequent split components Bi, Bi+1 such that both are triple
bonds.

Suppose Bi and Bi+1 are triple bonds. If Bi consists of three virtual edges then Bi has three
neighbors in T , a contradiction with T being a path. Therefore both Bi and Bi+1 have at
least one nonvirtual edge each. Observe that the vertex set of Bi is the same pair of vertices

– 7 –

B1 B2 B3 B4 B5 B6 B7 B8 B9

1

2

4

2

3

4

5

6

7 9

4 8

9

8

9 11

8

11

8

11 12

8 10

12

10

12

10

12

13

Figure 2: Decomposition of (V,X r e) into split components.

as that of Bi+1. Also, recall that split components partition the edge set X. Thus Bi and
Bi+1 contain two different edges of X connecting the same two vertices, a contradiction with
the minimality of (V,X).

Claim 4 The first two split components B1 and B2 are not both triangles. Similarly, the
last two split components Bl−1 and Bl are not both triangles.

Suppose B1 is a triangle on vertices {v1, v2, v4} and B2 is a triangle on vertices {v2, v3, v4}.
Without loss of generality we assume that B1 has the virtual edge v2v4 and B2 has two virtual
edges v2v4, v2v3. Consequently the vertices v1 and v4 both have degree two in (V,X r e).
After adding the edge e, one of them still has degree two. Thus removing its neighbors
disconnects (V,X), a contradiction with (V,X) being 3-vertex connected.

Claim 5 There are no three subsequent split components Bi, Bi+1, Bi+2 such that all of
them are triangles.

Suppose Bi is a triangle on vertices {v1, v4, v5}, Bi+1 is a triangle on vertices {v1, v2, v4} and
Bi+2 is a triangle on vertices {v2, v3, v4}. By Claim 4, the triangles Bi, Bi+1, Bi+2 cannot
be the first or the last three vertices of the path T , thus each triangle has two virtual edges.
Without loss of generality assume that the edges v1v4 and v2v4 are virtual.

We show that one of the vertices v1, v2, v3, v4, v5 has degree two in (V,X r e). We have
following four cases:

Case 1: The edges v1v5 and v2v3 are virtual. Then v4 has degree two.
Case 2: The edges v1v5 and v3v4 are virtual. Then v2 has degree two.
Case 3: The edges v4v5 and v2v3 are virtual. Then v1 has degree two.
Case 4: The edges v4v5 and v3v4 are virtual. Then v1 and v2 have degree two.
Since none of these triangles is the end of the path T , endpoints of e do not belong to

any of them. Thus any vertex of degree two in (V,X r e) has the same degree in (V,X).
Removing the two neighbors of that vertex disconnects (V,X), a contradiction with (V,X)
being 3-vertex connected.

Let T (a, b, c) denote the triangle on vertices a, b, c with a nonvirtual edge ab and virtual
edges ac, bc (see Figure 3). We consider two subsequent triangles Bi and Bi+1. By Claim 4
each triangle has two virtual edges. Without loss of generality we can assume that Bi is the
triangle T (v1, v2, v4). Let Bi+1 be a triangle on vertices {v2, v3, v4} with a virtual edge v2v4.

– 8 –

Claim 6 Nonvirtual edges of Bi and Bi+1 cannot have a common endpoint (see for example
B3 and B4 in Figure 2). Thus Bi+1 is the triangle T (v3, v4, v2).

Suppose v3v4 is a virtual edge, consequently v1v2, v2v3 are not virtual. Then v2 is a vertex
of degree two in (V,X), a contradiction. Thus the edge v2v3 must be virtual.

A square Q(a, b, c, d) is a cycle of length 4 on vertices a, b, c, d with nonvirtual edge ab,
cd and virtual edges ad, bc (see Figure 3).

Now we consider the unique decomposition of (V,X r e) into triconnected components
C1, . . . , Ck obtained by merging pairs of triple bonds and pairs of triangles containing the
same virtual edge, as described in Theorem 2.1.

