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ABSTRACT

Given a directed graph G = (V, A) with a non-negative weight (length) function on its arcs
w : A→ R+ and two terminals s, t ∈ V , our goal is to destroy all short directed paths from
s to t in G by eliminating some arcs of A. This is known as the short paths interdiction
problem. We consider several versions of it, and in each case analyze two subcases: total
limited interdiction, when a fixed number k of arcs can be removed, and node-wise limited
interdiction, when for each node v ∈ V a fixed number k(v) of out-going arcs can be removed.
Our results indicate that the latter subcase is always easier than the former one. In particular,
we show that the short paths node-wise interdiction problem can be efficiently solved by an
extension of Dijkstra’s algorithm. In contrast, the short paths total interdiction problem
is known to be NP-hard. We strengthen this hardness result by deriving the following
inapproximability bounds: Given k, it is NP-hard to approximate within a factor c < 2 the
maximum s−t distance d(s, t) obtainable by removing (at most) k arcs from G. Furthermore,
given d, it is NP-hard to approximate within a factor c < 10

√
5 − 21 ≈ 1.36 the minimum

number of arcs which has to be removed to guarantee d(s, t) ≥ d. Finally, we also show that
the same inapproximability bounds hold for non-directed graphs and/or node elimination.

Keywords: approximation algorithm, Dijkstra’s algorithm, most vital arcs problem,
cyclic game, maxmin mean cycle, minimal vertex cover, network inhibition, network inter-
diction.



1 Introduction

1.1 Node-wise limited interdiction

Let G = (V, A) be a directed graph (digraph) with given arc-weights w(e), e ∈ A. For each
vertex v ∈ V , we are allowed to delete (remove, block, interdict) a subset X(v) of the arcs
A(v) = {e ∈ A | e = (v, u)} leaving v. We assume that these arc-sets X(v) ⊆ A(v) are
selected for all vertices v ∈ V independently, and we call the collection B(v) of all admissible
arc-sets X(v) a blocking system at v. We also assume that for each v, the family B(v) forms
an independence system, i.e., if X(v) ∈ B(v) is an admissible arc-set at v, then so is any
subset of X(v). Hence, we could replace B(v) by the collection of all inclusion-wise maximal
admissible arc-sets. In general, we will only assume that the blocking system B(v) is given
by a membership oracle O :

(B0) Given a list X(v) of out-going arcs for some vertex v, the oracle can determine whether
or not the arcs in the list belong to B(v) and hence can be simultaneously deleted.

A similar formalization of blocking sets via membership oracles is used by Pisaruk [37]. We
will also consider two special types of blocking systems:

(B1) The blocking system is given by a function k(v) : V → Z+, where k(v) ≤ |A(v)| =
out-deg(v). For each vertex v, we can delete any collection of (at most) k(v) arcs
leaving v. The numbers k(v) define digraphs with prohibitions considered by Karzanov
and Lebedev [30].

(B2) There are two types of vertices: control vertices, where we can select any out-going arc
e ∈ A(v) and block all the remaining arcs in A(v), and regular vertices, where we can
block no arc. This case, considered in [6, 23], is a special case of B1: k(v) = |A(v)| − 1
for control vertices, and k(v) = 0 otherwise.

We call a digraph G′ = (V, A′) admissible for G = (V, A) if A′ ⊆ A is obtained by deleting
some admissible subsets X(v) ∈ B(v) of outgoing arcs for each vertex v ∈ V .

1.2 Interdiction of directed cycles

We proceed with an obvious observation. Let G = (V, A) be a directed graph (digraph) and
our goal is to destroy all directed cycles in G. In this case the total limited interdiction
problem is stated as follows. Is it possible to destroy all directed cycles of G by eliminating
(at most) k arcs of A, or in other words, whether G has a feedback arc set of size (at most)
k? In 1972 Karp [28] proved that this decision problem is NP-hard.

Node-wise limited cycle interdiction problem of type B1 can be stated as follows. Is it
possible to destroy all directed cycles in G by deleting for each node v ∈ V (at most) k(v)
arcs going from v? This problem is trivial. Indeed, if k(v) < out-deg(v) for each v ∈ V
then the answer is negative, since for each v ∈ V at least one out-going arc will remain and
they will form a directed cycle, since G is finite. If k(v) ≥ out-deg(v) for a vertex v ∈ V
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then obviously all out-going arcs from v should be removed, since after this we can delete
the node v itself together with all in-going arcs. Repeating this simple procedure recursively
we get a linear time algorithm for the node-wise limited directed cycle interdiction problem.
The above algorithm can obviously be generalized for the interdiction of type B0.

1.3 Interdiction of negative directed cycles and mean payoff games

Now let us assume that weights may be negative and consider the negative cycle interdiction
problem. Clearly, the total limited version of it is NP-hard, since if all weights are negative
then all directed cycles are negative too, and we obtain the previous NP-hard problem as a
special case.

In contrast, the node-wise limited negative directed cycles interdiction is equivalent to a
famous open problem, solving mean payoff games, [12, 13, 23, 34, 35], that is very unlikely
NP-hard, since it is known to be in NP ∩ co-NP, [30], and there is a sub-exponential algorithm
for it, [6] and [26].

A mean payoff game is a zero-sum game played by two players on a finite arc-weighted
digraph G all vertices of which have positive out-degrees, in other words, there are no dead-
ends in G. The vertices of G (positions) are partitioned into two sets controlled by two
players, who move a chip along the arcs of the digraph, starting from a given vertex s ∈ V
(the initial position). A positional strategy of a player is a mapping which assigns an out-going
arc to each of his positions. If both players select positional strategies then the sequence
of moves (the play) starts in s and settles on a simple directed cycle of G whose average
arc-weight is called the effective payoff corresponding to the selected strategies.

Ehrenfeucht and Mycielski [12, 13] and Moulin [34, 35] introduced mean payoff games
on bipartite digraphs and proved the existence of the value for such games in positional
strategies. Gurvich, Karzanov, and Khachiyan [23] extended this result to arbitrary digraphs
and suggested a potential-reduction algorithm to compute the value and optimal positional
strategies of the players. In many respects this algorithm for mean payoff games is similar
to the simplex method for linear programming.

Let us assume that the vertices assigned to the maximizing (respectively, to the mini-
mizing) player are controlled (respectively, regular) vertices for B2. Then the determination
of an optimal positional strategy for the maximizing player reduces to computing a B2-
admissible digraph G = (V, A′) that maximizes the minimum average arc-cost for the cycles
reachable from the initial position s. Beffara and Vorobyov [4] report on computational ex-
periments with the potential-reduction algorithm [23] in which it was used to solve very large
instances of mean payoff games. However, for some special instances with exponentially large
arc-weights, this algorithm may require exponentially many steps [23, 5]. Interestingly, com-
putational experiments [5] seem to indicate that such hard instances become easily solvable
if the game is modified into an equivalent one by a random potential transformation.

Karzanov and Lebedev [30] extended the potential-reduction algorithm [23] to so-called
mean payoff games with prohibitions, that is to interdiction of type B1. Pisaruk [37] fur-
ther extended these results to interdiction of type B0 defined by an arbitrary membership
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oracle, and showed that in this general setting, the potential-reduction algorithm [23] is
pseudo-polynomial. Zwick and Paterson [45] gave another pseudo-polynomial algorithm for
interdiction of type B2.

As mentioned above, mean payoff games can be reduced to the node-wise limited negative
directed cycles interdiction. Indeed, if we fix a start vertex s, then determining whether the
value of a mean payoff game on G = (V, A) exceeds some threshold ξ is equivalent to the
following decision problem:

(ξ) : Is there an admissible digraph G′ such that the average arc-weight of each cycle reach-
able from s in G′ is at least ξ?

After the substitution w(e)→ w(e)−ξ we may assume without loss of generality that ξ = 0.
This completes the reduction.

Björklund, Sandberg and Vorobyov [6] recently showed that mean payoff games can
be solved in expected sub-exponential time. A deterministic sub-exponential algorithm was
proposed by Jurdzinski, Paterson, and Zwick [26]. However, the question as to whether this
class of games can be solved in polynomial time remains open, even though the decision
problem (ξ) is in NP∩ co-NP [30, 45].

Finally, let us consider a special case when digraph G contains only one negative arc,
w(t, s) = −d, where d is a positive threshold. Let us also assume that, except (t, s), there
is no other arc going from t and that B(t) = ∅, or in other words, that (t, s) cannot be
deleted. It is easy to see that in this case negative directed cycles of G are in one-to-one
correspondence with directed paths from s to t that are shorter than d. So we will destroy
these paths rather than negative cycles. Since the arc (t, s) becomes irrelevant, we can
delete it and get a network with non-negative weights. Thus, we come to the short paths
interdiction problem that is studied in the rest of the paper. As usual, we consider two cases:
total limited and node-wise limited interdiction.

1.4 Node-wise limited short paths interdiction

Given a digraph G = (V, A) with a non-negative weigh function w : A→ R+, two terminals
s, t ∈ V and a blocking system B, find an admissible digraph G′ that maximizes the distance
from a given start vertex s to a given terminal vertex t:

ℓ(s, t)
def
= max{ s-t distance in G′ | G′ is an admissible digraph of G}.

We will see from what follows that, for any fixed terminal vertex t ∈ V , we can select
an optimal admissible digraph that simultaneously maximizes the distances from all start
vertices s. In other words, there exists an admissible digraph Go such that for all vertices
v ∈ V \ {t}, we have

ℓ(v, t) ≡ v-t distance in Go.

For this reason, it is convenient to consider the single-destination version of the above
problem:
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MASPNLAI (Maximizing all shortest paths to a given terminal by node-wise lim-
ited arc interdiction): Given an arc-weighted digraph G = (V, A), a non-negative weight
function w, a terminal vertex t ∈ V , and a blocking system B, find an optimal admis-
sible digraph Go that maximizes the distances from all vertices v ∈ V \ {t} to t.

Let us remark however, that if we fix a start vertex s, instead of t, then distinct terminal
vertices may require distinct optimal admissible digraphs. The same happens if we consider
in-going rather than out-going arcs.

In section 2 we show that MASPNLAI can be solved in strongly polynomial time by a
natural extension of Dijkstra’s algorithm.

Theorem 1 Given a digraph G = (V, A), a non-negative weight function w : A→ R+, and
a terminal vertex t ∈ V ,
(i) The special case of problem MASPNLAI for blocking systems B1 can be solved in time

O

(

|A|+ |V | log |V |+
∑

v∈V \{t}
[out-deg(v)− k(v)] log(k(v) + 1)

)

.

In particular, for blocking systems B2 the problem can be solved in O(|A|+ |V | log |V |) time;
(ii) For arbitrary blocking systems defined by membership oracles, MASPNLAI can be solved
in O(|A| log |V |) time and at most |A| monotonically increasing membership tests;
(iii) When all of the arcs have unit weight, problem MASPNLAI can be solved in O(|A|+|V |)
time and at most |A| monotonically increasing blocking tests. The special cases B1 and B2

can be solved in O(|A|+ |V |) time.

We show parts (ii) and (iii) of the theorem by using an extension of Dijkstra’s algorithm
and breadth-first search, respectively. As mentioned in the theorem, both of these algorithms
employ monotonically increasing membership queries and never de-block a previously blocked
arc. This is not the case with the variant of Dijkstra’s algorithm used in the proof of part
(i). Note also that for blocks of type B1 and B2, the above bounds include the blocking
tests overhead, and that the bound stated in (i) for B2 is as good as the running time of the
fastest currently known strongly-polynomial algorithm by Fredman and Tarjan [14] for the
standard shortest path problem, without interdiction.

Let us also mention that by Theorem 1, problem MASPNLAI can be solved in strongly
polynomial time for any digraph G = (V, A) that has no directed cycles of negative total
arc-weight. Indeed, Gallai [16] proved that if G has no negative cycles then all input arc-
weights w(v, u) can be made non-negative by a potential transformation w(v, u)→ w(v, u)+
ε(v)− ε(u), where ε : V → R are some vertex weights (potentials); see [1, 39]. Clearly, the
total weights of all directed cycles remain unchanged and the total weight of a directed path
p from s to t is transformed as follows: w(p(s, t))→ w(p(s, t)) + ε(s)− ε(t). Hence, the set
of optimal arc blocks for MASPNLAI remain unchanged, too. Karp [29] showed that such a
potential transformation can be found in O(|A||V |) time.
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We proceed with a negative observation. It is well known that the standard shortest
path problem is in NC, that is it can be efficiently solved in parallel. In contrast, problem
MASPNLAI is P-complete already for blocking systems of type B2 and acyclic digraphs
G = (V, A) of out-degree 2. This is because determining whether the blocking distance
between a pair of vertices s, t is finite: d(s, t) < +∞ includes, as a special case, the well-
known monotone circuit value problem [20, 21].

1.5 Total limited short paths interdiction and similar problems

Given a digraph G = (V, A), terminals s, t ∈ V , a non-negative weight function w : A→ R+,
and two thresholds k ∈ Z+ and d ∈ R+, is it possible to remove k arcs from A so that
d(s, t) ≥ d in the remaining digraph? For any constant k this clearly can be accomplished in
polynomial time (see e.g., Corley and Shaw [8]), however, in general the problem is NP-hard,
as it was shown by Bar-Noy, Khuller, and Schieber in [3]. In this paper we strengthen this
result by deriving inapproximability bounds. For a given k let us denote by ℓA(G, s, t, k) the
maximum of d(s, t) over all digraphs obtainable from G by deleting (at most) k arcs.

Theorem 2 It is NP-hard to approximate ℓA within a factor smaller than 2, even for bipar-
tite graphs.

Given a positive integer d, let us denote by bA(G, s, t, d) the smallest integer k such that
d(s, t) ≥ d after k appropriate arcs are deleted from G.

Theorem 3 It is NP-hard to approximate bA within a factor smaller than 10
√

5−21 ≈ 1.36,
even for bipartite graphs.

The inapproximability bound 10
√

5−21 ≈ 1.36 was recently obtained by Dinur and Safra [11]
for the Minimum Vertex Cover Problem in graphs improving the previous bound 7/6 ≈ 1.17
given by H̊astad [24]. In our proof we reduce the problem to the Minimum Vertex Cover
Problem.

We prove also that the same bounds 2 and 10
√

5−21 ≈ 1.36 hold for non-directed graphs
and/or vertex interdiction.

Clearly, the functions ℓA and bA establish an inverse connection between the distance
d(s, t) and the number of deleted arcs k: the more arcs we delete, the higher the distance
between s and t. In some situations we might be interested to know the tradeoff between
the number of deleted arcs and the distance achieved. We can however show that even this
tradeoff cannot be approximated arbitrarily well, unless P=NP.

Let us say that it is NP-hard to distinguish two disjoint subsets of (di)graphs, A and B,
if no polynomial time algorithm can accept all graphs G ∈ A and reject all graphs G ∈ B,
unless P=NP.

Theorem 4 For every fixed ǫ > 0 it is NP-hard to distinguish graphs having d(s, t) ≥ d
after the removal of some k arcs from those having d(s, t) ≤ 1

2−ǫ
d in all subgraphs obtained

by removing (34
33
− ǫ)k arcs, where d and k are part of the input.
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1.6 Multiple cuts

Let us next recall that similar sounding problems about multiple cuts can be solved in
polynomial time.

Given a directed graph G(V, A), two terminals s, t ∈ V , a subset A′ ⊆ A of the arcs is
called an ℓ-cut, if any s−t directed path contains at least ℓ arcs from A′. Then, the following
problem can be solved in polynomial time:

M : Given a digraph G = (V, A) with two distinguished vertices s, t ∈ V and positive integers
k and ℓ, determine whether there exists an ℓ-cut A′ ⊆ A consisting of (at most) k arcs.