If (V,X) is minimal 3-vertex connected graph then each triconnected component is one
of the following four types:

• a triple bond,

• a triangle,

• a square of the form Q(a, b, c, d),

• a 3-vertex connected graph.

Moreover, the tree T ′ of triconnected components is a path of length at most 2|V | + 1.
Consider the decomposition into the split components B1, . . . , Bl. By Claim 3, there are no
two triple bonds containing the same virtual edge, consequently every triple bond Bi is a
triconnected component. By Claim 5 there are no three consecutive triangles in the sequence
B1, . . . , Bl. Let Bi and Bi+1 be a pair of subsequent triangles. By Claim 6, they are of the
form Bi = T (a, b, c) and Bi+1 = T (c, d, b). After merging they form a square Q(a, b, c, d) (see
Figure 3).

T (a, b, c) T (c, d, b)

a b

d

b

d c

Q(a, b, c, d)

a b

cd

Figure 3: Triangles T (a, b, d), T (c, d, b) and their merge graph Q(a, b, c, d).

Since the tree T ′ is obtained from the path T by contracting some of its edges, T ′ is also
a path. Let {x1, y1}, . . . , {xk−1, yk−1} be the separation pairs corresponding to edges of T ′,
where {xi−1, yi−1} belongs to both Ci−1 and Ci for each i = 2, . . . , k. We call a a separation
pair {xi, yi} a new pair if {xi, yi} 6⊆ {x1, . . . , xi−1, y1, . . . , yi−1}. Observe that Ci is a triple
bond if and only if {xi, yi} = {xi−1, yi−1}.

Now we show that if Ci is not a triple bond then {xi, yi} is a new pair. Suppose that
{xi, yi} ⊆ {x1, . . . , xi−1, y1, . . . , yi−1}. Since Ci is not a triple bond, we have {xi, yi} 6=

– 9 –

{xi−1, yi−1}. Without loss of generality we can assume that xi /∈ {xi−1, yi−1}, implying
xi ∈ {x1, . . . , xi−2, y1, . . . , yi−2}. Consequently xi ∈ V (G1) and xi ∈ V (G2), where G1 and
G2 are the split graphs with respect to {xi−1, yi−1}. So xi = V (G1)∩V (G2), a contradiction
with xi /∈ {xi−1, yi−1}. Together with Claim 3, this implies that at least half of separation
pairs are new and since the number of new pairs is at most |V |, we obtain that k−1 ≤ 2|V |.

2.3 Minimal Forward a-b Extensions

In this section we present an algorithm from [3] which generates all minimal forward a-b
extensions.

We consider a directed graph G = (V, F ∪ B) whose arcs are partitioned into a set of
forward arcs F and a set of backward arcs B, and two distinguished vertices a, b ∈ V . A
forward a-b extension X of G is a subset of forward arcs such that b is reachable from a in
(V,B ∪X). We define the problem of generating minimal forward a-b extensions as follows:

Minimal Forward a-b Extensions Generation Problem

Input: A directed graph G = (V, F∪B) and two distinguished
vertices a, b ∈ V

Output: The list of all minimal forward a-b extensions of G

The following algorithm generates all minimal forward a-b extensions.

Extend(z,W1,W2)

1 B(z)← z ∪ { all vertices that z can be reached from using
only backward arcs }

2 if a ∈ B(z) then output W1

3 else

4 Z ← {uv ∈ F r (W1 ∪W2) : u /∈ B(z), v ∈ B(z)}

5 for every uv ∈ Z do

6 if u reachable from a in (V,B ∪ F r (W1 ∪W2 ∪ Z))

7 then Extend(u,W1 ∪ {uv},W2 ∪ (Z r {uv}))

[3] For every K the procedure Extend(b, ∅, ∅) generates K (or all) minimal forward a-b
extensions of a graph G = (V, F ∪B) in O(K|V |(|V |+ |F |+ |B|)) time.