Suppose without loss of generality that t is reachable from s in G, and let A′ be an
arbitrary ℓ-cut, that is, |A′ ∩ P | ≥ ℓ for any s-t path P ⊆ A. Then, denoting by Vi the set
of vertices that can be reached from s by using at most i arcs from A′, we conclude that A′

contains ℓ disjoint s-t cuts Ci = cut(Vi−1, Vi) for i = 1, . . . , ℓ. Conversely, the union of any ℓ
arc-disjoint s-t cuts is an ℓ-cut separating t from s. Hence problem M can be equivalently
stated as follows:

M′ : Given a digraph G = (V, A), two distinguished vertices s, t ∈ V , and positive integers k
and ℓ, determine whether there exist ℓ arc-disjoint s-t-cuts C1, . . . , Cℓ such that |C1|+
. . . + |Cℓ| ≤ k.

The latter problem is polynomial. Moreover, Wagner [41] showed that its weighted
optimization version can be solved in strongly polynomial time.

M′
w : Given a digraph G = (V, A) with two distinguished vertices s, t ∈ V , a weight function

w : A→ R+, and a positive integer ℓ, find ℓ arc-disjoint s, t-cuts C1, . . . , Cℓ of minimum
total weight w(C1) + . . . + w(Cℓ).

1.7 Network interdiction and its applications

Problem MASPNLAI is a special (polynomially solvable) case of the so-called network in-
terdiction problem. Interdiction (or inhibition) is an attack on arcs to destroy them, or
increase their effective lengths, or decrease their capacities. The goal of the interdiction is
to utilize a given budget most efficiently, that is to maximize the shortest path or minimize
the maximum flow between two given terminals. These problems were originally motivated
by military applications, McMasters and Mustin [32], Ghare, Montgomery, and Turner [18].
Later analogous models of pollution and drug interdiction were developed by Wood and
Washburn [44, 42]. The problem of minimizing the maximum flow was considered by Phillips
[36], while the maximization of the shortest path was first studied by Fulkerson and Harding
[15] and also by Golden [19] (see Israeli and Wood [25] for a short survey). An important
special case of the latter problem is the so-called k-most-vital-arcs problem [2, 3, 8, 31] in
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which it is allowed to destroy exactly k arcs. All the above mentioned problems are known
to be NP-hard, in general.

Problem MASPNLAI is the short paths interdiction problem under the assumption that
the budget is node-wise limited. This problem is polynomially solvable.

To illustrate possible applications of this polynomially solvable case, suppose that for
each arc e = (u, v) we are given a probability p(e) that some undesirable transition (for
example, contraband smuggling) from u to v can be carried out undetected. Then, assuming
independence and letting w(e) = − log p(e) ≥ 0, we can interpret problem MASPNLAI as
the uniform maximization of interception capabilities for a given target t under limited
inspection resources distributed over the nodes of G.

2 Proof of Theorem 1

We first describe an extension of Dijkstra’s algorithm for problem MASPNLAI that uses
blocking queues and may temporarily block and then de-block some arcs. This extension,
presented in Section 2.2, is used to show part (i) of Theorem 1. Then in Section 2.4 we
present another implementation of the extended algorithm to prove part (ii) of the theorem.
Part (iii) is shown in Section 2.5.

2.1 Blocking Queues

Let B be a blocking (i.e. independence) system on a finite set A, for example on the set A(v)
of arcs leaving a given vertex v of G. Given a mapping p : A→ R, and a set Y ⊆ A, let

pB(Y ) = max
X∈B

min
e∈Y \X

p(e), (1)

where, as usual, it is assumed that the minimum over the empty set is +∞. For instance, if
Y = {e1, e2, e3, e4} and (p(e1), p(e2), p(e3), p(e4)) = (1, 3, 3, 5), then

pB(Y ) =















1, if {e1} /∈ B;
3, if {e1} ∈ B but {e1, e2, e3} /∈ B;
5, if {e1, e2, e3} ∈ B but Y /∈ B;
+∞, if Y ∈ B.

Considering the image {p(e), e ∈ Y } as a set of keys, we define a B-queue as a data
structure for maintaining a dynamic set of keys under the following operations:
1. Make queue: Create an empty queue Y = ∅;
2. Insert: Expand Y by adding a new element e with a given key value p(e);
3. Return pB(Y ): Compute the right-hand side of (1) for the current key set.
Note that when the independence system is trivial, B = {∅}, we obtain the customary
definition of a minimum priority queue.
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When B is a blocking system of type B1, that is, X ∈ B whenever |X| ≤ k for some given
integer k ≤ |A|, then

pB(Y ) =

{

+∞, if |Y | ≤ k;
(k + 1)st smallest key of Y , if |Y | ≥ k + 1.

Hence, by maintaining a regular maximum priority queue of at most k + 1 elements of A,

• A sequence of d ≥ k queue operations for an initially empty B1-queue can be imple-
mented to run in O(k + (d− k) log(k + 1)) time.

For general blocking systems B, each B-queue operation can be performed in O(log |Y |)
time and O(log |Y |) oracle queries. This can be done by using a balanced binary search tree
on the set of keys in Y . Specifically, inserting a new key into Y takes O(log |Y |) time and no
oracle queries, while computing the value of pB(Y ) can be done by searching for the largest
key p in the tree for which the oracle can block the set of all keys smaller than p. Note
that each query to the blocking oracle can be specified by a list of keys if we additionally
maintain a sorted list of all keys in Y along with pointers from the search tree to the list.

We close this subsection by defining, for each set Y ⊆ A of keys, a (unique) inclusion-wise
minimal blocking set X̂(Y ) ∈ B such that

pB(Y ) = min
e∈Y \X̂(Y )

p(e).

We will refer to X̂(Y ) ⊆ Y as the lazy block for Y . For instance, if, as before, Y =
{e1, e2, e3, e4} and (p(e1), p(e2), p(e3), p(e4)) = (1, 3, 3, 5), then

X̂(Y ) =















∅, if {e1} 6∈ B;
{e1}, if {e1} ∈ B, but {e1, e2, e3} 6∈ B;
{e1, e2, e3}, if {e1, e2, e3} ∈ B, but Y 6∈ B;
Y, if Y ∈ B.

For an unsorted list of keys {p(e), e ∈ Y }, the lazy block X̂(Y ) can be computed in O(|Y |)
time and O(log |Y |) oracle queries by recursively splitting the keys around the median. For
blocking systems B1 this computation takes O(|Y |) time.

2.2 Extended Dijkstra’s Algorithm for MASPNLAI

Given a digraph G = (V, A), a non-negative weight function w(v) : A→ R
+, a vertex t ∈ V ,

and a blocking system B, we wish to find an admissible graph Go that maximizes the distance
from each start vertex v ∈ V to t. In the statement of extended Dijkstra’s algorithm below
we assume without loss of generality that the out-degree of the terminal vertex t is 0, and
the input arc-weights w(e) are all finite. By definition, we let ℓ(t, t) = 0.



– 9 –

Similarly to the regular Dijkstra’s algorithm, the extended version maintains, for each
vertex v ∈ V , an upper bound ρ(v) on the blocking v-t distance:

ρ(v) ≥ ℓ(v, t)
def
= max

G′ admissible
{distance from v to t in G′}.

Initially, we let ρ(t) = 0 and ρ(v) = +∞ for all vertices v ∈ V \{t}. As the regular Dijkstra’s
algorithm, the extended version runs in at most |V |−1 iterations and (implicitly) partitions
V into two subsets S and T = V \ S such that ρ(v) = ℓ(v, t) for all v ∈ T . We iteratively
grow the initial set T = ∅ by removing, at each iteration, the vertex u with the smallest value
of ρ(v) from S and adding it to T . For this reason, the values of ρ(v), v ∈ S are stored in a
minimum priority queue, e.g., in a Fibonacci heap. Once we remove the minimum-key vertex
u from S (and thus implicitly declare that ρ(u) = ℓ(u, t)), we update ρ(v) for all those vertices
v ∈ S that are connected to u by an arc in G. Recall that the regular version of Dijkstra’s
algorithm uses updates of the form ρ(v)← min{ρ(v), w(v, u)+ρ(u)}. The updates performed
by the extended version use blocking queues Y (v) maintained at all vertices v ∈ V \ {t}.
Initially, all these B(v)-queues are empty, and when the value of ρ(v) needs to be updated
for some vertex v ∈ S such that e = (v, u) ∈ A, we first insert arc e with the key value p(e) =

w(v, u)+ ρ(u) into Y (v), and then let ρ(v)← pB(Y (v))
def
= maxX∈B(v) mine∈Y (v)\X p(e). In

particular, for the standard shortest path problem, we obtain the regular updates.
Finally, as the regular Dijkstra’s algorithm, the extended version terminates as soon as

ρ(u) = min{ρ(v), v ∈ S} = +∞ or |S| = 1.