– 10 –

2.4 Generating Elements of YX,e

For a minimal 3-vertex connected spanning subgraph (V,X) of G = (V,E) and an edge
e ∈ X (see Figure 4), YX,e is the collection of minimal subsets of E r X restoring 3-vertex
connectivity to (V,X r e). In this section we reduce the problem of generating elements of
YX,e to an instance of the minimal forward a-b extensions generation problem.

G

1

2

3

4

5

6

7

8

9

10

11

12

13

e

1

2

3

4

5

6

7

8

9

10

11

12

13

(V, X)

Figure 4: 3-vertex connected graph G = (V,E) and a minimal 3-connected spanning sub-
graph (V,X) of G.

Consider a decomposition of (V,Xre) into triconnected components C1, . . . , Ck. Let T be
the tree of triconnected components. By Theorem 2.1 and Proposition 2.2 the decomposition
is unique, the triconnected components are of four types: 3-vertex connected graphs, triple
bonds, triangles and squares; furthermore, we can assume that the triconnected components
are indexed in a way such that T is the path C1, . . . , Ck (see Figure 5).

C1 C2 C3 C4 C5 C6 C7

1

2

4

2

3

4

5

6

7 9

4 8

9 11

8

11

8

11 12

10 10

12

10

12

13

Figure 5: Decomposition of (V,X r e) into triconnected components.

Next we construct a directed graph H as follows:

• for each 3-vertex connected graph or triangle Ci, we add a vertex Di,

• for each square Ci, we add three vertices Di, Ei, Fi with arcs DiEi, DiFi,

• for each 3-vertex connected graph or triangle Ci, i ≥ 2, we add an arc DiDj, where

j =

{

i− 2, if Ci−1 is a triple bond;
i− 1, otherwise,

– 11 –

• for each square Ci, we add arcs EiDj, FiDj, where j =

{

i− 2, if Ci−1 is a triple bond;
i− 1, otherwise

(see Figure 6).

D1 D2

F3

E3

D3

F5

E5

D5 D7

Figure 6: Directed graph H.

We call arcs of the digraph H backward arcs. A segment is a backward arc DiDj. A
diamond consists of four arcs DiEi, DiFi, EiDj, FiDj. Note that the backward arcs of H
can be uniquely partitioned into segments and diamonds.

Observation 1 Let Aj ∈ {Dj, Ej, Fj} and let Ai ∈ {Di, Ei, Fi}, where j < i. Then Aj is
reachable from Ai using the backward arcs.

For a vertex u, we define l(u) = min{ i | u ∈ Ci} and r(u) = max{ i | u ∈ Ci} to be
the indices of the leftmost and rightmost triconnected component containing u. Obviously
l(u) ≤ r(u). Note that if u does not belong to any separation pair, then u belongs to exactly
one triconnected component, therefore l(u) = r(u). Also note that for every vertex u neither
Cl(u) nor Cr(u) is a triple bond.

Let uv ∈ E r X be an edge such that l(u) ≤ l(v). We define

R(u) =

Fr(u), if Cr(u) is a square Q(a, b, c, d) and u = a;
Er(u), if Cr(u) is a square Q(a, b, c, d) and u = d;
Dr(u), otherwise,

L(v) =

Fl(v), if Cl(v) is a square Q(a, b, c, d) and v = b;
El(v), if Cl(v) is a square Q(a, b, c, d) and v = c;
Dl(v), otherwise.

Let H ′ be the directed multigraph obtained from H by adding the arc R(u)L(v) to D for
every edge uv ∈ E r X such that r(u) ≤ l(v) (see Figure 7). We call the new arcs forward
arcs.