– 10 –

EXTENDED DIJKSTRA’S ALGORITHM

Input: A digraph G = (V,A) with arc-weights
{w(e) ∈ [0,+∞), e ∈ A}, a destination vertex t ∈ V , and
a blocking system B.

Initialization:

1. ρ(t)← 0;
2. For all vertices v ∈ V \ {t} do:
3. ρ(v)← +∞; Set up an empty blocking queue Y (v);
4. Build a minimum priority queue (Fibonacci heap) S on
the key values ρ(v), v ∈ V .

Iteration loop:

5. While |S| > 1 do:
6. If min{ρ(v), v ∈ S} = +∞, break loop and go to line 12;
7. Extract the vertex u with the smallest key value ρ(·)
from S;
8. For all arcs e = (v, u) ∈ A such that v ∈ S, do:
9. p(e)← w(e) + ρ(u);
10. Insert p(e) into Y (v);
11. Update the value of ρ(v) : ρ(v)← pB(Y (v)).

Output:

12. For each vertex v ∈ V \ {t}, return ρ(v) with the lazy
block X̂(Y (v)).

Bounds on running time for blocks of type B1. Line 12 and the initialization steps
in lines 1-4 take linear time O(|V | + |A|). Let n ≤ |V | − 1 be the number of iterations
performed by the algorithm. Denote by Yi(v) (the set of key values in) the blocking queue
at a fixed vertex v ∈ V \ {t} after the execution of iteration i = 1, . . . , n, and let Y0(v) = ∅
be the initial queue at v. As Y0(v) ⊆ Y1(v) ⊆ . . . ⊆ Yn, the values of ρi(v) = pB(Yi(v)) are
monotonically non-increasing: +∞ = ρ0(v) ≥ ρ1(v) ≥ . . . ≥ ρn(v). Since S is a (minimum)
Fibonacci heap, the decrease-key operations in line 11 can be executed in constant amortized
time per iteration, provided that the values of pB(Yi(v)) are known. Lines 6 and 7 take O(1)
and O(log |V |) time per iteration, respectively. In view of the bounds on the B1- queue
operations 10-11 stated in Section 2.1, the overall running time of the algorithm is thus
within the bound stated in part (i) of Theorem 1.

To complete the proof of part (i) it remains to show that the extended algorithm is
correct.
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2.3 Correctness of Extended Dijkstra’s Algorithm

Let us show that upon the termination of the extended Dijkstra’s algorithm,

• ρ(v) = ℓ(v, t)
def
= maxG′admissible{distance from v to t in G′} for all vertices v ∈ V , and

• The digraph Go =
(

V, A \ ⋃

v∈V \{t} X̂(Y (v)
)

obtained by deleting the lazy blocking

sets of arcs X̂(Y (v)) is an optimal admissible digraph for all vertices : ℓ(v, t) ≡
v-t distance in Go.

Let Si and Ti = V \ Si be the vertex partition maintained by the algorithm for i =
0, 1, . . . , n ≤ |V | − 1. We have S0 = V ⊃ S1 = V \ {t} ⊃ . . . ⊃ Sn−1 ⊇ Sn, where Sn−1 = Sn

if and only if the algorithm terminates due to the stopping criterion in line 6. For the given
arc weights w(e), e ∈ A, consider the following weight functions wi : A→ R+ ∪ {+∞}:

wi(e) =

{

+∞, if both endpoints of e are in Si,
w(e), otherwise.

(2)

Clearly, we have w0(e) = +∞ ≥ w1(e) ≥ . . . ≥ wn(e) ≥ w(e). Let

ℓi(v, t)
def
= max

G′ admissible
{wi-distance from v to t in G′},

then ℓ0(v, t) = +∞ ≥ ℓ1(v, t) ≥ . . . ≥ ℓn(v, t) ≥ ℓ(v, t) for all v ∈ V \ {t}. The correctness
of the algorithm will follow from the following two invariants: for all i = 0, 1, . . . , n,

IS
i : ρi(v) = ℓi(v, t) for all vertices v ∈ Si;

IT
i : If v ∈ Ti = V \ Si, then ρi(v) = ℓ(v, t) and the admissible digraph Go

i =
(

V, A \
⋃

v∈V \{t} X̂(Yi(v))
)

is an optimal blocking digraph for v. Moreover, min{ρi(v), v ∈
Si} ≥ max{ℓ(v, t), v ∈ Ti} and for each vertex v ∈ Ti there exists a shortest v-t path
in Go

i which lies entirely in Ti.

Note that by IT
i , the algorithm removes vertices from S and determines their blocking

distances in non-decreasing order.
Proof of invariants IS

i and IT
i is similar to that for the regular Dijkstra’s algorithm. Since

T0 = ∅, invariant IT
0 holds trivially. IS

0 follows from the initialization steps of the algorithm:
for S0 = V we have w0(e) ≡ +∞, and hence ρ0(t) = ℓ0(t, t) = 0 and ρ0(v) = ℓ0(v, t) = +∞
for all vertices v ∈ V \ {t}.

In order to prove by induction that IS
i+1 and IT

i+1 follow from IS
i and IT

i , let us first sup-
pose that the ith iteration loop breaks due to the stopping criterion in line 6: min{ρi(v), v ∈
Si} = +∞. Then i = n − 1 and Sn−1 = Sn, which means that ℓn(v, t) ≡ ℓn−1(v, t) and
ρn(v) ≡ ρn−1(v). Consequently, the statements of IS

n and IT
n become identical to IS

n−1 and
IT

n−1, and we have nothing to prove. Moreover, as all vertices of Sn are disconnected from
t in Go = Go

n, invariant IT
n also shows that the algorithm correctly computes the blocking

distances and the optimal blocking digraph Go for all vertices.
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We may assume henceforth that n = |V | − 1 and |Sn| = 1. Consider the vertex u that
moves from Si to Ti+1 at iteration i:

ρi(u) = min{ρi(v), v ∈ Si} < +∞. (3)

To show that ρi(u) = ℓ(u, t), observe that by IS
i , ρi(u) = ℓi(u, t) ≥ ℓ(u, t). In other words,

ρi(u) is an upper bound on the w-cost of reaching t from u, regardless of any admissible
blocks selected by the adversary. So we will have ρi(u) = ℓ(u, t) if we can find an admissible
digraph G′ such that

ρi(u) = w-distance from u to t in G′. (4)

Let G′ = Go
i be the admissible digraph defined in IT

i . Then (4) follows from IT
i , the non-

negativity of the input arc-weights, and the fact that ρi(u) = p(e∗) = w(e∗) + ρi(v), where
e∗ = (u, v) ∈ A is the arc with the smallest key value in the (Si , Ti)-cut of G′.

After u gets into Ti+1, the value of ρ(u) never changes. Hence ρi+1(u) = ℓ(u, t), as stated
in IT

i+1 . Note that (3) and invariant IT
i also tell us that min{ρi(v), v ∈ Si} = ℓ(u, t) ≥

max{ℓ(v, t), v ∈ Ti}. Let us now show that after the algorithm updates ρ(v) on Si+1, we
still have

min{ρi+1(v), v ∈ Si+1} ≥ ℓ(u, t) = max{ℓ(v, t), v ∈ Ti+1}, (5)

again as stated in IT
i+1 . Suppose to the contrary, that ρi+1(v) < ℓ(u, t) = ρi(u) for some

vertex v ∈ Si+1. Then from (3) it would follow that e = (v, u) is an arc of G = (V, A) and
consequently Yi+1(v) = Yi(v) ∪ {e}. Moreover, we must have e ∈ X̂(Yi+1(v)), for otherwise
the value of ρi+1(v) = pB(Yi+1(v)) could not have dropped below the minimum of ρi(v)
and p(e) = w(v, u) + ℓ(u, t), which is at least ℓ(u, t). But if e ∈ X̂(Yi+1(v)) then again
pB(Yi+1(v)) ≥ p(e), contradiction.

To complete the proof of IT
i+1 , it remains to show that Go

i+1 is an optimal admissible
digraph for each vertex v ∈ Ti+1, and that some shortest v-t path in Go

i+1 lies in Ti+1. This
readily follows from (5) and the fact that the sub-graphs of Go

i and Go
i+1 induced by Ti+1 are

identical.
Finally, IS

i+1 follows from the updates ρi+1(v)← pB(Yi+1(v)) performed by the algorithm
in lines 8-11. �

Since we assume that n = |V | − 1 and |Sn| = 1, the correctness of the algorithm readily
follows from IS

n and IT
n . When Sn is a singleton s ∈ V , then wn(e) ≡ w(e), see (2). Hence

ℓn(v, t) ≡ ℓ(v, t), and IS
n yields ρn(s) = ℓn(s, t) = ℓ(s, t). By IT

n , we also have ρn(v) = ℓ(v, t)
for the remaining vertices v ∈ Tn = V \ {s}. Invariant IT

n also guarantees that Go = Go
n is

an optimal admissible digraph for all vertices v ∈ V .

2.4 Modified Dijkstra’s Algorithm

In this section we prove part (ii) of Theorem 1 by modifying the algorithm stated in Section
2.2.

The modified algorithm keeps all arcs across the current (S, T )-cut in a minimum priority
queue A, implemented as a binary heap. As in the previous algorithm, each arc e = (v, v′)



– 13 –

across the cut is assigned the key value p(e) = w(e) + ρ(v′), where ρ(v′) = ℓ(v′, t) for all
vertices v′ ∈ T . In addition to the arcs in the current cut, A may also contain some arcs
e = (v, v′) for which both endpoints v, v′ are in T . In order to compute the vertex u to
be moved from S to T , we repeatedly extract the minimum-key arc e from A, and check
whether e = (v, v′) belongs to the current cut and can be blocked along with the arcs that
have already been blocked at v. The first arc e = (v, v′) in the cut that cannot be blocked
defines the vertex u = v. We then move u to T , insert all arcs e = (vu) ∈ A for which v ∈ S
into A, and iterate.

MODIFIED ALGORITHM

Input: A digraph G = (V,A) with arc-weights
{w(e) ∈ [0,+∞), e ∈ A}, a terminal vertex t ∈ V , and a
blocking system B ⊆ 2A defined via a membership testing
subroutine.

Initialization:

1. Initialize arrays T [1 : V ] ≡ FALSE and ℓ[1 : V, t] ≡ +∞ ;
2. T [t]← TRUE, d[t, t]← 0;
3. For each vertex v ∈ V \ {t} initialize an empty list X̂(v);
4. For each arc e = (v, t) ∈ A, insert e with key p(e) = w(e) into
an initially empty binary heap A.

Iteration loop:

5. While A 6= ∅ do:
6. Extract the minimum-key arc e = (u, v) from A;
7. If T [u] = FALSE and T [v] = TRUE do:
8. If X̂(u) ∪ {e} can be blocked at u, insert e into X̂(u)
9. else { T [u]← TRUE; Return X̂(u) and ℓ[u, t] = p(e);
10. For all arcs e = (v, u) ∈ A such that
T [v] = FALSE,

Insert e with key value p(e) = w(e)+ℓ[u, t] into A}.

The outputs of the modified algorithm and the extended Dijkstra’s algorithm presented
in Section 2.2 are identical. It is also easy to see that the running time and the number of
membership tests required by the modified algorithm satisfy the bounds stated in part (ii)
of Theorem 1.

2.5 Unit arc-weights

When w(e) = 1 for all e ∈ A, and the blocking systems B(v) are all empty, the single-
destination shortest path problem can be solved in linear time by breadth-first search. The
extended Dijkstra’s algorithm for problem MASPNLAI can be similarly simplified to prove
part (iii) of Theorem 1.
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BREADTH-FIRST SEARCH FOR MASPNLAI

Input: A digraph G = (V,A) with a destination vertex t ∈ V ,
and a blocking system B defined by a membership subroutine.

Initialization:

1. Initialize ℓ(1 : V, t) ≡ +∞ and an empty first-in first-out
queue T ;
2. ℓ(t, t) ← 0; Enqueue t into T ;
3. For each vertex v ∈ V \ {t} initialize an empty list X̂(v);

Iteration loop:

4. While T 6= ∅ do:
5. Extract the first vertex u from T ;
6. For all arcs e = (v, u) ∈ A, do:
7. If ℓ(v, t) = +∞ and X̂(v) ∪ {e} can be blocked, insert e

into X̂(v);
8. else ℓ(v, t) ← ℓ(u, t) + 1, enqueue v into T , and return
ℓ(v, t), X̂(v).

The above algorithm runs in at most |A| iterations. It follows by induction on ℓ(v, t) that
it correctly computes the blocking distances and that the admissible digraph Go =

(

V, A \
⋃

v∈V \{t} X̂(v)
)

is optimal.

3 Inapproximability Bounds

In the rest of the paper we prove the inapproximability results for total limited short paths
interdiction stated in the introduction, and a few analogous claims for vertex interdiction
and/or undirected graphs. Let us first give precise formulations for these results.

3.1 Problems and results

We consider a graph (or digraph) G = (V, E) with a nonnegative length associated with
every edge (or arc), two distinct vertices s and t, and a threshold d ∈ Z+, and denote this
input by (G, s, t, d).

A vertex blocker of (G, s, t, d) is a set of vertices different from s and t whose removal
increases the s-t distance to at least d. We define the Minimum Vertex Blocker to Short
Paths Problem (MVBP) as follows:
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Minimum Vertex Blocker to Short Paths Problem
(MVBP)

Input: A graph (digraph) G with a nonnegative length associ-
ated with every edge (arc), two vertices s, t and a threshold
d

Output: The size bV (G, s, t, d) of the smallest vertex blocker:

bV (G, s, t, d) = min{ |U | | dG[V rU ](s, t) ≥ d, U ⊆ V r{s, t}}.

Theorem 5 It is NP-hard to approximate the size of the smallest vertex blocker within a
factor smaller than 10

√
5− 21 ≈ 1.36, even for bipartite graphs.

An edge blocker of (G, s, t, d) is a set of edges (arcs) whose removal increases the s-
t distance to at least d. We define the Minimum Edge Blocker to Short Paths Problem
(MEBP) as follows:

Minimum Edge Blocker to Short Paths Problem (MEBP)

Input: A graph (digraph) G with a nonnegative length associ-
ated with every edge (arc), two vertices s, t and a threshold
d

Output: The size bE(G, s, t, d) of the smallest edge blocker:

bE(G, s, t, d) = min{ |F | | d(V,ErF )(s, t) ≥ d, E ⊆ F}.

Then, the analogous statement to Theorem 5 above is equivalent with Theorem 3 as we
claimed in the introduction:

Theorem 6 It is NP-hard to approximate the size of the smallest edge blocker within a
factor smaller than 10

√
5− 21 ≈ 1.36, even for bipartite graphs.

The Most Vital Vertices Problem (MVVP) is defined as follows:
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Most Vital Vertices Problem (MVVP)

Input: A graph (digraph) G = (V, E) with a nonnegative length
associated with every edge (arc), two special vertices s, t
and a threshold k

Output: The maximum ℓV (G, s, t, k) of s-t distances in all
graphs obtained from G by removing k vertices. More pre-
cisely:

ℓV (G, s, t, k) = max{dG[V rU ](s, t) | U ⊆ V r{s, t}, |U | = k}.

Theorem 7 It is NP-hard to approximate ℓV within a factor smaller than 2, even for bi-
partite graphs.