The graph H ′ corresponding to the minimal 3-vertex connected subgraph (V,X) of G =
(V,E) has at most 6|V | + 3 vertices and at most |E| + 12|V | + 6 arcs. Furthermore, we
can construct H ′ in O(|V | + |E|) time. By Proposition 2.2 the number of triconnected
components is at most 2|V |+1, and since at most three vertices of H ′ correspond to a single
triconnected component, the number of vertices of H ′ is at most 6|V |. We add at most two
backward arcs coming out of a vertex and at most |E| forward arcs. The bound on the

– 12 –

D1 D2

F3

E3

D3

F5

E5

D5 D7

Figure 7: Directed multigraph H ′.

complexity of the constructing H ′ follows from the fact that we can find all triconnected
components of the graph (V,X r e) in O(|V |+ |X|) time [7].

We next show that generating elements of YX,e is equivalent to the minimal forward
D1-Dk extensions generation problem in H ′ (see Section 2.3).

Observation 2 Let {x, y} be a separation pair of (V,X r e) with split graphs G1, G2 and
let f ∈ E r X. Then {x, y} is not a separation pair of (V,X r e ∪ f) if and only if f = uv,
where u ∈ V (G1) r {x, y} and v ∈ V (G2) r {x, y}. In this case we say that f annihilates
{x, y}.

Let Z ⊆ E r X be a set such that (V,X r e ∪ Z) is 3-vertex connected. We define
AZ = { R(u)L(v) | uv ∈ Z, r(u) ≤ l(v)} to be the subset of forward arcs corresponding to
the edges of Z.

AZ is a forward D1-Dk extension of H ′. Since the backward arcs of H ′ can be partitioned
into segments and diamonds it is sufficient to show that for every segment or diamond we
can reach its right end from its left end using only the forward arcs in AZ and the backward
arcs.

Claim 7 Let S = DiDj be a segment. Di is reachable from Dj using the arcs in AZ and the
backward arcs.

Let {x, y} be a separation pair of (V,X r e) corresponding to the edge Ci−1Ci with split
graphs G1 = Merge(C1, . . . , Ci−1), G2 = Merge(Ci, . . . , Ck). By Observation 2, there is an
edge uv ∈ Z such that u belongs to G1, v belongs to G2 and u, v /∈ {x, y} (see Figure 8).

Since u ∈ G1, v ∈ G2, we have r(u) ≤ i−1 and l(v) ≥ i. Hence the forward arc R(u)L(v)
belongs to Az.

Since l(v) ≥ i, by Observation 1 Di is reachable from L(v) using some backward arcs.
Recall that

j =

{

i− 2, if Ci−1 is a triple bond;
i− 1, otherwise.

– 13 –

x

y

u

v

G1 G2

Figure 8: Edge uv annihilating {x, y}.

Since Cr(u) cannot be a triple bond and r(u) ≤ i− 1, we obtain r(u) ≤ j. By Observation 1,
R(u) is reachable from Dj using some backward arcs.

Therefore Di is reachable from Dj using the forward arc R(u)L(v) and some backward
arcs.

Claim 8 Let S = {DiEi, DiFi, EiDj, FiDj} be a diamond. Di is reachable from Dj using
the arcs in AZ and the backward arcs.

Since S is a diamond, Ci is a square Q(a, b, c, d). Then {{a, d}, {b, c}, {a, c}, {b, d}} are the
four separation pairs in Ci.

Let uv ∈ Z be an edge annihilating {a, d}. Observe that r(u) ≤ j. Depending on v we
have two cases:

Case 1: v /∈ {b, c}. Then l(v) ≥ i+1 and R(u)L(v) belongs to AZ . Thus Di is reachable
from Dj using the forward arc R(u)L(v) and some backward arcs.

Case 2: v ∈ {b, c}. Consequently l(v) = i + 1. Without loss of generality assume v = b
(see Figure 9). Then R(u)Fi belongs to A(Z). Let u′v′ ∈ Z be an edge annihilating {b, d}.

a b

cd

u

Figure 9: Edge ub annihilating {a, d}.