The Most Vital Edges Problem (MVEP) is defined as follows:

The Most Vital Edges Problem (MVEP)

Input: A graph (digraph) G = (V, E) with a nonnegative length
associated with every edge (arc), two vertices s, t and a
threshold k

Output: The maximum ℓE(G, s, t, k) of s-t distances in all
graphs obtained from G by removing k edges. More pre-
cisely:

ℓE(G, s, t, k) = max{d(V,ErF )(s, t) | F ⊆ E, |F | = k}.

Then, Theorem 2 can be reformulated as follows:

Theorem 8 It is NP-hard to approximate ℓE within a factor smaller than 2, even for bi-
partite graphs.

3.2 Restricted problems

In this section we define restricted versions of the above problems by introducing the as-
sumption that some vertices (edges) cannot be removed. We called these vertices (edges)
fixed. The remaining vertices (edges) are called removable.
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We obtain restricted-MVBP and restricted-MVVP from MVBP and MVVP, respectively,
by fixing some vertices (in addition to s and t). Similarly we obtain restricted-MEBP and
restricted-MVEP from MEBP and MVEP, respectively, by fixing some edges.

For a graph G, two vertices s, t, a set of fixed vertices V ′ (or a set of fixed edges E ′) and
thresholds d and k, let b′V (G, s, t, V ′, d), b′E(G, s, t, E ′, d), ℓ′V (G, s, t, V ′, k) and ℓ′E(G, s, t, E ′, k)
denote the solutions to restricted-MVBP, restricted-MEBP, restricted-MVVP and restricted-
MVEP, respectively.

Given an instance (G, s, t, V ′, d) of restricted-MVBP we assume that all removable ver-
tices form a vertex blocker. Similarly given an instance (G, s, t, E ′, k) of restricted-MEBP
we assume that all removable edges form an edge blocker.

3.3 Inapproximability of minimum vertex cover

In this section we present previously known results on which the proofs of our results are
based. A vertex cover of an undirected graph G is a subset of vertices incident to every
edge. Let τ(G) denote the size of the smallest vertex cover of G.

Deciding if G has a vertex cover of size at most k is NP-hard [17], even for tripartite graphs
[38]. However, τ(G) can be easily approximated within a factor 2, since the vertex cover
consisting of both vertices of edges belonging to the maximum matching can be computed
in polynomial time and its size is at most 2τ(G). Improving this simple 2-approximation
algorithm has been quite a nontrivial task. The best known approximation algorithm has a
factor of 2−Θ( 1√

log n
), where n is the number of vertices [27].

On the other hand, in 1997 H̊astad [24] proved that it is NP-hard to approximate τ(G)
within a factor smaller than 7

6
≈ 1.17. Recently Dinur and Safra [11] obtained the bet-

ter inapproximability factor of 10
√

5 − 21 ≈ 1.36. For tripartite graphs it is NP-hard to
approximate τ(G) within a factor smaller than 34

33
≈ 1.03 [7].

4 Proof of Theorem 5

In this section we prove Theorem 5 by reducing the minimum vertex cover problem to
restricted-MVBP. As shown in Section 7.1 and Section 7, for each instance of restricted-
MVBP we can construct an instance of MVBP with the same optimal value and a bipartite
input graph. Therefore Theorem 9 below implies Theorem 5.

Theorem 9 It is NP-hard to approximate b′V within a factor smaller than 10
√

5−21 ≈ 1.36.

Proof. Let G be an undirected graph with vertices v1, . . . , vn (see Figure 1). We construct
an instance of restricted-MVBP. We obtain an undirected graph H from G by adding to it
a path su1u2 . . . unt and connecting vi to ui for i = 1, . . . , n (see Figure 2). Let W denote
the vertex set of H . We assign length 1 to edges u1u2, u2u3, . . . , un−1un and 0 to all other
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v1

v2

v3

v4

Figure 1: Graph G.
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1 1 10 0

Figure 2: Graph H . Squares are fixed vertices.

edges. Let V ′ = {u1, . . . , un} be the set of fixed vertices. The threshold is n− 1. Note that
the set of all removable vertices forms a vertex blocker.
Recall that τ(G) denotes the size of the smallest vertex cover of G.

Claim 1 τ(G) = b′V (H, s, t, V ′, n− 1).

Proof. Let U ⊆ {v1, . . . , vn} be a set of removable vertices. We show that U is a vertex
cover of G if and only if U is a vertex blocker of (H, s, t, n− 1).H [W r U ] is at least n− 1.

Suppose U is a vertex cover of G. Since V r U is an independent set of G, there is only
one s-t path, su1u2 . . . unt, in H [W r U ] and the length of this path is n− 1 (see Figure 3).

v2

v3

s tu1 u2 u3 u4

0

0

1 1 10 0

Figure 3: Graph H [W r U ] obtained from H by removal of the vertex cover U = {v1, v4} of
G.

Conversely, suppose U is a vertex blocker of (H, s, t, n − 1). Note that for every i < j
there is no edge between vertices vi and vj in H [W r U ], since otherwise there would exist
a path su1 . . . uivivjuj . . . unt in H [W r U ] shorter than n− 1. Thus U is a vertex cover of
G. �
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Since it is NP-hard to approximate the minimum vertex cover within a factor smaller
than 10

√
5− 21 ≈ 1.36 [11], Theorem 9 follows.

We can similarly reduce the minimum vertex cover problem to restricted-MVBP for
directed graphs. Let H be a digraph obtained from G by replacing every edge vivj, i < j, of
G by an arc vivj , adding to it a dipath su1u2 . . . unt and connecting vi to ui with two arcs
viui and uivi for i = 1, . . . , n (see Figure 4).

v1

v2

v3

v4

s tu1 u2 u3 u4

0

0

0

0

0

0

0

00

0

0

0

1 1 10 0

Figure 4: Digraph H . Squares are fixed vertices.

As before we assign length 1 to arcs u1u2, u2u3, . . . , un−1un and 0 to all other arcs, vertices
u1, . . . , un are fixed and the threshold is n− 1. The proof that τ(G) = b′V (H, s, t, V ′, n− 1)
is analogous. �

5 Proof of Theorem 6

In this section we prove Theorem 6 similarly to the proof of Theorem 5. We reduce the
minimum vertex cover problem to restricted-MEBP. As shown in Section 7.2 and Section 7,
for each instance of restricted-MEBP we can construct an instance of MEBP with the same
optimal value and a bipartite input graph. Therefore Theorem 10 below implies Theorem 6.

In the proof of Theorem 10 we use a gadget first described in [3], where it was used to
prove NP-hardness of the Most Vital Edges Problem.

Theorem 10 It is NP-hard to approximate b′E within a factor smaller than 10
√

5 − 21 ≈
1.36.

Proof. Let G be a undirected graph with vertices v1, . . . , vn (see Figure 1). We construct
an instance of restricted-MEBP. We obtain an undirected graph H from G by

• replacing every vertex vi of G by two vertices v′
i and v′′

i connected by an edge v′
iv

′′
i of

length 1 for i = 1, . . . , n,

• replacing every edge vivj , i < j, of G by v′′
i v

′
j of length 5(j − i)− 2,
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• adding to it a path P = su′
1u

′′
1u

′
2u

′′
2 . . . u′

nu
′′
nt, where u′

iu
′′
i has length 5 for i = 1, . . . , n

and other edges have length 0,

• adding two edges v′
iu

′
i and v′′

i u
′′
i of length 2 for i = 1, . . . , n (see Figure 5).
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Figure 5: Graph H . Solid lines are fixed edges.

All edges except for v′
1v

′′
1 , . . . , v

′
nv

′′
n are fixed. We denote the set of fixed edges by E ′. The

threshold is 5(n − 1). Note that the set of all removable edges forms a vertex blocker. Let
W and E denote the vertex set and the edge set of H , respectively.

Let x ∈ {u′
i, u

′′
i }, y ∈ {u′′

j , u
′′
j}, where i 6= j. We call the subpath of P from x to y an x-y

line. An x-y detour is an x-y path D in H , where no vertices of D, apart from the first and
the last, belong to P . An i-j shortcut is the path v′

iv
′′
i v

′
jv

′′
j (see Figure 6).

Let length(Q) denote the length of a path Q.

Claim 2 If x-y detour D contains no shortcuts then length(D) ≥ length(x-y line).

Proof. There are four possible kinds of x-y detours containing no shortcuts:
Case 1: u′

iv
′
iv

′′
i u

′′
i , for i = 1, . . . , n. Then length(x-y line) = 5 and

length(detour(x, y)) = 5
Case 2: u′

iv
′
iv

′′
i v

′
ju

′
j, for i = 1, . . . , n. Then length(x-y line) = 5(j−i) and length(detour(x, y)) =

5(j − i) + 3,
Case 3: u′′

i v
′′
i v

′
ju

′
j, for i = 1, . . . , n. Then length(x-y line) = 5(j−i−1) and length(detour(x, y)) =

5(j − i) + 2.
Case 4: u′′

i v
′′
i v

′
jv

′′
j u

′′
j , for i = 1, . . . , n. Then length(x-y line) = 5(j−i) and length(detour(x, y)) =

5(j − i) + 3.

Thus all four kinds of x-y detours are at least as long as x-y line. �

Claim 3 Let Q be an s-t path in H. If for every detour D contained in P length(D) ≥
length(x-y line), where x and y are ends of D, then the length of Q is at least 5(n− 1).
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Figure 6: Thick lines are edges of the s-t path consisting of the s-u′
1 line, a u′

1-u
′′
2 detour D1,

the u′′
2-u

′
3 line, a u′

3-u
′
4 detour D2 and the u′

4-t line. Note that the detour D1 contains the
1-2 shortcut.

Proof. Note that Q starts with the edge su′
1 and ends with the edge u′′

nt. Thus we can
decompose Q into an alternating sequence of lines and detours the s-ℓ1 line, an ℓ1-r1 detour
D1, the r1-ℓ2 line, an ℓ2-r2 detour D2, . . ., an ℓm-rm detour Dm, the rm-t line (see Figure 6).
Since no x-y detour is shorter than the x-y line, we have

length(Q) = length(s-ℓ1 line) + length(D1) + length(r1-ℓ2 line)

+ length(D2) + . . . + length(rm-t line)

≥ length(s-l1 line) + length(ℓ1-r1 line) + length(r1-ℓ2 line)

+ length(ℓ2-r2 line) + . . . + length(rm-t line)

≥ length(P ) = 5(n− 1).

�

Recall that τ(G) denotes the size of the smallest vertex cover of G.

Claim 4 τ(G) = b′E(H, s, t, E ′, 5(n− 1)).

Proof. Let F be a set of removable edges. We show that {vi | v′
iv

′′
i ∈ F} is a vertex cover of

G if and only if F is an edge blocker of (H, s, t, 5(n− 1), E ′).
Suppose {vi | viv

′
i ∈ F} is a vertex cover of G. Thus there is no shortcut in the graph

(W, E r F ). By Claim 2 all x-y detours are longer than x-y lines, which by Claim 3 implies
that every s-t path has length at least 5(n− 1).

Conversely, suppose F is an edge blocker of (H, s, t, E ′, 5(n − 1)) and suppose that
v′

iv
′′
i , v

′
jv

′′
j /∈ F , for some edge vivj of G. Then F does not block the path consisting of the

s-u′
i line, the u′

i-u
′′
j detour u′

iv
′
iv

′′
i v

′
jv

′′
j u

′′
j and the u′′

j -t line which has a total length 5(n−1)−1,
a contradiction. �

Since it is NP-hard to approximate the minimum vertex cover within a factor smaller
than 10

√
5− 21 ≈ 1.36 [11], Theorem 10 follows.
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Note that we can similarly reduce the Minimum Vertex Cover Problem to restricted-
MEBP for directed graphs. Let H be a digraph obtained from G by

• replacing every vertex vi of G by two vertices v′
i and v′′

i connected by an arc v′
iv

′′
i of

length 0 for i = 1, . . . , n,

• replacing every edge vivj , i < j, of G by v′′
i v

′
j of length 0,

• adding to it a dipath su1u2 . . . unt, where arcs u1u2, u2u3, . . . , un−1un have length 1
and all other arcs have length 0,

• adding two arcs uiv
′
i and v′′

i ui of length 0 for i = 1, . . . , n (see Figure 7).
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0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

1 1 10 0

Figure 7: Digraph H . Solid lines are fixed arcs.

As before, all edges except for v′
1v

′′
1 , . . . , v

′
nv′′

n are fixed, we denote the set of fixed edges by
E ′ and the threshold is 5(n− 1).

Analogously to proof of Claim 1 we show that τ(G) = b′E(H, s, t, E ′, n− 1), implying the
theorem. �

6 Proof of Theorem 7

In this section we prove Theorem 7 by reducing the problem of deciding whether a tripartite
graph has a vertex cover of size at most k, which is known to be NP-hard [38], to restricted-
MVVP. As shown in Section 7.3 and Section 7, for each instance of restricted-MVVP we can
construct an instance of MVVP with the same optimal value and a bipartite input graph.
Therefore Theorem 11 below implies Theorem 7.

Theorem 11 It is NP-hard to approximate l′V within a factor smaller than 2.



– 23 –

V1

V2

V3

Figure 8: Tripartite graph G.

Proof. We will show that a (2−ǫ)-approximation algorithm, where ǫ > 0, can decide whether
a tripartite graph has a vertex cover of size k in polynomial time.

Let G be a tripartite graph with vertex set V = V1 ∪ V2 ∪ V3, where V1, V2 and V3 are
independent sets (see Figure 8). We construct an instance of restricted-MVVP. We obtain
an undirected graph H from G by adding to it a path su1u2u3t and connecting every v ∈ Vi

to ui, for i = 1, 2, 3 (see Figure 9). Let W denote the vertex set of H . We assign length 1 to
edges u1u2, u2u3 and 0 to all other edges. Vertices u1, u2, u3 are fixed.

V1
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V3

s tu1 u2 u3

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

1 10 0

Figure 9: Graph H . Squares are fixed vertices.

Claim 5

(i) If G has a vertex cover of size at most k then ℓ′V (H, s, t, V ′, k) = 2.

(ii) If G does not have a vertex cover of size at most k then ℓ′V (H, s, t, V ′, k) ≤ 1.

Proof. (i) Let U be a vertex cover of G such that |U | ≤ k. Since V r U is an independent
set in G, there is only one s-t path, su1u2u3t, in H [W r U ] and the length of this path is 2.
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(ii) Since G has no vertex cover of size k, for every k-element subset U of removable
vertices, V r U is not independent in G. Thus there is an edge xy in H [W r U ] with x and
y belonging to different parts of G. There are three cases:

Case 1: x ∈ V1, y ∈ V2. Then su1xyu2u3t is an s-t path of length 1.
Case 2: x ∈ V1, y ∈ V3. Then su1xyu3t is an s-t path of length 0.
Case 3: x ∈ V2, y ∈ V3. Then su1u2xyu3t is an s-t path of length 1.
Thus the s-t distance in H [W r U ] is 0 or 1 for every k-element set U of removable

vertices. �

Since a (2 − ǫ)-approximation algorithm, when run on H , must produce a solution
smaller than 2 when ℓ′V (H, s, t, V ′, k) ∈ {0, 1} and a solution greater than or equal to 2
when l′V (H, s, t, V ′, k) = 2, such an algorithm could distinguish graphs that have a vertex
cover of size k from graphs that do not.

We can similarly reduce the Most Vital Vertices Problem to restricted-MVVP for directed
graphs. We obtain a directed graph H from G by replacing every edge vw, where v ∈ Vi,
w ∈ Vj , i < j, of G by an arc vw, adding to it a dipath su1u2u3t and two arcs vui and uiv
for every v ∈ Vi, for i = 1, 2, 3 (see Figure 10). We assign length 1 to arcs u1u2, u2u3 and 0
to all other arcs. Vertices u1, u2, u3 are fixed. The proof of Claim 5 is essentially the same
as in the undirected case. �
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Figure 10: Digraph H . Squares are fixed vertices.