Observe that r(u′) = i if u′ = a and r(u′) ≤ i − 1 otherwise. Hence either R(u′) = Fi or
R(u′) ∈ {Dj, Ej, Fj}, where j ≤ i−1. In the latter case, by Observation 1 R(u′) is reachable
from Fi using the backward arcs. Depending on v′ we have two subcases:

Case 2.1: v′ 6= c. Consequently l(v′) ≥ i + 1 and R(u′)L(v′) ∈ AZ . By Observation 1,
Di is reachable from L(v′) using some backward arcs. Thus Di is reachable from Dj using
one or two forward arcs from {R(u)Fi, R(u′)L(v′)} and some backward arcs.

Case 2.2: v′ = c. Consequently L(v′) = Ei and R(u′)Ei ∈ AZ . Let u′′v′′ ∈ Z be an edge
annihilating {b, c}. Then l(v′′) ≥ i + 1, r(u′′) = i if u′′ ∈ {a, d} and r(u′′) ≤ i− 1 otherwise.
Thus R(u′′)L(v′′) ∈ AZ . By Observation 1, Di is reachable from L(v′′) using some backward
arcs and R(u′′) is reachable from either Ei or Fi using some backward arcs. Hence Di is

– 14 –

reachable from Dj using two or three forward arcs from {R(u)Fi, R(u′)Ei, R(u′′)L(v′′)} and
some backward arcs.

Now we consider a forward D1-Dk extension A of H ′. Let ZA be the set of edges corre-
sponding to arcs of A.

(V,X r e ∪ ZA) is 3-vertex connected. We define a mapping µ between segments and
diamonds of H and sets of separation pairs as follows:

• for each segment S = DiDj let µ(S) = {{x, y}}, where {x, y} is the separation pair
corresponding to the edge CiCi−1 of T ,

• for each diamond S = {DiEi, DiFi, EiDj, FiDj}, corresponding to some square Q(a, b, c, d),
let µ(S) = {{a, d}, {a, c}, {b, d}}.

Claim 9 Let S be the set of all segments and diamonds of H. Then
⋃

S∈S µ(S) is the set of
all separation pairs of (V,X r e).

Let {x, y} be a separation pair of (V,X r e) with split graphs G1, G2. We continue
splitting these graphs until we obtain a decomposition into split components where xy is a
virtual edge belonging to at least two split components.

If xy belongs to two subsequent triangles, then after merging these triangles we obtain
a square Q(a, b, c, d), where {x, y} ∈ {{a, c}, {b, d}}. Otherwise xy belongs to two or three
split components (in the latter case the middle split component is a triple bond) and, after
the merging of bonds and triangles into triconnected components, xy is still the virtual edge
of two or three triconnected components.

Thus each separation pair {x, y} is one of the following five types:

• there are two virtual edges xy, belonging to Ci−1 and Ci, where Ci is not a square,

• there are four virtual edges xy, belonging to Ci−2, Ci−1 and Ci, where Ci is not a square
and Ci−1 is a triple bond,

• there are two virtual edges xy, belonging to Ci−1 and Ci, where Ci = Q(a, b, c, d) and
xy = ad,

• there are four virtual edges xy, belonging to Ci−2, Ci−1 and Ci, where Ci = Q(a, b, c, d),
xy = ad and Ci−1 is a triple bond,

• {x, y} is one of the two separation pairs {a, c}, {b, d} of a square Ci = Q(a, b, c, d).

Let

j =

{

i− 2, if Ci−1 is a triple bond;
i− 1, otherwise.

In the first two cases {x, y} ∈ µ(DiDj). In the remaining cases {x, y} ∈ µ(S), where S is
the diamond {DiEi, DiFi, EiDj, FiDj}.