7 Reduction from Restricted to Original Problems

In this section for each instance of a restricted problem we construct in polynomial time an
instance of the original problem with the same optimal value.
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For an undirected graph we define the operation of splitting a vertex x into n copies as
follows: we replace x by vertices x1, . . . , xn and each edge xy of length l by edges x1y, . . . , xny
of length l (see Figure 11). We call vertices x1, . . . , xn split vertices of x.

l1

l2

l3x

xn

x2

x1

l1

l2

l3

l1

l2

l3l1

l2

l3

Figure 11: Operation of splitting x into n copies.

Analogously, for a directed graph we define the operation of splitting a vertex x into
n copies as follows: we replace x by vertices x1, . . . , xn, each arc xy of length l by edges
x1y, . . . , xny of length l and each arc yx of length l by edges yx1, . . . , yxn of length l (see
Figure 12).
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Figure 12: Operation of splitting x into n copies in directed graphs.

For a graph (digraph) we define the operation of splitting an edge (arc) xy into n copies
as follows: we add vertices z1, . . . , zn, then replace the edge (arc) xy of length l by edges
(arcs) xz1, . . . , xzn of length l and edges (arcs) z1y, . . . , zny of length 0 (see Figure 13). We
call vertices z1, . . . , zn division vertices of xy.

yx l x y

z1

z2

z3

l

l

l

0

0

0

Figure 13: Operation of splitting xy into n copies.
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7.1 Reduction from Restricted-MVBP to MVBP

For each instance of restricted-MVBP we construct in polynomial time an instance of MVBP
with the same size of the minimum vertex blocker.

Let (G, s, t, V ′, d) be an instance of restricted-MVBP. Recall that we assume that all
removable vertices form a vertex blocker. Let n be the number of vertices of G. We obtain
a graph H from G by consecutively splitting every fixed vertex x ∈ V ′ into n copies. Let W
denote the vertex set of H .

Observation 1 Let U be a subset of removable vertices. U is a vertex blocker of (H, s, t, d)
if and only if U is a vertex blocker of (G, s, t, V ′, d).

Claim 6 Let U be a minimum vertex blocker of (H, s, t, k). If U contains a split vertex y of
some fixed vertex x, then U contains all split vertices of x.

Proof. Since y ∈ U , there is an s-t path in in H [(W r U) ∪ y] through y which is shorter
than k. Suppose there is a split vertex z of x such that z /∈ U . Since the neighborhoods of y
and z are the same we can replace y by z in this path and obtain a path of the same length
in H [(W r U)], a contradiction with U being a vertex blocker. Thus all split vertices of x
belong to U . �

Proposition 1 b′V (G, s, t, V ′, d) = bV (H, s, t, d).

Proof. By Observation 1 every vertex blocker of (G, s, t, V ′, d) is a vertex blocker of (H, s, t, d).
Thus b′V (G, s, t, V ′, d) ≥ bV (H, s, t, d).

Suppose b′V (G, s, t, V ′, d) > bV (H, s, t, d). Let U be a minimum vertex blocker of (H, s, t, d).
Since by our assumption all removable vertices form a vertex blocker of (G, s, t, V ′, d), we
obtain |U | < n. Thus by Claim 6 U cannot contain split vertices. By Observation 1 U is a
vertex blocker of (G, s, t, V ′, d), a contradiction. �

7.2 Reduction from restricted-MEBP to MEBP

For each instance of restricted-MEBP we construct in polynomial time an instance of MEBP
with the same size of the minimum edge blocker.

Let (G, s, t, E ′, k) be an instance of restricted-MEBP. Recall that we assume that all
removable edges (arcs) form a edge blocker. Let m be the number of edges (arcs) of G. We
obtain a graph H from G by consecutively splitting every fixed edge (arcs) xy ∈ E ′ into m
copies.

Similarly to Proposition 1 we can show that the minimum edge blockers of (G, s, t, E ′, d)
and (H, s, t, d) have the same size.

Proposition 2 b′E(G, s, t, E ′, d) = bV (H, s, t, d).
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7.3 Reduction from restricted-MVVP to MVVP

For each instance of restricted-MVVP we construct in polynomial time an instance of MVVP
with the same optimal value.

Let (G, s, t, V ′, k) be an instance of restricted-MVVP. We construct an instance (H, s, t, k)
as in Section 7.1. Similarly to Proposition 1 we can show that the the maximum of s-t
distances in all graphs obtained from G by removing k vertices and the maximum of s-t
distances in all graphs obtained from H by removing k vertices are equal.

Proposition 3 ℓ′V (G, s, t, V ′, k) = ℓV (H, s, t, k).

7.4 Reduction from restricted-MVEP to MVEP

For each instance of restricted-MVEP we construct in polynomial time an instance of MVEP
with the same optimal value.

Let (G, s, t, V ′, k) be an instance of restricted-MVEP. We construct an instance (H, s, t, k)
as in Section 7.2. Similarly to Proposition 1 we can show that the the maximum of s-
t distances in all graphs obtained from G by removing k edges and the maximum of s-t
distances in all graphs obtained from H by removing k edges are equal.

Proposition 4 ℓ′E(G, s, t, E ′, k) = ℓE(H, s, t, k).

8 Reduction to Bipartite Graphs

In this section for each instance of an original problem we construct in polynomial time an
instance with a bipartite input graph and the same optimal value.

Let G = (V, E) be a graph (digraph). We construct a graph (digraph) H by splitting every
edge of G into 1 copy, where the operation of edge splitting was defined in Section 6. Let W
be the set of vertices newly added division vertices. Note that the graph H is bipartite, since
every edge of H has one endpoint in V and the other in W . Analogously to Proposition 1,
we can prove that bE(G, s, t, d) = bE(H, s, t, d) and ℓE(G, s, t, k) = ℓE(H, s, t, k).

We next obtain a graph (digraph) H ′ from H by splitting every vertex of W into |V |
copies, where the operation of vertex splitting was defined in Section 6. Note that H ′

is still bipartite, and we can prove that bV (G, s, t, d) = bV (H ′, s, t, d) and ℓV (G, s, t, k) =
ℓV (H ′, s, t, k).

9 Decision Problems

Using the well known connection between optimization and decision problems (see Chap-
ter 29 in [40]) we can restate Theorems 5, 6, 7 and 8 as follows:
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Proposition 5 (Reformulation of Theorems 5 and 6) It is NP-hard to distinguish in-
stances of MVBP having a vertex (edge) blocker of size d to paths of length at most k from
those having all vertex (edge) blockers of size greater than 1.36 d to paths of length at most
k, where d is also a part of the input. �

Proposition 6 (Reformulation of Theorems 7 and 8) For every fixed ǫ > 0 it is NP-
hard to distinguish instances of MVVP having s-t distance d after removing some k vertices
(edges) from those having s-t distance less than 1

2−ǫ
d in all induced subgraphs obtained by

removing k vertices (edges), where k is also a part of the input. �

Note that Theorem 4 is the strengthening of Proposition 6. Similarly it can be viewed as a
two-sided generalization of Proposition 5, although the corresponding factor is worse.

10 Proof of Theorem 4

As shown in [7], it is NP-hard to approximate the size of the smallest vertex cover in tripartite
graphs within a factor smaller than 34

33
. This can be restated as follows: for every fixed ǫ > 0

it is NP-hard to distinguish tripartite graphs having a vertex cover of size k from those
having all vertex covers of size greater than (34

33
− ǫ)k, where k is a part of the input.

The claim below immediately follows from Claims 5 and 6.

Claim 7 Let G be a tripartite graph, let HV and HE be the graphs constructed from G in
Sections 4 and 5, respectively, and let ǫ > 0.

(i) If G has a vertex cover of size k then

l′V (HV , s, t, V ′, k) ≥ 2 and l′E(HE , s, t, E ′, k) ≥ 2.

(ii) If all vertex covers of G have size larger than (34
33
− ǫ)k then

ℓ′V (HV , s, t, V ′, (34
33
− ǫ)k) ≤ 1 and ℓ′E(HE, s, t, E ′, (34

33
− ǫ)k) ≤ 1.

Theorem 4 follows from Claim 7 and the inapproximability result stated in the beginning of
this subsection.
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