– 15 –

By Observation 2, to prove Lemma 11 it suffices to show that for every separation pair
{x, y} there exists an edge in ZA, neither endpoint of which is a vertex of the separation
pair, connecting the split graphs of (V,X re) with respect {x, y}. By Claim 9, all separation
pairs correspond to segments and diamonds.

First, consider a segment DiDj with µ(DiDj) = {x, y}. Let G1 = Merge(C1, . . . , Ci−1),
G2 = Merge(Ci, . . . , Ck) be split graphs of (V,X r e) with respect to {x, y}. The extension
A must contain an arc RpLq, where Rp ∈ {Dp, Ep, Fp}, Lq ∈ {Dq, Eq, Fq} p ≤ j, q ≥ i (see
Figure 10).

RpLq

Dj Di

Figure 10: Arc RpLq of A.

Let uv be an edge of Z corresponding to RpLq. Since r(u) = p, l(v) = q, we obtain
u ∈ G1 and v ∈ G2. Note that r(x), r(y) ≥ i. Since r(u) ≤ j ≤ i − 1, we have u /∈ {x, y}.
Similarly, v /∈ {x, y}. Thus uv annihilates {x, y}.

Next, consider a diamond S = {DiEi, DiFi, EiDj, FiDj} with Ci = Q(a, b, c, d) and
µ(S) = {{a, d}, {a, c}, {b, d}}. Consider the following three pairs of split graphs:

G′

a,d = Merge(C1, . . . , Ci−1), G′′

a,d = Merge(Ci, . . . , Ck),

G′

a,c = Merge(C1, . . . , Ci−1, T (a, c, d)), G′′

a,c = Merge(T (a, b, c), Ci+1, . . . , Ck),

G′

b,d = Merge(C1, . . . , Ci−1, T (a, b, d)), G′′

b,d = Merge(T (c, d, b), Ci+1, . . . , Ck).

where T (a, c, d), T (a, b, c), T (a, b, d), T (c, d, b) are triangles as introduced in Section 2.2.
Since A is a forward D1-Dk extension by Observation 1 the vertex Di is reachable from

Dj using arcs of A and backward arcs. We have following three cases:
Case 1: RpLq ∈ A, where p ≤ j, q ≥ i. Let uv be an edge of Z corresponding to RpLq

(see Figure 11). Observe that u, v /∈ {a, b, c, d}. Thus uv annihilates all three separation

RpLq

Dj

Fi

Ei

Di

Figure 11: Arc RpLq corresponding to edge uv annihilating all three separation pairs of µ(S).

– 16 –

pairs of µ(S), since u belongs to the split graphs G′
a,d, G′

a,c, G′
b,d and v belongs to G′′

a,d, G′′
a,c,

G′′
b,d.
Case 2: {RpEi, EiLq} ∈ A or {RpFi, FiLq} ∈ A, where p ≤ j, q ≥ i. Without loss

of generality suppose that A contains the arcs RpFi, FiLq. Let uv, u′v′ be edges of ZA

corresponding to RpFi, FiLq, respectively. Observe that v = b, u′ = a and u, v′ /∈ {a, b, c, d}
(see Figure 12). The edge ub annihilates the separation pairs {a, d} and {a, c}, since u

RpFi FiLq

Dj

Fi

Ei

Di

Figure 12: Arcs RpEi, EiLq corresponding to edges uc, dv′, respectively.

belongs to G′
ad, G′

ac and b belongs to G′′
ad, G′′

ac. The edge av′ annihilates {b, d}, since a
belongs to G′

b,d and v’ belongs to G′′
b,d.

Case 3: {RpEi, EiFi, FiLq} ∈ A or {RpFi, FiEi, EiLq} ∈ A, where p ≤ j, q ≥ i. Without
loss of generality suppose that A contains the arcs RpFi, FiEi, EiLq. Then edges ub, ac, dv′ ∈
ZA correspond to RpFi, FiEi and EiLq, respectively, where u, v′ /∈ {a, b, c, d} (see Figure 13).

RpFi

EiLq

FiEiDj

Fi

Ei

Di

Figure 13: Arcs RpFi, FiEi and EiLq corresponding to edges ub, ac, dv′, respectively.

The edge ub annihilates {a, d}, {a, c}, ac annihilates {b, d} and dv′ annihilates {a, c}.

2.5 Complexity

In this section we utilize Proposition 1.2 to analyze the total running time of the procedure
Transversal(G). Let n = |V |, m = |E|. As G is 3-vertex connected, m ≥ n.

Since one can test if a graph is 3-vertex connected in O(n+m) time [7], we have γ(E) = m.
By Lemma 2.4 the graph H ′ has O(n) vertices and O(m) arcs. Thus by Theorem 2.3 we
obtain φ(K,E) = Knm.

By Proposition 1.2 the procedure Transversal(G) generates K minimal 3-vertex con-
nected subgraphs in O(K2log(K)m2 + K2m3) time.

– 17 –

References

[1] A. Tamura A. Shioura and T. Uno. An optimal algorithm for scanning all spanning
trees of undirected graphs. SIAM Journal on Computing, 26(3):678–692, 1997.

[2] E. Boros, K. Borys, K. Elbassioni, V. Gurvich, K. Makino, and G.Rudolf. Generat-
ing k-vertex connected spanning subgraphs and k-edge connected spanning subgraphs.
Manuscript.

[3] E. Boros, K. Elbassioni, V. Gurvich, and L. Khachiyan. Enumerating minimal dicuts
and strongly connected subgraphs and related geometric problems. In D. Bienstock and
G. Nemhauser, editors, Integer Programming and Combinatorial Optimization, 10th
International IPCO Conference, New York, NY, USA, volume 3064 of Lecture Notes
in Computer Science, pages 152–162, Berlin, Heidelberg, New York, June 7-11 2004.
Springer. (RRR 36-2003).

[4] C.J. Coulbourn. The Combinatorics of Network Reliability. Oxford University Press,
1987.

[5] R. Diestel. Graph theory. Springer-Verlag, 2000.

[6] H.N. Gabow and E.W. Myers. Finding all spanning trees of directed and undirected
trees. SIAM Journal on Computing, 117:280–287, 1978.

[7] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM
Journal on Computing, 2(3):135–157, 1973.

[8] D.S. Johnson and Ch. H. Papadimitriou. On generating all maximal independent sets.
Information Processing Letters, 27:119–123, 1988.

[9] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, and K. Makino. Enumer-
ating spanning and connected subsets in graphs and matroids. Manuscript.

[10] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, and K. Makino. Gen-
erating cut conjunctions and bridge avoiding extensions in graphs. In Algorithms and
Computation: 16th International Symposium, ISAAC 2005, Sanya, Hainan, China,
December 19-21, 2005, pages 156–165, 2005, full version to appear in Algorithmica.

[11] E. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Generating all maximal indepen-
dent sets: NP-hardness and polynomial-time algorithms. SIAM Journal on Computing,
9:558–565, 1980.

[12] S. Maclaine. A structural characterization of planar combinatorial graphs. Duke Math
Journal, 3:460472, 1937.

– 18 –

[13] T. Matsui. Algorithms for finding all the spanning trees in undirected graphs. Technical
report, Department of Mathematical Engineering and Information Physics, Faculty of
Engineering, University of Tokyo, 1993. Report METR93-08.

[14] R. C. Read and R. E. Tarjan. Bounds on backtrack algorithms for listing cycles, paths,
and spanning trees. Networks, 5:237–252, 1975.

[15] B. Schwikowski and E. Speckenmeyer. On enumerating all minimal solutions of feedback
problems. Discrete Applied Mathematics, 117:253–265, 2002.

[16] W.T. Tutte. Connectivity in graphs. Univ. Toronto Press, 1966.

[17] L.G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal
on Computing, 8:410–421, 1979.

